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Abstract

Heat exchange between closely positioned bodies has become an important issue for many areas
of modern technology including, but not limited to, integrated circuits, atomic force microscopy
and high-density magnetic recording, which deal with bodies separated by gaps as narrow as
a few nanometers. It is now recognized that heat transport across a gap of sub-micron width
noticeably exceeds the limit set by the conventional theory of radiative heat transfer. This
papers shows than if the gap’s width is below a certain value, estimated as about 10 nanometers
for silicon at room temperature, then, in addition to electromagnetic radiation, significant heat
is a also carried by acoustic waves. Moreover, as the width of the gap decreases below about 5
nanometers, acoustic waves rapidly become the dominant heat carrier.

1 Introduction

The common perception that electromagnetic radiation provides the only means of heat exchange

between bodies separated by a vacuum gap has both theoretical and experimental justifications.

Thus, conventional theory recognizes three mechanisms of heat transfer: conduction, convection

and radiation [5]. Conduction is caused by interactions between particles that do not change their

average positions, as in solids, convection occurs when the energy is transported by drifting particles,

as in fluids and gases, and radiation is the energy transport by electromagnetic waves. According

to these definitions, conduction and convection are impossible in a vacuum because there are no

particles in a vacuum, but electromagnetic waves, on the other hand, propagate most efficiently in a

vacuum. So, radiation is apparently the only heat carrier in a vacuum. This theoretical conclusion is

strongly supported by the design of the Dewar flask, which is made from nestled vessels separated

by an evacuated space. If the walls of the vessels are covered by mirrors that block radiation

then, independently of the thickness of the vacuum layer, the flask provides such excellent thermal

insulation that it leaves little doubt about the absence of conduction and convection in a vacuum.

1



The fact that material bodies can exchange heat across a vacuum was discovered long ago, and

the theory of radiative heat transport provided methods of computation of heat transfer between

separated bodies. However, in the 1960s it was demonstrated that heat transport between metal-

lic surfaces separated by a gap in the micrometer range significantly exceeded predictions of the

conventional theory. New experiments confirmed that heat transport across gaps between similar

metals in the nanometer range may exceed conventional predictions by orders of magnitude [3].

More recent experiments have shown that metals are not exceptions, and that heat transport be-

tween closely spaced dielectric plates of the same materials becomes unbounded as the separation

distance decreases [9, 10].

After this deficiency of the conventional theory of heat transport between separated bodies

was revealed this phenomenon attracted considerable attention, inspired by its importance for

several areas of technology. In particular, modern microelectronic devices are packed so densely

that their performance may be affected by heat exchange between the components, so that heat

management becomes important not only for energy saving but also to ensure correct functionality.

Heat exchange between closely separated objects may also play a critical role in such technologies

as high-resolution microscopy and data recording, for example. Indeed, the resolution of a 20nm

size detail using a probe of an atomic force microscope or a plasmonic hyper-lens requires that

they be placed within a distance of the order of 20nm from the object, which is close enough to

cause undesirable thermal disturbance. Similarly, in modern magnetic storage devices the distance

between the recording head and the disk’s surface may be as small as a few nanometers, which

is close enough to increase the thermal conductance between the disk and the head to the level

that can either corrupt the data or, alternatively, be utilized by a heat assisted recording system

designed to increase the density of recording.

There is nothing surprising in the observations that heat transport across a narrow gap between

identical materials diverges as the width of the gap vanishes. Indeed, if the gap’s width reduces to

the distance between molecular layers, the two separated bodies form a homogeneous medium and

then the thermal conductance of such an imaginary interface must be infinite.

Despite the transparency of the last reasoning, it has not attracted much attention, possibly,

because of the illusion that although heat transport across a vacuum gap is provided exclusively

by electromagnetic radiation, when the gap collapses, some more efficient mechanisms abruptly

activate and thus provide infinite conductivity of the imaginary interface. Although such arguments

sound appealing, they are nevertheless misleading. First because the radiative conductance of

an infinitesimally narrow gap is itself unbounded [2], and also because a sufficiently narrow gap
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supports the propagation of acoustic waves which are known to be primary heat carriers in solids,

and, therefore, which must also be considered as the gap closes.

This paper discusses the mechanisms of heat conduction between slightly separated solid half-

spaces. First we discuss the mechanism of heat transport in a one-dimensional spring-mass model

of a uniform crystalline lattice. Then, we modify this model to include a weaker link (across a gap)

and formulate a simple three dimensional model of heat conductance by acoustic waves (phonons)

across a narrow gap. Finally, we estimate the width of the gap for which heat conductance by

means of acoustic waves dominates thermal transfer due to radiation.

2 Mechanical heat carriers

The simplest model of lattice vibrations that carry heat in dielectric solids is a chain of particles

connected by springs. Consider, for simplicity, the one-dimensional uniform chain shown in Fig. 1

where equal masses m = ρa are connected by identical springs with the elastic modulus γ and

equilibrium spacing a > 0, so that ρ appears as a mass density of the chain.

m m m m m m

γ γ γ γ γ

a

Figure 1: Simple chain.

Let ξ(t, xn) be the displacement of the nth particle identified by its position of equilibrium

xn = an. Then the motion of these particles is described by the equation

ρa
d2ξ(t, xn)

dt2
=

γ

a

[
ξ(t, xn+1) + ξ(t, xn−1)− 2ξ(t, xn)

]
, xn = an. (2.1)

When the spacing vanishes as a → 0 but the density ρ remains constant, the nodes xn become

continuously spread over the real line and the last equations converge to the wave equation

1

c2
d2ξ(t, x)

dt2
= ∇2ξ(t, x), c =

√
γ

ρ
, (2.2)

where x is a continuous coordinate, and c is the sound speed determined by the elastic modulus γ

and the mass density ρ = m/a of the continuum.

This elementary model can be extended to more complex cases. In particular it can be used to

model two continuous half-spaces separated by a narrow, but non-vanishing gap.

Consider the chain shown in Fig. 2 where the masses m− = ρ−a are located at the nodes

xn = an < 0 and the masses m+ = ρ+a are located at xn = h+ an, where n ≥ 0, and h > 0 is the

spacing between two uniform half-chains occupying the domains x < 0 and x > h. Assume that
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the springs inside the half-chains x < 0 and x > h have the elastic moduli γ− and γ+, respectively,

and that the spring connecting x−1 and x0 has the elastic modulus γh.

m− m− m− m+ m+ m+

γ− γ− γh γ+ γ+

a h a

Figure 2: Two separated chains

The motion of this chain is described by the equations (2.1), which controls the motion of all

particles with n ̸= −1 and n ̸= 0, and by two additional equations

n = 1 : ρ−a
d2ξ(t, 0)

dt2
=

γh
h

[
ξ(t, h)− ξ(t, 0)

]
+

γ−
a

[
ξ(t,−a)− ξ(t, 0)

]
,

n = 0 : ρ+a
d2ξ(t, h)

dt2
=

γh
h

[
ξ(t, 0)− ξ(t, h)

]
+

γ+
a

[
ξ(t, h+ a)− ξ(t, h)

]
,

(2.3)

for the particles located at the boundaries of the homogeneous half-chains.

Let the spacing of the uniform chains x < 0 and x > h vanish as a → 0, while the distance h

between them remains finite. Then, passing to the limit a → 0 we observe that (2.3) reduce to the

interface conditions

γ−
∂ξ(t, x)

∂x

∣∣∣∣
x=0

= γ+
∂ξ(t, x)

∂x

∣∣∣∣
x=h

= γh
ξ(t, h)− ξ(t, 0)

h
, (2.4)

which compliment the wave equation (2.2) describing the motions in x < 0 and x > h.

If the interconnection 0 < x < h is very strong in the sense that γh/h → ∞ then (2.4) reduce

to the single condition

ξ(t, h) = ξ(t, 0), (2.5)

which implies that the boundaries x = 0 and x = h are firmly connected to each other so that

the motion of one of them exactly reproduces the motion of the other. In the opposite limiting

case of a very weak interconnection when γh/h → 0, conditions (2.4) reduce to Neumann boundary

conditions
∂ξ

∂x

∣∣∣∣
x=0

= 0,
∂ξ

∂x

∣∣∣∣
x=h

= 0, (2.6)

which imply that the domains x < 0 and x > h move independently of each other.

The models discussed above admit generalizations to three-dimensional models of any feasible

anisotropic elastic medium. However, in many common situations it suffices to use Debye’s ap-

proximation [4, 8], which treats any heat-conducting solid as an isotropic continuum supporting

propagation of three similar acoustic waves described by the scalar wave equation (2.2) with the

wave speed v determined by the mechanical properties of the material.
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In Debye’s model, heat carriers in a dielectric solid occupying some domain G are represented

by an acoustic pressure field p(r⃗, t) which is related to the displacement vector field ξ⃗(r⃗, t) by

ρ
∂2ξ⃗

∂t2
= −∇⃗p, (2.7)

and satisfies the wave equation p̈ = c2∇2p inside G and appropriate boundary and interface con-

ditions on ∂G. In particular the acoustic pressure p(r⃗, t) in a system of two interacting half-spaces

x < 0 and x > h must obey the interface conditions

γ
∂2p

∂x2

∣∣∣∣
x=0

= γ
∂2p

∂x2

∣∣∣∣
x=h

=
γh
h

(
∂p

∂x

∣∣∣∣
x=h

− ∂p

∂x

∣∣∣∣
x=0

)
(2.8)

which generalizes (2.4) and takes into account (2.7).

To use these interface conditions it is necessary to know the elastic modulus γh of the vacuum

gap of width h. If h is large compared to the intermolecular distance then γh can be estimated by

the formula

γh = h

∣∣∣∣dFdh
∣∣∣∣ , (2.9)

were F (h) is the force of interaction between the half-spaces separated by the distance h. This force

is computed in [6, 7] by a rather complex method which, however, generates simple asymptotes in

some special but still representative cases. In particular, if both half-spaces are identical dielectrics

separated by a distance h ≪ λ0, with λ0 ≈ 500nm at room temperature, then F ≈ C0/h
3, where

C0 is a constant determined by [7, Eq. (90.4)]. Correspondingly, the modulus γh is estimated as

γh ≈ 3C0

h3
, h ≪ λ0 ≈ 500 nm. (2.10)

Properties of the wave equations imply that acoustic eigenfields in the system of two interacting

half-spaces x < 0 and x > h can be decomposed into monochromatic fields

p(t, r⃗;ω, e⃗) =

{
A−e

i(dxx+dyy+dzz)ω/c−−iωt +B−e
i(−dxx+dyy+dzz)ω/c−−iωt, if x < 0,

A+e
i(exx+eyy+ezz)ω/c+−iωt +B+e

i(−exx+eyy+ezz)ω/c+−iωt, if x > h,
(2.11)

where the coefficients A± and B± are related by the equations(
A−
B−

)
= T

(
A+e

2πih cos θ/λ

B+e
−2πih cos θ/λ

)
, T =

(
1/K R̄/K̄
R/K 1/K̄

)
, (2.12)

where T is the transmission matrix represented in terms of the transmission and reflection coeffi-

cientsK and R of the gap, which can be computed by the methods of the theory of wave propagation

in layered media [1]. Without going into detail we mention that if the half-spaces x < 0 and x > h

are occupied by identical materials then these coefficients are described by the formulas

K =
λγhe

−2πih cos θ+/λ

λγh − iπγ+h cos θ+
, R =

iπγh cos θ+
λγh − iπγ+h cos θ+

, (2.13)
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that generate asymptotes

|K| ≈ 1, |R| ≈ πγh cos θ

γhλ
, if

γ

γh

h

λ
cos θ ≪ 1, (2.14)

|K| ≈ γhλ

πγh cos θ
, |R| ≈ 1, if

γ

γh

h

λ
cos θ ≫ 1, (2.15)

which confirm that a vanishingly narrow gap between identical media has full transmission and no

reflection, and that, oppositely, a wide gap has full reflection but no transmission.

3 Heat carrying capability of acoustic waves

It is shown above that acoustic waves can penetrate the vacuum gap separating material half-spaces

and that, therefore, these waves can carry heat across a vacuum gap. However, the importance of

this channel of heat transfer strongly depends on the gap’s width. In particular, for wider gaps

electromagnetic radiation remains the sole heat carrier, but for sufficiently narrow gaps acoustic

waves become the dominant hear carriers. To justify this statement it suffices to obtain order-of-

magnitude estimates of the maximal rates of heat exchange between separated half-spaces which

can be provided by electromagnetic radiation and by acoustic waves.

First we estimate the maximal rate of heat exchange that can be carried by acoustic waves.

Using [8, §66] we find that the energy density of a solid can be estimated as

EAc ≈ 3NκBTD

(
Θ

T

)
, N =

ρ

Ar · ua
, D(x) =

3

x3

∫ x

0

ξ3dξ

eξ − 1
, (3.1)

where κB = 1.38 · 10−23 (J/K) is the Boltzmann constant, T is the temperature, Θ is the Debye

temperature of the material, and N is the number of atoms per unit volume represented in terms

of the mass density of the material ρ, of its atomic weight Ar, and the atomic mass unit ua =

1.66 · 10−27kg, which is essentially the weight of a single proton. For silicon at room temperature

(T = 300K) we find that N ≈ 5.53 ·1028, and D(Θ/T ) ≈ 1.96, which imply that the energy density

of thermally excited acoustic waves is of the order EAc ≈ 1.34 · 109 J/m3. Then, multiplying this

number by the speed of sound we find that the maximal heat flux that can be carried by acoustic

waves in silicon at room temperature is of the order

QAc ≈ 2.96 · 1012 (W/m2). (3.2)

Similarly, to estimate the maximal heat flux QEM that can be carried across a vacuum gap between

two half spaces at room temperature, we recall [8, Eqn.(63.14)] that the energy density of the

electromagnetic radiation in equilibrium at temperature T has the value EEM ≈ 4σT 4/c0, where
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c0 is the speed of light, and σ = 5.67 · 10−8 W/m2K4 is a constant. Correspondingly, multiplying

QEM by c0 we find that

QEM ≈ 1.84 · 103 (W/m2). (3.3)

It is obvious from (3.2) and (3.3) that acoustic waves are capable of carrying much more heat

than electromagnetic radiation. However, while electromagnetic radiation freely propagates across

a vacuum gap, transmission of acoustic waves strongly depends on the gap’s width, and to estimate

the capability of acoustic waves to carry heat across a gap we need to multiply QAc by the square

of the transmission coefficient |K|2 from (2.13).

If the characteristic wavelength λ of the acoustic waves is larger than the gaps’s width h, then

|K| ≈ (γh/γ)(λ/h), which is determined by the ratio γh/γ of the elastic constants of the gap and

the continuum and by the ratio λ/h of the wavelength to the width of the gap. To estimate the

elastic modulus γh of a narrow gap we assume that it coincides with the modulus γ of a continuum

medium in the case when the separation h coincides with the intermolecular distance h0, which

may be considered as the smallest possible distance between the half-spaces. From this assumption

we get γh = γ (h0/h)
3, which agrees with (2.10), and then we get the estimate

|K| ≈
(
h0
h

)4 (
λ

h0

)
. (3.4)

Finally, multiplying QAc by |K|2 we find that the maximum flux that can be carried by acoustic

waves across a gap of width h between silicon half-spaces is of order

Qh
Ac ≈ QAc

(
h0
h

)8 (
λ

h0

)2

, (3.5)

where λ is the typical wavelength of heat carrying acoustic waves.

Now we can estimate the separation distance h∗ at which the maximal heat flux carried by

electromagnetic waves is on par with the maximal heat flux carried by acoustic waves. Thus,

equalizing QEM and Qh
Ac we get the equation which shows that

h∗ ≈ h0

(
QAc

QEM

)1/8( λ

h0

)1/4

≈ 14.2h0

(
λ

h0

)1/4

. (3.6)

If we set h0 = 0.235nm (the value for silicon crystal) and λ = 1nm, which is a typical wavelength

of acoustic waves in silicon at room temperature, then

h∗ ≈ 4.78 nm, (3.7)

which is the distance comparable with widths of gaps in many modern devices, such is the gap

between the head and the disk in a hard drive, for instance.
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4 Conclusion

The obtained results show that heat can be carried across a gap by both electromagnetic and

acoustic waves, but in most cases only one of these two heat carriers has to be taken into account

because the relative contribution of the other one is negligible. Indeed, if the gap has the critical

width h = h∗ then acoustic and electromagnetic waves carry equal amounts of heat across the gap.

However, if the gap’s width is 50% more or less than h∗ then the contribution of the acoustic waves

is about twenty five times less or more, while the contribution of electromagnetic waves remains

practically unchanged. This observation implies that in the considered case (3.7) of silicon at room

temperature, both electromagnetic and acoustic heat carriers must be taken into account only for

gaps with the width in the range between 0.5h∗ (≈ 2.5nm), and 1.5h∗ (≈ 7.5nm), which is the

shaded strip in Fig. 3. For wider gaps acoustic waves can be neglected, and for narrower gaps there

is no need to take into account electromagnetic radiation.

2.5 25 250

Qmax

h(nm)h0 h∗

Electromagnetic radiation
(Stefen-Boltzmann flux)

Acoustic radiation

Figure 3: Contributions of acoustic and electromagnetic waves to heat exchange between half-spaces
in thermal equilibrium

It should be mentioned that Fig. 3 does not show heat fluxes between separated half-spaces

maintained at different temperatures. Instead, this figure illustrates the intensity of heat exchange

between half-spaces in thermal equilibrium. It is well known that if two bodies are in thermal
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equilibrium this does not mean that they do not exchange heat, it means that the flows of heat in

the different directions are equal to each other. In particular, if two half-spaces are in thermal equi-

librium then each of them receives from its counterpart an equal amount of electromagnetic energy

that is represented by the Stefen-Boltzmann law. For gaps narrower that the typical wavelength of

thermal radiation, this amount shows little dependence on the distance between half-spaces, and,

correspondingly, it is shown in Fig. 3 by a horizontal dashed line. As shown here, separated half

spaces still exchange heat by thermally excited acoustic waves, but since such waves noticeably

decay width gap width in a vacuum, the intensity of energy exchange carried by acoustic waves

sharply decays as the gap’s width increases, which is shown in Fig. 3 by a solid line.
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