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Abstract

Heat exchange between closely positioned bodies has become an important issue for many
areas of modern technology including, but not limited to, integrated circuits, atomic force mi-
croscopy and high-density magnetic recording, which deal with bodies separated by gaps as
narrow as a few nanometers. It is now recognized that heat transport across a gap of sub-
micron width does not follow the Stefan-Boltzmann law, which is based on a conventional
theory developed for sufficiently wide gaps. This paper describes the structure of thermally
excited electromagnetic fields in arbitrarily narrow gaps, and it also shows that heat can be
carried across narrow vacuum gaps by acoustic waves. The structure of the acoustic wave fields
is also described, and it is shown that they become the dominant heat carriers in gaps narrower
than a certain critical width, which is estimated to be a few nanometers.

For example, consider a vacuum gap between silicon half-spaces. When the gap’s width is
below a critical value, which is about 7.5nm, the contribution of acoustic waves must be taken
into account. Assuming that the wavelength of thermally excited acoustic waves is of order
1nm, it may be possible to estimate the contribution of acoustic waves to heat transport across
gaps with 4nm < h < 7.5nm by the kinetic theory, but for narrower gaps with h < 4nm this
approximation is not valid, and then the full wave theory must be used. Also for gaps narrower
than about 2.5nm there is no need to take into account electromagnetic radiation because its
contribution is negligible compared to that of acoustic waves.

1 Introduction

The fact that material bodies can exchange heat even when they are separated by vacuum was

discovered long ago, and a well-established theory of radiative heat transport convincingly explained

this phenomenon and provided methods of computation of heat transport between separated bodies.

However, it has recently become apparent that the theory that makes it possible to estimate the

heat flow from the Sun to Earth, separated by millions of kilometers, does not correctly describe

heat transport across a narrow, sub-micrometer gap [8,9]. But, the conventional theory of radiative

heat transport implies that the heat flux between two half-spaces separated by a vacuum gap does

not depend on the gap’s width and is described by the Stefan-Boltzmann law:

Q =
π2κ4B
60~3c20

(T 4
+ − T 4

−), (1.1)
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where κB is the Boltzmann constant, c0 is the speed of light in a vacuum, and T± are the tem-

peratures of the half-spaces. At the time when this formula was derived the gap was considered

narrow when its width was a few millimeters and this formula was convincingly verified for virtually

arbitrary gap widths, including narrow ones. However, in the 1960s it was demonstrated that the

heat transport between metallic surfaces separated by a gap in the micrometer range significantly

exceeded predictions of the Stefan-Boltzmann law [18]. Later experiments confirmed that the heat

transport across gaps in the nanometer range may exceed conventional predictions by orders of

magnitude [8]. More recent experiments have shown that metals are not exceptions, and that the

heat transport between closely spaced dielectric plates of the same materials has order O(1/h2)

when the separation h decreases [22,24].

After this deficiency of the conventional theory of heat transport between separated bodies was

revealed, it has attracted considerable attention, partially because of academic interests but also

because of its importance for several areas of technology dominated by the miniaturization trend.

In particular, modern microelectronic devices are packed so densely that their performance may be

affected by heat exchange between the components, so that heat management becomes important

not only for energy saving but also to ensure correct functionality. Heat exchange between closely

separated objects may also play a critical role in such technologies as high-resolution microscopy

and data recording, for example. Indeed, the resolution of a 20nm detail using a probe of an atomic

force microscope or a plasmonic hyper-lens requires that they be placed within a distance of the

order of 20nm from the object, which is close enough to cause undesirable thermal disturbance.

Similarly, in modern magnetic storage devices the distance between the recording head and the

disk’s surface may be as small as a few nanometers, which is close enough to increase the thermal

radiation between the disk and the head to a level that can either corrupt the data or, inversely,

be utilized by a heat assisted recording system designed to increase the density of recording.

There is nothing surprising in the observation that heat transport across a narrow gap does not

follow the Stefan-Boltzmann formula (1.1). Since this formula involves no gap width dependence

it should hold in the case when h → 0 for half-spaces of the same material separated by a gap.

However, in this limit the gap appears as an imaginary plane in a homogeneous medium and its

conductance must be infinite, which disagrees with (1.1). Despite its transparency this contradiction

has not attracted much attention, possibly because of the illusion that it can be explained by

reasoning that while heat transport across a vacuum gap is provided exclusively by electromagnetic

radiation, when there is no gap it can be carried by additional and more efficient mechanisms that

abruptly activate when the gap collapses and thus provide infinite conductivity of the imaginary

gap. Although such arguments sound appealing, they are nevertheless misleading, first because

the radiative conductance of an infinitesimally narrow gap is itself unbounded and also because a

sufficiently narrow gap supports the propagation of acoustic waves which are known to be primary
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heat carriers in solids, and, therefore, which must also be considered as the gap closes.

This paper discusses the mechanisms of heat transport between slightly separated half-spaces

occupied by dielectric solids. In the next section we review the basic mechanisms of heat transport

through continuous solids and explain that heat can be carried across a narrow vacuum gap not

only by electromagnetic waves but also by acoustic waves. In Section 3 we describe the structure

of electromagnetic fields that propagate in a sandwich-like structure with two material half-spaces

separated by a vacuum gap, and the following Section 4 describes the acoustic waves propagating

in the considered structure. It is shown that both kinds of waves are described by similar formulas

which implies that their contributions to heat transport can be studied by a unified method. Finally,

in Section 5 we discuss applications of the proposed model and its relationships to other studies.

2 Overview

It is generally accepted that any material body can be considered as a large system of smaller

components and that the energy of such a system can be subdivided into its external and internal

energies. The external energy includes the kinetic energy of the motion of the system considered

as a whole and the potential energy of interactions of the entire system with the exterior world.

The internal energy includes the kinetic energy of the individual components, the energy of interac-

tions between the components, and the internal energies of the components, which may be further

subdivided into smaller components with their own internal energies.

The energy can be converted from one form to another, and it can pass from one body to

another. In particular, the external energy of a body can be converted to its internal energy and

vice versa. When different bodies interact they may exchange parts of their external or internal

energies, or a part of the external energy of one body may be exchanged to a part of the internal

energy of another body. If the internal energy of a body increases or decreases by the amount Q

then this body is said to receive or to lose the amount Q of heat. Correspondingly, heat transport

is a process of changing the internal energy of a body, and heat can be considered as the measure

of the internal energy of the body.

Different materials store their internal energies in different forms which implies that there are

different mechanisms of heat transport.

It is well known that a material is composed of particles with a somewhat complicated pattern

of electric charges performing perpetual thermal motions. It is also known that accelerating electric

charges radiate electromagnetic waves that pick up some of the energy of the emitting charge and

transport it until it is absorbed by another charge. Since electromagnetic waves can propagate long

distances, have high speeds of propagation, and can propagate in vacuum, they appear as versatile

heat carriers providing the only means of heat transport across substantially wide vacuum gaps.

In materials heat can be transported not only by electromagnetic radiation but also by mechan-
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ical processes. Thus, the internal energy of a gas with single atom molecules consists of the kinetic

energy of the moving molecules. During inevitable collisions the faster particles of warmer areas

slow down and pass some of their energy to slower particles of cooler areas. This mechanism of

heat transport is described by the kinetic theory [12], which implies that heat conduction in gases

can be described by the Fourier law
˙⃗
Q = −kT ∇⃗T, (2.1)

where
˙⃗
Q is the heat flux, ∇⃗T is the temperature gradient, and

kT =
1

3
C ⟨v⟩Λ, (2.2)

is the thermal conductivity defined in terms of the specific heat C of the average speed ⟨v⟩ of the
flying molecules, and of the mean-free path Λ that is the average distance traveled by a molecule

between consecutive collisions. In a more complex gas of multi-atom molecules the internal energy

is determined by the kinetic energies of the translational and rotational motions of the whole

molecules and by the vibrational energies of the molecules, which include the kinetic energy and

the potential energy of the fields that keep atoms within a molecule. All of these forms of energy are

transformed to each other during collisions, which remain the primary mechanism of heat transport

in gases of multi-atom molecules, and this is also described by the kinetic theory.

In solid dielectrics there are no flying and colliding particles. Instead, molecules form a lattice

and vibrate around their stable positions at the nodes. Correspondingly, the internal energy of

such structures is determined by the energy of lattice vibrations which is carried by acoustic waves

propagating through the lattice. It is well known that acoustic waves propagate in a perfect lattice

without any decay and that for this reason perfect crystals have infinite thermal conductance [1].

However, since real solids are never perfect they have finite thermal conductance, which, despite

the fact that the heat is carried by acoustic waves, can often be described by the kinetic theory

devised for gases of flying and colliding particles.

The validity of using kinetic theory to describe heat transport in solids is based on the possibility

of decomposing an arbitrary wave into wave packets, which are “almost monochromatic” and

“almost localized” waves similar to a modulated one-dimensional wave

ϕ(x, t) = e−(x−ct)2/2l2−iω(x−ct)/c (2.3)

illustrate in Fig. 1. This wave-packet has an “effective” size of the order ∆x ≈ l and at the same

time it has the spectrum

ϕ̂(x, ξ) =
1

c
√
2π

e−l2(ξ−ω)2/2c2−iξx/c, (2.4)

localized in the frequency band of width ∆ω ≈ c/l around the dominant frequency ω. It is easy to

see that the effective size of the wave-packet is estimated as ∆x ≈ λω/∆ω, where λ is the dominant
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wavelength. Therefore, if a packet has a 5% frequency spread and its dominant wavelength is about

2nm, which is typical for silicon at room temperature, then the size of this packet is on the order of

40nm, which is substantially larger than many currently studied nanostructures. If the frequency

of vibrations is not restricted, then wave-packets may be as narrow as Dirac’s δ-function. However,

in real materials the wavelength of lattice vibrations is bounded from below, which implies that

wave-packets cannot be arbitrarily small. In particular, as discussed above, wave-packets in silicon

at room temperature cannot be smaller than a few tens of nanometers.

l

0

A
m
p
li
tu
d
e

A wave-packet appears as
a particle of “the size l”,
which is much bigger than
the dominant wave length λ.

Figure 1: A particle-like wave-packet.

In cases when it is permissible to represent lattice vibrations in terms of wave-packets it is

possible to study heat transport in dielectric solids by methods of the kinetic theory devised for

gases. Thus, a detailed analysis [14] shows that wave-packets can be treated as isolated objects

which move and collide similarly to material particles in gases. Correspondingly, the heat transport

in solids can under these conditions be described by the Fourier law (2.1) and the heat conductivity

can then be determined by the expression (2.2) where the mean-free path Λ is defined as the

average distance traveled by a wave-packet between non-linear interactions with other wave-packets.

However, the applicability of the kinetic theory to the analysis of heat transport by lattice vibrations

is restricted by the requirements that the characteristic sizes of the medium be considerably larger

than the wave-packets, which, in turn, are considerably larger than their dominant wavelength.

These restrictions alone demonstrate that the kinetic theory, Fourier law and the heat equation,

which follows from the Fourier law, cannot be reliably applied to the analysis of heat transport in

nanostructured devices.

It is worth noting that such “mechanical” mechanisms of heat transport as collisions of flying

particles and acoustic waves are in fact the result of electromagnetic phenomena because lattice

vibrations and the repulsion between colliding molecules are caused by the van der Waals inter-

molecular forces, which are essentially electrostatic forces between electrically neutral molecules

with non-vanishing dipole moments [15]. Although this observation suggests that all types of heat

transport are associated with electromagnetism, it is nevertheless useful and common to distinguish

thermal radiation as the process where the energy is carried directly by electromagnetic waves from

other mechanisms where the energy is carried by moving particles which interact with the assistance
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of electromagnetic forces.

3 Electromagnetic energy carriers

To study heat transport by means of electromagnetic waves it is convenient to adopt the point of

view that electrical charges do not directly interact with each other, but instead interact with the

electromagnetic field. Thus, the radiation of energy by a particle may be considered as the process

whereby an oscillator passes some of its energy to the electromagnetic field, and the absorbtion

of energy may be considered as the process by which an oscillator takes energy from the electro-

magnetic field. From this point of view the energy concentrated in a spatial domain G consists of

two forms: the energy of the particles located in G, and the energy of the electromagnetic field in

this domain. As a result, the analysis of radiative heat transport can be reduced to the analysis

of ensembles of electromagnetic fields in the considered domain, which can be considered without

regards to the sources of these fields.

It is well known [13, 17, 21] that electromagnetic energy is evenly divided between two fields

with different polarizations, and that each of these fields can be described by the equation

1

c2
∂2Φ

∂t2
= ∇2Φ, c =

1
√
ϵµ

, (3.1)

where c is the speed of light in the material with permittivity ϵ and permeability µ. If the elec-

tromagnetic field is localized in some domain G then the theory of partial differential equations

implies [7] that any solution of equation (3.1), accompanied by appropriate boundary conditions,

can be represented as a superposition

Φ(r⃗, t) =
∑
m,j

umj(r⃗)e
−iωmt (3.2)

where r⃗ = (x, y, z) is the position vector of the observer, ωm is the spectral frequency which takes

one of the values determined by the shape of the domain G and by the boundary conditions, and

umj(r⃗), where j = 1, 2, . . . , are independent solutions of the Helmholtz equation∇2u+(ω/c)2 u = 0,

with the spectral frequency ω = ωm. The set of all spectral frequencies is referred to as the

spectrum, and the fields umj(r⃗), where j = 1, 2, . . . , are referred to as eigenfields, or normal modes,

corresponding to ωm. The number of eigenfields corresponding to a spectral frequency ωm depends

on the frequency, and it may be infinite. If the domain G is unbounded then it may have a

continuous spectrum and each spectral frequency may correspond to a continuum of eigenfields, so

that the summations in (3.2) may be replaced by integrations.

In general, it may be extremely difficult to describe the spectrum of an arbitrary domain and

to compute the corresponding eigenfields. However, in the idealized case when G consists of two

half-spaces x < 0 and x > h separated by a vacuum layer 0 < x < h, both of these problems have
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tractable solutions, which admit many different representations. For example, the wave equation

(3.1) can be satisfied by a field

Φ(r⃗, t;ω, e⃗) =


u−(r⃗, ω, e⃗)e

−iωt, if x < 0,

u+(r⃗, ω, e⃗)e
−iωt, if x > h,

u0 (r⃗, ω, e⃗)e
−iωt, if 0 < x < h,

(3.3)

where the frequency ω ≥ 0 may take any non-negative value, and

u−(r⃗, ω, e⃗) = A−(ω, e⃗)e
i(dxx+dyy+dzz)ω/c− +B−(ω, e⃗)e

i(−dxx+dyy+dzz)ω/c− ,

u+(r⃗, ω, e⃗) = A+(ω, e⃗)e
i(exx+eyy+ezz)ω/c+ +B+(ω, e⃗)e

i(−exx+eyy+ezz)ω/c+ ,
(3.4)

are superpositions of plane waves propagating along the directions determined by the unit vectors

e⃗ = (ex, ey, ez) and d⃗ = (dx, dy, dz) with the components

dx = cos θ−, dy = sin θ− cosϕ−, dz = sin θ− sinϕ−,

ex = cos θ+, ey = sin θ+ cosϕ+, ez = sin θ+ sinϕ+,
(3.5)

defined in terms of the spherical angles θ± and ϕ± connected by the Snell’s law

c+ sin θ− = c− sin θ+, ϕ+ = ϕ−. (3.6)

As for the field u0(r⃗, ω, e⃗) inside the gap, it has a structure similar to that of u±(r⃗, ω, e⃗), but it is

not specified here because it does not play any role in the subsequent analysis.

In the formulas (3.4) the frequency ω, the direction e⃗+ and the pair of coefficients (A+, B+) can

take arbitrary values, and the other pair (A−, B−) is determined by the formula(
A−
B−

)
= T

(
A+

B+

)
, (3.7)

where

T =

(
1 R̄
R 1

)(
K 0
0 K̄

)−1

≡
(
1/K R̄/K̄
R/K 1/K̄

)
(3.8)

is the transmission matrix determined in terms of the reflection and transmission coefficients R and

K of the gap, which may be viewed as the “cumulative” characteristics of the gap determining all

of its influence on wave propagation in the entire structure.

The reflection and transmission coefficients of the vacuum gap can easily be computed by the

method of multiple reflections from the theory of wave propagation in layered media, which is so

thoroughly described in the literature [2,10], that for our purposes it suffices to reduce the discussion

to a brief summary of the results which are necessary for understanding our further developments.

Consider first the interface between two materials “a” and “b” with the speeds of wave prop-

agation ca and cb, respectively. Let Rab and Kab be the reflection and transmission coefficients of

an incident wave that arrives at the interface from the side “a” with the incidence angle θa and is
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transmitted to the wave propagating in the domain “b” with the angle θb determined by the Snell’s

law cb sin θa = ca sin θb. Then, using Fresnel formulas [23, Eqs: (7-7-13),(7-7-15)] we find that

Rab =


ca cos θa − cb cos θb
cb cos θb + ca cos θa

, (∥-polarization),

cb cos θa − ca cos θb
cb cos θa + ca cos θb

, (⊥-polarization),

(3.9)

and

Kab =


2cb cos θa

cb cos θb + ca cos θa
, (∥-polarization),

2cb cos θa
cb cos θa + ca cos θb

, (⊥-polarization),

(3.10)

where the electromagnetic field is said to have a parallel, or “∥”, polarization if its electric component

is parallel to the plane of incidence, and it has a perpendicular, or “⊥”, polarization if its electric

component is perpendicular to the plane of incidence.

To consider a system of two half-spaces x < 0 and x > h occupied by different materials

and separated by a vacuum gap 0 < x < h we assume that R− and K− are the reflection and

transmission coefficients of the interface between the left material and the vacuum, which are

represented by the formulas (3.9) and (3.10) where the indices “a” and “b” are replaced by “−”

and “0”, respectively. Similarly, R+ denotes the reflection coefficient of a wave arriving from

the right material at the interface between it and the vacuum, and K ′
+ denotes the transmission

coefficient from the vacuum to the material in x > h. Then, the method of multiple reflections

[2,10] implies that the reflection and transmission coefficients from the domain x < 0 to the domain

x > h are delivered by the expressions

R = R− −
R+(1−R2

−)e
2iχh

1−R−R+e2iχh
, K =

K−K
′
+e

iδh

1−R−R+e2iχh
, (3.11)

where

χh = hω
cos θ0
c0

, δh = hω

(
cos θ0
c0

− cos θ+
c+

)
, (3.12)

are the phase shifts caused by wave propagation inside the gap.

It is useful to observe that the expressions (3.11) provide meaningful asymptotes of the reflection

coefficient of the vacuum gap between identical materials. Thus, assuming that c− = c+ ≡ c we

can derive from (3.9) and (3.10) the identities

θ− = θ+ ≡ θ, R− = R+, K−K
′
− = 1− (R−)

2, (3.13)

which leads to the simplified expressions

R =
R−

(
1− e2ih cos θω/c0

)
1−R2

−e
2ih cos θω/c0

, K =

(
1−R2

−
)
eih(cos θ0−cos θ)ω/c0

1−R2
−e

2ih cos θω/c0
. (3.14)
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Then, letting h → 0, we see that the first formula in (3.11) reduces to the asymptote

R ≈ 2ir−h cos θω/c0, (3.15)

which shows that the reflection coefficient of a narrow gap between identical materials vanishes

proportionally to the width h.

4 Mechanical heat carriers

The simplest model of lattice vibrations that carry heat in dielectric solids is a chain of particles

connected by springs. Consider, for simplicity, the one-dimensional uniform chain shown in Fig. 2

where equal masses m are connected by identical springs with the elastic modulus γ and equilibrium

spacing a > 0.

m m m m m m

γ γ γ γ γ

a

Figure 2: Simple chain.

Let ξ(t, xn) be the displacement of the nth particle identified by its position of equilibrium

xn = an. Then the motion of these particles is described by the equation

mγ
d2ξ(t, xn)

dt2
=

γ

a

[
ξ(t, xn+1) + ξ(t, xn−1)− 2ξ(t, xn)

]
, xn = an. (4.1)

When the spacing vanishes as a → 0, the nodes xn become continuously spread over the real line

and the last equations converge to the wave equation

1

c2
d2ξ(t, x)

dt2
= ∇2ξ(t, x), (4.2)

where x is a continuous coordinate, and

c =

√
aγ

m
=

√
γ

ρ
, (4.3)

is the sound speed determined by the elastic modulus γ and the mass density ρ of the continuum.

This elementary model can be extended to more complex cases. In particular it can be used to

model two continuous half-spaces with different mass densities and elastic moduli separated by a

narrow, but non-vanishing gap.

Next consider the chain shown in Fig. 3 where the masses m− are located at the nodes xn = an

with n < 0 and the masses m+ are located at the nodes xn = h + an, where n ≥ 0, and h > 0

is an additional parameter that may be viewed as the spacing between two uniform half-chains

occupying the domains x < 0 and x > h. Assume that the springs inside the half-chains x < 0 and
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m− m− m− m+ m+ m+

γ− γ− γh γ+ γ+

a h a

Figure 3: Two separated chains

x > h have the elastic moduli γ− and γ+, respectively, and that the spring connecting the nodes

x−1 and x0 has the elastic modulus γh.

The motion of this chain is described by (4.1), which controls the motion of all particles with

n ̸= −1 and n ̸= 0, and by the additional equations

n = 1 : m−
d2ξ(t, 0)

dt2
=

γh
h

[
ξ(t, h)− ξ(t, 0)

]
+

γ−
a

[
ξ(t,−a)− ξ(t, 0)

]
,

n = 0 : m+
d2ξ(t, h)

dt2
=

γh
h

[
ξ(t, 0)− ξ(t, h)

]
+

γ+
a

[
ξ(t, h+ a)− ξ(t, h)

]
,

(4.4)

for the particles located at the boundaries of the homogeneous half-chains.

Let the spacing of the uniform chains x < 0 and x > h vanish as a → 0, while the distance

h between the half-chains remains finite. Then, representing the masses m± as m± = ρ±a, where

ρ± are the mass-densities of the continuous half-chains, and passing to the limit a → 0 we observe

that equations (4.4) reduce to the interface conditions

γ−
∂ξ(t, x)

∂x

∣∣∣∣
x=0

= γ+
∂ξ(t, x)

∂x

∣∣∣∣
x=h

= γh
ξ(t, h)− ξ(t, 0)

h
, (4.5)

which compliment equation (4.2) describing the motions in the domains x < 0 and x > h.

It is obvious from (4.5) that if the interconnection 0 < x < h is very strong in the sense that

γh/h → ∞ then the two interface conditions (4.5) reduce to the single condition

ξ(t, h) = ξ(t, 0), (4.6)

which implies that the boundary surfaces x = 0 and x = h are firmly attached to each other so

that the motion of one of them exactly reproduces the motion of another.

In the opposite limiting case of a very weak interconnection when γh/h → 0, the interface

conditions (4.5) reduce to two Neumann boundary conditions

∂ξ

∂x

∣∣∣∣
x=0

= 0,
∂ξ

∂x

∣∣∣∣
x=h

= 0, (4.7)

which effectively disconnect the motions in the domains x < 0 and x > h so that the motion in

each of them is described by the wave equation (4.2) with the Neumann boundary condition.

The one-dimensional mass-spring models discussed above admit generalizations to arbitrary

three-dimensional lattices converging, in the continuum limit, to any feasible anisotropic elastic
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medium which supports the propagation of three different elastic waves with different wave speeds.

However, in many common situations it suffices to use Debye’s approximation [11,18], which treats

any heat-conducting solid medium as an isotropic continuum supporting propagation of three sim-

ilar acoustic waves described by the scalar wave equation (4.2) with the wave speed v determined

by the mechanical properties of the solid material.

In Debye’s model, heat carriers in a dielectric solid occupying some domain G can be represented

by an acoustic pressure field p(r⃗, t) which is related to the displacement vector field ξ⃗(r⃗, t) by

ρ
∂2ξ⃗

∂t2
= −∇⃗p, (4.8)

and satisfies the wave equation p̈ = c2∇2p inside G and appropriate boundary and interface con-

ditions on ∂G. In particular the acoustic pressure p(r⃗, t) in a system of two interacting half-spaces

x < 0 and x > h illustrated in Fig. 4 must obey the interface conditions

γ
∂2p

∂x2

∣∣∣∣
x=0

= γ
∂2p

∂x2

∣∣∣∣
x=h

=
γh
h

(
∂p

∂x

∣∣∣∣
x=h

− ∂p

∂x

∣∣∣∣
x=0

)
(4.9)

which generalizes (4.5) and takes into account (4.8).

To use these interface conditions it is necessary to compute the elastic modulus γh of the vacuum

gap of width h.

Let h be so large compared to the distance between atoms that the interaction between the

half-spaces can be treated macroscopically, as an interaction between two continuum media. Then,

γh can be estimated by the formula

γh = h

∣∣∣∣dFdh
∣∣∣∣ , (4.10)

were F (h) is the force of interaction between the half-spaces separated by the distance h. This force

is computed in [16, §90] by a rather complex method which generates simple asymptotes in two

opposite limiting cases h ≫ λ0 and h ≪ λ0, where λ0 is the dominant wavelength of the thermal

electromagnetic radiation. As shown in [16, §90], in the first case F (h) has the asymptote

F (h) ≈ C∞
h4

, C =
~cπ2

240
D∞, h ≫ λ0, (4.11)

where D∞ depends on the materials: if both half-spaces are metals then D∞ = 1 and (4.11)

coincides with the Casimir force between separated half-spaces [6,16,19,20]. In the case when both

half spaces are identical dielectrics, D can be approximated by the formulas [16, Eqs. (90.7), (90.9)].

In the second case of h ≪ λ0, the force does not depend on the material and has the asymptote

F ≈ C0

h3
, C0 =

~
16π2

D0, h ≪ λ0, (4.12)
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whereD0 is a constant determined by [16, Eq. (90.4)]. Correspondingly, the modulus γh is estimated

by the formulas

γh =


4C∞
h4

, h ≫ λ0 ≈ 500 nm,

3C0

h3
, h ≪ λ0 ≈ 500 nm,

(4.13)

where the estimate λ0 ≈ 500 nm shows the range of applicability of these formulas. If the width

of the gap is comparable to the dominant wavelength of the acoustic waves λ0, then the Casimir

force between the half-spaces can be computed by more complex expressions discussed in detail in

[6, 16, 19, 20], but the results obtained below show that such expressions are not needed because

the contribution of acoustic waves to heat transport is noticeable only when the gap is significantly

narrower that λ0.

B−e
i(exx+eyy+ezz)ω/v

A−e
i(−exx+eyy+ezz)ω/v

B+e
i(exx+eyy+ezz)ω/v

A+e
i(−exx+eyy+ezz)ω/v

θ

θ

A vacuum gap
in an acoustic
medium

Acoustic waves do not propagate in a vacuum gap but a narrow gap provides coupling between
waves propagating on its different sides. In particular, it determines the transmission matrix
T(e⃗) connecting the amplitudes (A−, B−) and (A+, B+) of coupled pairs of plane waves
propagating on different sides of the gap along the direction e⃗.

Figure 4: Coupling of waves propagating on the different sides of a gap

Properties of the wave equations imply that acoustic eigenfields in the system of two interacting

half-spaces x < 0 and x > h can be decomposed into monochromatic fields

p(t, r⃗;ω, e⃗) =

{
A−e

i(dxx+dyy+dzz)ω/c−−iωt +B−e
i(−dxx+dyy+dzz)ω/c−−iωt, if x < 0,

A+e
i(exx+eyy+ezz)ω/c+−iωt +B+e

i(−exx+eyy+ezz)ω/c+−iωt, if x > h,
(4.14)

which have the same mathematical structure as the electromagnetic fields (3.4). The fields (4.14)

always satisfy equation (4.2), but to satisfy the interface conditions (4.5) the amplitudes A± and

B± must satisfy the following conditions

γ+

(
iexω

c+

)2(
Ah

+ +Bh
+

)
= γ−

(
idxω

c−

)2(
A− +B−

)
,

γ+

(
iexω

c+

)2(
Ah

+ +Bh
+

)
=

γh
h

{
iexω

c+

(
Ah

+ −Bh
+

)
− idxω

c−

(
A− −B−

)}
,

(4.15)

where

Ah
+ = A+e

iexhω/c+ , Bh
+ = B+e

−iexhω/c+ . (4.16)
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It is obvious that if γh = 0, which means that the half-spaces x < 0 and x > h are disconnected,

then the last equations imply that

A− = −B−, A+e
iexhω/c = −B+e

−iexhω/c, (4.17)

and that the pairs (A−, B−) and (A+, B+) are independent of each other. However, if γh ̸= 0 then

equations (4.15) can be reduced to the form(
A−
B−

)
= Th

(
Ah

+

Bh
+

)
. (4.18)

where Th is a matrix that can be computed as follows. First, we write (4.15) as

A− +B− = γ̂ĉ2A+ + γ̂ĉ2B+,

A− −B− = ĉ (1− is)Ah
+ − ĉ (1 + is)Bh

+

(4.19)

where

γ̂ =
γ+
γ−

, ĉ =
c− cos θ+
c+ cos θ−

, s = π
h

λ+

γ+
γh

cos θ+, (4.20)

are three dimensionless parameters, and

λ =
2πc+
ω

, (4.21)

is the wavelength in the right half-space x > h. Then we obtain the expressions

2A− = ĉ {γ̂ĉ+ 1− is }Ah
+ + ĉ {γ̂ĉ− 1− is }Bh

+,

2B− = ĉ {γ̂ĉ− 1 + ihs}Ah
+ + ĉ {γ̂ĉ+ 1 + ihs}Bh

+,
(4.22)

from which it follows that

Th =
ĉ

2

(
1 + γ̂ĉ− is 1− γ̂ĉ− is
1− γ̂ĉ+ is 1 + γ̂ĉ+ is

)
. (4.23)

After the equations (4.18) are established, they can be converted to the form(
A−
B−

)
= T

(
A+

B+

)
. (4.24)

where

T =

(
1 + γ̂ĉ− is 1− γ̂ĉ− is
1− γ̂ĉ+ is 1 + γ̂ĉ+ is

)
.

(
e2πih cos θ/λ 0

0 e−2πih cos θ/λ

)
, (4.25)

is the matrix which directly connects the coefficients (A−, B−) and (A+, B+).

It is easy to see that T admits representation in the form

T =

(
1/K R̄/K̄
R/K 1/K̄

)
, (4.26)

which coincides with (3.8), where the coefficients K and R here take the values

K =
2e−2πih cos θ/λ

ĉ(1 + γ̂ĉ− is)
, R =

1− γ̂ĉ+ is

1 + γ̂ĉ− is
. (4.27)
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This shows that K and R from (4.28) have the meanings of the transmission and reflection coeffi-

cients of the considered system of two separated half-spaces which exert on each other a mechanical

force with the elastic modulus γh.

It is worth mentioning that in certain special case the last formulas can be reduced to transparent

asymptotes. Thus, if the half-spaces x < 0 and x > h are occupied by identical materials, then

these formulas reduce to the form

K =
λγhe

−2πih cos θ+/λ

λγh − iπγ+h cos θ+
, R =

iπγh cos θ+
λγh − iπγ+h cos θ+

. (4.28)

Then, assuming that the gap is so narrow compared to the wavelength that

γ

γh

h

λ
cos θ ≪ 1, (4.29)

we obtain the estimates

|K|2 ≈ 1, |R|2 ≈
(
πγh cos θ

γhλ

)2

, (4.30)

which not only agree with the expectation that a vanishing width gap between identical media has

full transmission and no reflection, but also show that as the gap narrows the amount of reflected

energy decreases proportionally to the square of its width. In the opposite case of a wide gap

γ

γh

h

λ
cos θ ≫ 1, (4.31)

we get the estimates

|K|2 ≈
(

γhλ

πγh cos θ

)2

, |R|2 ≈ 1, (4.32)

which confirm that a wide gap has full reflection and zero transmission.

5 Discussion and conclusion

The developments in the previous sections imply that although heat in a system of dielectric half-

spaces separated by a vacuum gap can be carried by both acoustic and electromagnetic waves, the

relative importance of these two types of waves is determined by the gaps’s width.

Thus, since electromagnetic waves can freely propagate in a vacuum, the electromagnetic fields

in both half-spaces are not independent of each other regardless of the gap’s width, and they should

be considered as parts of a field distributed in the entire composite space. Mechanical waves can not

propagate across gaps unless they are only a few nanometers wide, but on the other hand, when

they do propagate they are capable of carrying much more energy than electromagnetic waves.

This suggests that heat transport across a vacuum gap strongly depends on the gap’s width. In

particular, when the gap is wider than tens of nanometers then electromagnetic radiation remains

the sole heat carrier, but when the gap is sufficiently narrow acoustic waves become the dominant

hear carriers.
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Since the transmission matrices of the electromagnetic and acoustic waves depend on the gap’s

width h, the transport properties of each of these waves also depend on h. However, before dis-

cussing the properties of each individual type of carrier, it is worth clarifying under which circum-

stances the heat is carried mostly by acoustic waves, by electromagnetic waves, or by both.

First we obtain an order-of-magnitude estimate of the the maximal heat flux that can be carried

by electromagnetic radiation.

According to [18, Eqn.(63.14)] the average energy density of an ensemble of electromagnetic

fields in equilibrium with a material at absolute temperature T has the value

EEM ≈ 4σ

c0
T 4 (5.1)

where c0 is the speed of light, and

σ =
π2κ4B
60~3c20

= 5.67 · 10−8

(
W

m2K4

)
(5.2)

is the Stephan-Boltzmann constant. Correspondingly, the maximal heat flux that can be carried

by electromagnetic radiation is estimated as

QEM ≈ 4σT 4 ≈ 1.84 · 103
(
W

m2

)
. (5.3)

Next we estimate the maximal energy flux that can be carried by acoustic waves.

Using [18, §66] we find that the energy density of a solid can be estimated as

EAc ≈ 3NatomsκBTD(Θ/T ), (5.4)

where κB = 1.38 ·10−23 (W · s/K) is the Boltzmann constant, T is the temperature, Θ is the Debye

temperature of the material, and

D(x) =
3

x3

∫ x

0

ξ3dξ

eξ − 1
(5.5)

is the Debye function. Natoms is the number of atoms per unit volume, which can be computed as

Natoms =
ρ

Ar · ua
, ua = 1.66 · 10−27 (kg), (5.6)

where ρ is the mass density of the material, Ar is its atomic weight and ua is the unified atomic

mass unit, which is essentially the weight of a single proton.

Assuming that the mass density, atomic weight and Debye temperature of silicon have the values

ρ = 2.57 · 103kg/m3, Ar = 28, and Θ = 645K, we find that at room temperature T = 300K

Natoms ≈ 5.53 · 1028, D(Θ/T ) ≈ 1.96, (5.7)

which imply that the energy density of thermally excited acoustic waves in silicon at T = 300K is

of the order

EAc ≈ 1.34 · 109
(
W · s
m3

)
. (5.8)
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Then, multiplying this number by the speed of sound in silicon c = 2200m/s, we find that the

maximal possible heat flux carried by acoustic waves in silicon at room temperature is of the order

QAc ≈ 2.96 · 1012
(
W

m2

)
. (5.9)

The last number is much higher than the maximal heat flux carried by electromagnetic waves

(5.3) but it characterizes the heat carrying ability of acoustic waves in a continuous medium. To

estimate the contribution of acoustic waves to heat transport across a gap we need to multiply QAc

by the square of the transmission coefficient |K|2 of the vacuum gap represented by (4.28).

If the characteristic wavelength λ of the acoustic waves is smaller than the gaps’s width h, then

|K|2 has the order

|K|2 ≈
γ2h
γ2

λ2

h2
, (5.10)

which depends on the ratio γh/γ of the elastic constants of the gap and the continuum and on

the ratio λ/h of the wavelength to the width of the gap. To estimate the elastic modulus γh of a

narrow gap we assume that it coincides with the modulus γ of a continuum medium in the case

when the separation h coincides with the intermolecular distance h0, which may be considered as

the smallest possible distance between the half-spaces. From this assumption we get

γh = γ

(
h0
h

)3

, (5.11)

which agrees with the second line of (4.13). Combining the last two formulas we estimate |K|2 as

|K|2 ≈
(
h0
h

)6 (
λ

h

)2

=

(
h0
h

)8 (
λ

h0

)2

, (5.12)

and multiplying this by QAc we find that the maximum flux that can be carried by acoustic waves

across a gap of width h between silicon half-spaces has the order of

Qh
Ac ≈ QAc

(
h0
h

)8 (
λ

h0

)2

, (5.13)

where λ is the typical wavelength of the heat carrying acoustic waves.

Now we can estimate the critical separation distance h∗ at which the maximal heat flux carried

by electromagnetic waves is on par with the maximal heat flux carried by acoustic waves. Thus,

equalizing QEM and Qh
Ac we get the equation

QAc

(
h0
h∗

)8( λ

h0

)2

= QEM , (5.14)

which leads to the estimate

h∗ ≈ h0

(
QAc

QEM

)1/8( λ

h0

)1/4

≈ 14.2h0

(
λ

h0

)1/4

. (5.15)
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If we set h0 = 0.235nm (the value for silicon crystal) and λ = 1nm, which is a typical wavelength

of acoustic waves in silicon at room temperature, we obtain

h∗ ≈ 4.78 nm. (5.16)

The above estimates show that although heat can be carried across a gap by electromagnetic

and acoustic waves, in most cases one of these two heat carriers contributes significantly less that

the other and therefore can be neglected. Indeed, if the gap has the critical width h = h∗ then

acoustic and electromagnetic waves carry equal amounts of heat across the gap. However, if the

gap’s width is 50% more or less than h∗ then the contribution of the acoustic waves is about

twenty five times less or more, while the contribution of electromagnetic waves remains practically

unchanged. This observation implies that unless the width of the gap h belongs to the band between

0.5h∗ < h < 1.5h∗, which is narrower than a 5nm band in the considered case (5.16), then most of

the heat is transported across the gap by only one type of waves.

Since acoustic and electromagnetic waves are described by similar mathematical equations, the

analysis of heat transport across narrower and wider gaps can be performed by similar methods,

based on the explicit representation of the corresponding wave fields in the considered sandwich-like

structure with two half-spaces separated by a gap of width h.

However, due to the considerable difference between the typical wavelengths of thermally excited

electromagnetic and acoustic waves, it is possible that other techniques may sometimes be invoked.

Consider first a wide gap of width considerably exceeding the wavelength λ ≈ 400–800 nm of

thermally radiated electromagnetic waves at room temperature. In this case, corresponding in Fig. 5

to the domain on the right of the waved line, acoustic waves can be ignored and electromagnetic

fields can be represented in terms of wave packets which can be treated as particles [14], so that

the radiative heat transport can legitimately be analyzed by the kinetic theory. This approach was

well developed in times when several microns were considered a short distance, and it resulted in

the Stefan-Boltzmann formula (1.1).

But, when the width of the gap is less than a few wavelengths of thermally excited electromag-

netic waves, which is about λ∗ ≈ 1500nm at room temperature, the electromagnetic fields can not

be represented in terms of wave packets that are small enough compared to the gap’s width, and as

a result, the Stefan-Boltzmann formula can not be used to describe the thermal flux across the gap.

In this case, corresponding in Fig. 5 to the domain on the left side of the wavey line, to estimate the

contribution of electromagnetic radiation to thermal transport it is necessary to take into account

interference of the waves with their own reflections from the surfaces of the half-spaces, which may

be done by use of the full wave theory similar to that developed in [3–5]. If the gap’s width is below

1.5h∗, which is about 7.5nm in the considered example, the contribution of acoustic waves must

be taken into account. Assuming that the wavelength of acoustic waves is of order 1nm, it may
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be possible to estimate the contribution of the acoustic waves to heat transport across gaps with

width in the range 4nm . h . 7.5nm by the kinetic theory, but for narrower gaps with h . 4nm

this approximation is not legitimate, and the full wave theory, such as that developed in [3–5], must

be used.

100

101

102

2.5 25 250 2500 (nm)

Qmax(
kW
m2

)

h

h0 h∗ λ∗

Stefan-Boltzmann limit

Acoustic radiation

Electromagnetic radiation

Figure 5: Maximal heat fluxes which may be carried by acoustic and electromagnetic fields

Finally, it should be mentioned, that both electromagnetic and acoustic heat carriers must be

taken into account only for gaps having widths in the range between 0.5h∗ (≈ 2.5nm) and 1.5h∗

(≈ 7.5nm), which is the shaded strip in Fig. 5. For wider gaps acoustic waves can be neglected,

and for narrower gaps there is no need to take into account electromagnetic radiation.
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