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Abstract

Heat assisted magnetic recording (HAMR) is a promising hard disk drive technology
to reach 4 Tb/in2 storage densities. However HAMR introduces significant thermal
considerations that must be accounted for in air bearing simulations; the laser spot
on the recording bit and heat dissipated into the slider by the laser delivery system
result in boundary wall temperatures that are several hundred degrees Celsius above
ambient. Since the air bearing film between the slider and disk is non-isothermal, the
local air properties should be used in the lubrication equation that governs the pressure
generation. A molecular gas lubrication equation for the air bearing that accounts
for large temperature variation along the film was previously proposed by Fukui and
Kaneko, but they presented scant detail in their derivation, and it has yet to be applied
to a HAMR hard disk drive. This paper explains in considerable detail the generalized
lubrication equation and also implements it into a realistic 2D simulation using a
production slider with approximate HAMR conditions. The minimum flying height
increases substantially while the pitch and roll are inappreciably affected. Thermal
creep flow is negligible compared with Poiseuille and Couette flows, and it can be
omitted consideration. The sensitivity of the read/write transducer would be affected
by the large increase in minimum fly height; therefore the TFC design process must
consider these variations due to thermal variations in the air bearing.

1 Introduction

The magnetic recording industry widely views heat-assisted magnetic recording (HAMR)
as a technology to achieve 4 Tb/in2 storage densities in hard disk drives [1, 2]. Novel com-
ponents such as a laser delivery system integrated into the slider and a special magnetic
medium have been developed to the point that researchers are performing first-generation
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HAMR recording demonstrations [3]. As the HAMR technology progresses toward com-
mericialization, thermal management along with other practical issues still need to be
addressed [4]. One significant thermal issue is the heat dissipated into slider body by the
laser delivery system and the resulting several nanometers of distortion [2]. Design of trans-
ducer geometry, location, and surrounding material as well as ABS design can control peak
temperature and heat flow [5]. As designs are iterated to minimize thermal issues, a lu-
brication equation that sufficiently captures important air bearing behavior under HAMR
conditions needs to be implemented into a full slider simulation tool.

Fukui and Kaneko’s molecular gas lubrication (MGL) equation [6] is widely used for air
bearing simulations of traditional (non-HAMR) hard disk drives. In these implementations,
the air bearing can be assumed isothermal and therefore thermal creep flow is absent;
the heater in a thermal fly height (TFC) slider only heats the ABS surface O(10◦C )
above ambient in a confined location so an isothermal assumption is reasonable. For these
isothermal air bearings, comparison with Direct Simulation Monte Carlo (DSMC) results
verified the MGL equation in non-contact situations down to nanometer-scale minimum
fly heights [7]. However HAMR introduces significant thermal considerations that must
be accounted for in air bearing simulations; the laser spot on the recording bit and heat
dissipated into the slider by the laser delivery system result in boundary wall temperatures
that are several hundred degrees Celsius above ambient. Fukui and Kaneko presented a
form of the MGL equation including thermal creep flow for large temperature difference
between the boundary wall and the ambient characteristic temperature [8]. To date, no
publication has reported an application of this equation to a HAMR hard disk drive.

In this paper, Section 2 explains the derivation of the MGL equation with thermal creep
for large temperature differences with some added explanation not included in Fukui and
Kaneko’s papers. In Section 3, this governing equation for the HAMR air bearing is
implemented into a two dimensional simulation for a production air bearing surface (ABS)
design with plausible slider temperature and protrusion profiles. Section 4 presents the
simulation results, and Section 5 discusses implications of the report findings. A summary
and concluding remarks are in Section 6.

2 A Generalized Lubrication Equation for Non-Isothermal Systems

The classical Reynolds equation for compressible fluids governs the pressure generation in
a lubricating gas film. Quoted in many texts (e.g. [9, pg. 60]), this continuum regime
equation applies to viscous Newtonian fluids if the temperature gradient is assumed neg-
ligible and the pressure is assumed to be independent of the film thickness coordinate.
However, the technique of integrating the conservation equation across a film thickness is
not dependent on a continuum or lubrication assumption; it can be used for a rarefied gas
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as well. After applying Leibnitz’s rule to interchange the integration and differentiation
operators, we obtain the integrated conservation equation as

∂(ρh)
∂t

+
∂

∂x

[∫ h

0
(ρu)dz

]
+

∂

∂y

[∫ h

0
(ρv)dz

]
= 0 (1)

ρ is the fluid local density, h is the local fluid film thickness, and u and v are the local fluid
velocity components in the x and y directions. This mass conservation equation across the
film thickness can be re-written in terms of mass flow rate per unit length, q:

∂(ρh)
∂t

+
∂qx
∂x

+
∂qy
∂y

= 0 (2)

The mass flow rates qx and qy are the mass fluxes in the planar x and y directions integrated
across the film.

qx =
∫ h

0
(ρu)dz

qy =
∫ h

0
(ρv)dz (3)

After accurate expressions for mass flow rates for a rarefied gas film are determined, those
mass flow rates can be inserted into Equation 2.

The Boltzmann equation governs fluidic and thermal gas transport for a dilute gas such
as an HDD air bearing over the entire Knudsen number regime and for non-equilibrium
conditions [10]. Macroscopic quantities such as mass flow rate are related to the velocity
distribution function of particles, the quantity found by Boltzmann equation, through var-
ious integrals. Rarefied gases are composed of three fundamental flows: pressure driven
Poiseuille flow, shear driven Couette flow, and boundary temperature gradient driven ther-
mal creep (transpiration) flow. Scientists derived non-dimensional expressions for these
elemental flow rates by solving a simplified Boltzmann equation that employs the lin-
earized BGK model for the collision integral and idealistic gas-solid interactions at the
boundaries [11, 12]. These flow rate expressions are valid for flows with small pressure
and temperature gradients and apply over the entire rarefaction range—continuum to free
molecular flow. The flow rates depend on the local Knudsen number and the surface prop-
erties of both bounding surfaces, represented by the surface accomodation coefficient α.
The slider studied in this report had a maximum spacing in its base etch of ≈ 25500 nm
(Kn ≈ 0.0025 < 0.01, continuum regime) and the minimum fly height of only ≈ 2 nm
(Kn ≈ 32 > 10, free-molecular flow); hence the HAMR air bearing experiences the entire
rarefaction range.

Fukui and Kaneko (FK) [6] inserted expressions for the dimensional rarefied gas mass
flow rates into Equation 2. Considering only one flow direction (x) for brevity, they ob-
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tained
∂(ρh)
∂t

+
∂

∂x

(
ρUh

2
QC −

h2

√
2RT

dp

dx
QP +

ph2

T
√

2RT
dTw
dx

QT

)
= 0 (4)

U is the boundary velocity, T is the local fluid temperature, p is the local fluid pressure, dTw
dx

is the boundary wall temperature gradient, and R is the specific gas constant (universal
gas constant divided by the molecular mass). QC , QP , and QT are the non-dimensional
flow rates for Couette, Poiseuille, and thermal creep flow. For symmetric boundaries that
have the same surface properties and therefore the same accomodation coefficients, QC
is always unity. In this paper, the slider and disk surfaces are assumed to be symmetric
with a perfectly diffuse surface, α = 1. To make this generalized lubrication equation
directly comparable to the classical Reynolds equation (e.g. in [9, pg. 60]), FK normalized
the non-dimensional Poiseuille and thermal creep flow rates by the Poiseuille flow rate in
continuum flow, Qcon = D/6 =

√
π/(12Kn). In the limit as Kn→ 0, their equation reduces

to a non-dimensionalized form of the classical Reynolds equation.

Cercignani was a pioneer in the area of rarefied gas dynamics, obtaining numerical and ap-
proximate analytical solutions valid for the entire Knudsen number regime (0 ≤ Kn <∞).
He applied an approximate variational principle method to calculate Poiseuille and Couette
flow rates [13], which closely matched his earlier finite difference numerical solutions to the
linearized Boltzmann equation [14] but were less computationally expensive. Cercignani
used a non-dimensionlization convention for the Poiseuille rarefied gas flow rate [14]; the
flow rate dependence on pressure (or Knudsen number, since mean free path changes with
pressure) for a fixed pressure gradient and plate separation can be non-dimensionalized
by the quantity −h2 dp

dx . The negative sign makes the non-dimensional flow rate quantity
positive; the fluid flows from high pressure to low pressure, so the direction of mass velocity
is in the opposite direction of the pressure gradient. Cercignani used molecular velocity
units of

√
2RT in all rarefied gas analyses, so to convert the non-dimensional Poiseuille

flow rate to SI units, the non-dimensionalizing quantity is − h2
√

2RT

dp
dx .

The Poiseuille flow rate non-dimensionalization and solution method were later analogously
used by Loyalka for thermal creep flow [15]; he non-dimensionalized the mass flow due to
thermal creep by the term

1
2

√
2RT0ρh

2 1
T0

dT

dx
=

ph2

T
√

2RT0

dT

dx
(5)

The subscript 0 presumably is a reference quanity. The ideal gas law has been used in
this equality. This is exactly the same form of the Poiseulle flow non-dimensionalization
quantity used by Cercignani:

−1
2

√
2RT0ρh

2 1
p0

dp

dx
= − ρh2

ρ0

√
2RT0

dp

dx
= − h2

√
2RT0

dp

dx
if ρ ≈ ρ0 (6)
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FK also adopted these non-dimensionalizations in their work on the generalized Reynolds
equation.

Though the general form of the Poiseuille and thermal creep flow rate non-dimensionalization
quantities are standard, one finds that the temperature and pressure—local or reference
gas temperature and pressure values or the boundary wall temperature—is not consistent
between authors or even publications of the same author. Cercignani’s work with Poiseuille
and Couette flow was isothermal so the temperature was obvious. Loyalka was consistent
in most publications using the non-dimensionalization in the previous paragraph; ρ and h
are presumably local values. FK defined the thermal creep flow rate as [6]

QT ≡
qT

ph2

T0
√

2RT0

dTw
dx

(7)

and also as [8]
QT ≡

qT
ph2

Tw
√

2RTw

dTw
dx

(8)

In this report, local air property values and gradients and the local spacing are used in
the non-dimensionalization of the mass flow rates. The local value of the appropriate flow-
inducing gradient is also used: the local pressure gradient for Poiseuille flow and the local
boundary temperature gradient for thermal creep. For the x direction,

QP ≡
qP,x
h2√
2RT

dp
dx

QT ≡
qT,x

ph2

T
√

2RT
dTw
dx

(9)

With these definitions and using the Qcon normalization proposed by FK, the one dimen-
sional, steady state integrated mass conservation equation becomes

d

dx
(qC,x + qP,x + qT,x) =

d

dx

(
ρUh

2
− h√

2RT
dp

dx
QP

D

6
+

ph2

T
√

2RT
dTw
dx

QT
D

6

)
= 0 (10)

where the relative non-dimensional mass flow rates are defined according to [6]

QP =
QP
Qcon

QT =
QT
Qcon

(11)

According to the hard elastic sphere model, the mean free path λ is related to the viscosity
µ as [16]

µ ≈
√

2RT
π

ρλ =
2√
π

p√
2RT

λ (12)
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Using this relation, the inverse Knudsen number D can be expressed as

D =
√
π

2Kn
=
√
πh

2λ
=

ph

µ
√

2RT
(13)

The lubrication equation [Equation 10] is non-dimensionalized according to

P =
p

p0
X =

x

L

T =
T

T0
µ =

µ

µ0

H =
h

h0
(14)

The subscript 0 always denotes ambient or characteristic values. L is the characteristic
length, the slider length in the case of an air bearing simulation. Using Equations 13 and
14, Equation 10 becomes

d

dX

[
1
T

(
Λ0PH −

PH3

µ
QP

dP

dX
+
P 2H3

µT
QT

dTw
dX

)]
= 0 (15)

where the bearing number in the x direction, which is constant for a particular head-disk
system with a constant rotational speed, is defined as

Λ0 =
6LUµ0

p0h2
0

(16)

This is the same equation as Fukui and Kaneko’s molecular gas lubrication equation for
large temperature differences [8] except for the bearing number. They defined the bearing
number in terms of local viscosity Λ = 6LUµ

p0h2
0

. Since the viscosity changes with temperature
and hence location on the slider, we choose here to define the bearing number in terms of
constant characteristic quantities. The change in viscosity is put with the Poiseuille and
thermal creep flow terms.

When numerically solving the Equation 15, the slider and disk temperature distributions
are assumed to be known and are inputs to the simulation. These bounding surface tem-
peratures are used to estimate the air bearing temperature. T = T (x, y) refers to the
non-dimensionalized air temperature which along with other air properties is assumed to
be constant through the air bearing thickness. The temperature of the air at a particular
point (x, y) under the slider is estimated to be the average of the disk and slider tem-
perature at that point. Since the air temperature will lie somewhere in this range, it’s a
reasonable first approximation.

T (x, y) =
1
2

(
Tslider(x, y) + Tdisk(x, y)

T0

)
(17)
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Similarly the non-dimensionalized temperature gradient of the boundary, the driving force
for thermal creep flow, is the average of the non-dimensionalized slider and disk temperature
gradients at that point. Fukui and Kaneko made this arithmetic average suggestion for
instances when the top and bottom bounding surfaces have different temperature gradients
[6].

dTw
dX

=
1
2
L

T0

(
dTslider
dx

+
dTdisk
dx

)
(18)

The air viscosity, a function of temperature, is calculated from the estimated air bearing
temperature using Sutherland’s Formula for the viscosity of a gas. Sutherland proposed a
model that considered gas molecules to be hard spheres and added a weak attractive force
between molecules that decays rapidly with distance; his hypothesis is adequate over a wide
range of temperatures for many gases, including air [17, pg. 154-157], [18, pg. 27-28]. The
detail of the Chapman and Cowling viscosity expression [Equation 12] is unnecessary for
routine calculations because temperature has a strong effect while pressure has a moderate
effect on viscosity.

µ =
µ

µ0
=
(
T

T0

)3/2(T0 + C

T + C

)
(19)

where µ0 is a known viscosity at a known absolute temperature and Sutherland’s constant
C is fit to the data. For air, the reference viscosity at the reference temperature T0 = 273.15
K is µ0 = 1.71e − 5 kg/m/s and the empirically fitted constant is C = 110.4 K [18, pg.
810].

The non-dimensional mass flow rates QP and QT are functions of the Knudsen number and
the surface accommodation coefficients for the slider and disk. For simplicity, the surface
accommodation coefficients for both bounding surfaces are assumed to be 1; the surfaces
reflect gas molecules diffusely regardless to the direction of incidence. Therefore only the
dependence of the flow rates on the Knudsen number needs to be considered. According
to kinetic theory, the mean free path of a hard elastic sphere in an ideal Maxwellian gas
with diameter d and number density n is [17, pg. 113]

λ =
1√

2πd2n
=

m√
2πd2ρ

=
mRT√
2πd2p

(20)

m is the mass of the ideal gas molecule. The local in mean free path λ at a certain
temperature T and pressure p is then

λ

λ0
=

T

T0

p0

p
(21)

Since Kn=λ
h ,

Kn
Kn0

=
T

T0

p0

p
(22)
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The local mass flow rates can be evaluated at the local pressure and temperature val-
ues.

QP (Kn) = QP

(
Kn0

T

P

)
QT (Kn) = QP

(
Kn0

T

P

)
(23)

3 Simulation of Flying Attitude

Static simulations using the steady state generalized lubrication equation [Equation 15]
were carried out using the ABS design shown in Figure 1 and the protrusion profile shown
in Figure 2. The sliders dimensions are 0.851 mm long by 0.751 mm wide. The protrusion
from the zero plane ABS surface is defined over various rectangles (0.5 mm, 0.2 mm) to
(0.851 mm, 0.5 mm), and it has a maximum protrusion of 20 nm at the location (0.8264 mm,
0.3514 mm). This large protrusion profile approximates a potential protrusion due to the
heater and laser delivery system. Three different radii were considered, inner, middle, and
outer diameter positions. The radial locations and the accompanying skew angles are listed
in Table 1. Also listed in the table are the steady state flying attitudes for the case of an
isothermal slider and disk. All simulations in this report are for a disk rotational speed
of 5400 RPM. Ambient air properties are 25◦C air at sea level. All simulations assume a
perfectly flat disk with no roughness.

(a) ABS Design (b) 3D ABS Geometry

Figure 1: Air bearing surface (ABS) design used for all simulations.

Simulations with different ABS temperature profiles were tested to determine how the
flying attitude changes. These temperature profiles vary in size of the heated area and
maximum temperature (100◦C , 200◦C , and 300◦C ). All maximum temperatures are as-
sumed to occur at (0.8212 mm, 0.3489 mm), which is close to the peak protrusion location
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of (0.8264 mm, 0.3514 mm). For each maximum temperature we examine confined heated
areas and expansive heated areas. The confined temperature profiles are representative of
a laser delivery system that dissipates heat to a relatively small area of the slider body.
The expansive temperature profiles represent a highly dissipative laser delivery system that
heats up a relatively large portion of the slider. Contour plots of the ABS temperature
profiles for the different maximum temperatures and heat spot areas are overlaid onto the
rails in Figure 3. The same protrusion profile is used for all ABS temperature profiles
in the simulation results reported here. Admittedly, a different ABS temperature profile
indicates a different applied TFC power, and hence a different protrusion profile. How-
ever the focus of this report is to show the difference in simulation results when using the
isothermal MGL equation vs. the large temperature difference MGL equation and how the
effects change with ABS temperature profile.

Although the disk will be heated above its Curie temperature, reaching 200-600◦C de-
pending on the media used, the recording area per bit of (25 nm)2 [2] is negligible in a full
slider simulation. The hot spot on the disk could only be captured in one node, and it
would have no effect on the slider flying attitude.

The in-house air bearing simulation tool CMLAir iteratively solves a discretized finite vol-
ume formulation of Equation 15 with a V-cycle multigrid method to find the pressure
profile that balances the user defined load. Detailed descriptions of the discretized govern-
ing equation and solution algorithm can be found in [19, 20]. To speed up computation,
databases for QP and QT over a wide range of Knudsen numbers are evaluated in the pre-
processing section of the simulation. During the multigrid solution operation, the database
is interpolated to find the local flow rate values. Reference [20] describes how the QP and
QT databases are populated using Cercignani’s [13] and Loyalka’s [21] variational solutions
with Chebyshev polynomial expansions for the Abramowitz functions [22]. The slider’s

Figure 2: Protrusion profile used for all simulations. The protrusion below the zero plane ABS
surface is defined over the rectangle (0.5 mm, 0.2 mm) to (0.851 mm, 0.5 mm) and has a maximum
protrusion of 20 nm.
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(a) Tmax = 100◦C with an expansive heat area (b) Ts,max = 100◦C wiqth a confined heat area

(c) Ts,max = 200◦C with an expansive heat area (d) Ts,max = 200◦C with a confined heat area

(e) Ts,max = 300◦C with an expansive heat area (f) Ts,max = 300◦C with a confined heat area

Figure 3: ABS temperature profiles and the relation to the ABS rails.
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Table 1: Static flying attitude solutions three radii for the case of an isothermal slider. min FH
is the minimum fly height between the slider and disk. nom FH is the nominal fly height at the
trailing edge center location.

Radius Skew RPM min FH nom FH Pitch Roll
(mm) (deg) (nm) (nm) (µrad) (µrad)
14.53 -14.769 5400 2.16271 18.0245 63.7889 -2.7841
22.215 0.943 5400 2.41924 18.1378 69.6114 2.21038
29.924 11.891 5400 2.1697 18.0453 62.9754 2.69646

flying attitude parameters of pitch, roll, and minimum flying height are calculated for the
equilibrium pressure profile. The minimum fly height is defined as the minimum physi-
cal spacing between the slider’s air bearing surface and the assumed smooth disk surface.
Pitch and roll have the usual flying dynamics definitions.

4 Simulation Results

The steady state minimum fly height results for all ABS temperature profiles, including an
isothermal ABS at ambient temperature, are shown in Figure 4. The minimum fly height
value and percent change compared with the isothermal slider simulation are plotted. The
minimum fly height increases with increasing maximum ABS temperature and extent of
the heated ABS region. In all cases, the change in minimum fly height is greater at
the middle radial location than the outer or inner radii. For the expansive heated ABS
region simulations, the change in minimum fly height was significant, from 5% to almost
45% increase in minimum fly height across the three radii. The percent change was less
significant for the confined ABS heated region simulations, but still it is non-negligible for
the 200◦C and 300◦C cases in which the percent change in minimum fly height ranged from
6.5% to 10.7% at the middle radii.

The value and percent change of pitch are shown in Figure 5. The pitch decreases slightly
with increasing maximum ABS temperature and extent of the heated ABS region in almost
all cases. As with the minimum and nominal fly height solutions, the greatest amount of
change occurs at the middle radius while the inner and outer radii show about the same
about of change in pitch angle. The confined ABS heated region cases show a small change
of −1% to 0.25% for all temperature and radial positions. The extensive ABS heated region
simulations showed more decrease in pitch angle, from -0.1% to -3.2%.

The roll angle changes very little between ABS temperature profile cases and all the values
lie practically on top of each other [Figure 6].
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Figure 4: Steady state minimum fly height absolute values and percent change compared with the
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Table 2: Static flying attitude solution for the expansive 300◦C slider temperature profile [Figure
3(e)] with and without thermal creep. min FH is the minimum fly height between the slider and
disk. nom FH is the nominal fly height at the trailing edge center location.

Radius Skew min FH nom FH Pitch Roll
(mm) (deg) (nm) (nm) (µrad) (µrad)

With Thermal Creep
14.53 -14.769 2.81037 18.6975 62.4399 -3.05099
22.215 0.943 3.48675 19.2788 67.3404 2.01413
29.924 11.891 2.86248 18.7644 61.668 2.88699

Without Thermal Creep
14.53 -14.769 2.81161 18.6985 62.435 -3.05573
22.215 0.943 3.48021 19.2711 67.3575 2.01528
29.924 11.891 2.86593 18.768 61.6615 2.93008

A simulation omitting the thermal creep term from the generalized lubrication equation
was performed to determine the importance of the thermal creep effect on the steady state
flying attitude of the slider. The expansive 300◦C slider temperature profile [Figure 3(e)]
is the most extreme temperature condition tested, so thermal creep should have the most
effect for this case. Slider attitude parameters differ between the cases with and without
thermal creep only at the third decimal place [Table 2]. The percent change in attitude
parameters ranged from -0.19% to 1.49% [Table 3].

5 Discussion

A physical reasoning of the increased minimum fly height results shown in Figure 4 is as
follows. Recall that the slider ABS temperature along with the isothermal disk temperature
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Table 3: Percent change in slider flying attitude parameters when thermal creep is omitted for
the expansive 300◦C slider temperature profile.

Radius Skew min FH nom FH Pitch Roll
(mm) (deg) change change change change
14.53 -14.769 0.04% 0.01% -0.01% 0.16%
22.215 0.943 -0.19% -0.04% 0.03% 0.06%
29.924 11.891 0.12% 0.02% -0.01% 1.49%

are used to estimate the air temperature at a particular point. So if the slider ABS
temperature is greater than ambient temperature, the air at that location is estimated to
be hotter than ambient. Air is assumed to be an ideal gas in the generalized lubrication
equation, and according to the ideal gas law, pressure is proportional to temperature. Thus
an increase in temperature over an area means an increase in pressure. The air exerts a
greater lift force on the slider and thus it flies higher with a larger minimum spacing.

The pitch simulation results also agree with expectations. Physically, if the trailing edge
region of the slider is lifted upward by an increased pressure force, the slider pitches forward,
thereby decreasing the pitch angle.

A large change in minimum fly height with ABS temperature affects the read/write trans-
ducer operation; the transducers are located at the minimum fly height location and sen-
sitive to the physical spacing. However, the minimum fly height change should not affect
the focus of the laser beam that heats the disk. The wavelength of the laser will be greater
than 100nm, which is much larger than the < 5 nm gap (probably closer to 2 nm) between
the slider ABS and disk. Changing this gap (i.e. increasing the minimum fly height) by
5%-50%, which amounts to 0.1 - 1 nm for a minimum spacing of 2 nm, will not change the
phase of the laser at the disk.

The miniscule percent change in flying attitude that results by neglecting thermal creep
is numerically insignificant. Therefore thermal creep can be omitted from the govern-
ing lubrication equation; all important pressure profile effects are sufficiently captured by
considering local air temperature values using the following equation:

d

dX

[
1
T

(
Λ0PH −

PH3

µ
QP

dP

dX

)]
= 0 (24)

The accuracy of simulation results using the generalized Reynolds equation can be improved
by removing some simplifying assumptions. Realistic surface accommodation coefficients
for the air bearing-slider and air bearing-gas interfaces could be used to generate more
accurate QP and QT databases. The surfaces are not perfectly symmetric, so QC is not
actually unity, and a QC database has to be generated. The details of the air property
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variation across the air bearing could be accounted for by using Dowson’s generalized
Reynolds equation [23] that allows for fluid property variation across the film. In order
to use Dowson’s equation, the air bearing temperature profile through the film thickness
would need to be estimated from simplified kinetic theory results. As realistic HAMR
slider temperature and deformation profiles become available from experimental results or
sophisticated thermo-mechanical modeling, simulations using these input files will be more
accurate than the approximation profiles made in this paper.

6 Summary and Conclusions

In this paper, a generalized lubrication equation that accounts for the lateral variation
of air temperature (and therefore its properties) is proposed as the governing equation for
HAMR air bearing simulations. It was implemented using a production slider with plausible
HAMR conditions. Most significantly, the steady state minimum fly height increased with
increasing ABS temperature above ambient and increasing size of the hot area. Steady
state pitch and roll angles were not appreciably affected. Thermal creep flow was shown
to be negligible compared to the Poiseuille and Couette flows, and it can be omitted from
the lubrication equation.

If the laser system design dissipates considerable heat, then the minimum fly height could
increase O(1 nm), thereby affecting the read/write transducer design and specifications.
The focus of the laser on the recording bit should be unaffected since the wavelength of
the laser is much larger than 2nm physical spacing between the slider ABS and disk at
the laser delivery location. The laser delivery system needs to be designed in a manner to
confine the appreciable heating of the slider body to as small an area as possible. ABS and
read/write transducer designers for a HAMR system should be aware that heat dissipated
from the laser delivery system into the slider body will also dissipate into the air bearing,
increasing the minimum spacing compared with the results of an isothermal air bearing
simulation.
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