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Abstract

Thermal Fly-height Control sliders are widely used in current hard disc drives to control and

maintain sub-nanometer level clearance between the read-write head and the disc. The peculiar dy-

namics observed during touchdown/contact tests for certain slider designs is investigated through

experiments and analytical modeling. Nonlinear systems theory is used to highlight slider instabil-

ities arising from an unfavorable coupling of system vibration modes through an internal resonance

condition, as well as the favorable suppression of instabilities through a jump condition. Excitation

frequencies that may lead to large amplitude slider vibrations, and the dominant frequencies at

which slider response occurs are also predicted from theory. Using parameters representative of

the slider used in experiments, the theoretically predicted frequencies are shown to be in excellent

agreement with experimental results. This analytical study highlights some important air bearing

surface design considerations that can help in the prevention of slider instability as well as help

in the mitigation of unwanted slider vibrations thereby ensuring the reliability of the head disc

interface at extremely low head-disc clearances.
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I. INTRODUCTION

In order to achieve the target storage density of 10Tb/in2 in hard disc drives a physical

clearance of 0.25nm between the head and the disc media is required. Currently, Thermal

Fly-height Control (TFC) architecture is used to achieve sub-nanometer clearance between

the read-write head and the disc. Power supplied to the TFC heater deforms the slider body

locally near the read-write head through resistive heating thereby providing the actuation

necessary for spacing control. In practice, the read-write head to disc clearance is calibrated

against the heater power by determining the touch-down power (TDP), i.e. the power to

achieve zero-clearance or slider contact with the lubricant on the disc. The TDP together

with the knowledge of the slider’s thermal actuation efficiency (fly-height loss per milliwatt,

known from slider and heater design) is used to calculate and supply the appropriate heater

power to achieve a desired head-disc clearance during operation.

Slider dynamics at touchdown/contact and proximity (near contact conditions) have been

studied in the past and are ongoing topics of investigation. The motivation arises from the

need to understand the effect of intermittent as well as continuous contact on slider dynamics

in three dimensions (vertical, down-track and off-track), as well as to develop advanced tech-

niques to accurately detect touchdown/contact in experiments and in a working hard disc

drive. Experiments have focused on studying the slider’s flying characteristics and contact

induced dynamics using disc RPM spin-down tests for traditional sliders and thermal protru-

sion controlled touchdown tests for TFC sliders [1–5]. Extensive literature on experimental

as well as computational work quantifying the effects of various nonlinear forces at the HDI

(intermolecular, electrostatic, lubricant adhesion, and contact forces) on the slider dynam-

ics for low-flying and partial contact sliders is available [6–12]. Enhanced slider-lubricant

interactions at low spacing and contact is known to cause lubricant rippling, lubricant pick-

up from the disc to the slider and subsequent lubricant drop-off from the slider onto the

disc proving detrimental to the slider dynamics as well as overall head-disk interface (HDI)

reliability [13–18].

Recently, the possibility of having a slider in continuous contact with the lubricant has

received considerable attention. Experimental investigations previously reported by the

authors [19] show peculiar results for slider dynamics in TFC actuated contact with the

disc lubricant. Slider-lubricant contact at TDP causes significant vibrations (instability)
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in the vertical, down-track and off-track directions. For particular slider designs, however,

this vibration suddenly gets suppressed (stability) above a critical heater power beyond the

TDP. While this stable condition is attributed to a lube-surfing regime [20], the physics

behind this phenomena is not fully understood. Modeling efforts considering the static case

show that stable flying-heights are possible under lubricant contact due to the nonlinearity

of the external forces (the net effect of air bearing pressure, adhesion, contact, etc.) [21, 22]

but these results do not readily extend to the dynamic case where the external forces also

vary with time. Numerical simulations for the dynamic case can predict the slider motions

for particular sets of HDI parameters and initial conditions for a chosen nonlinear model

[23, 24], but they are inadequate for explaining the origin and physics of the problem.

This paper reports continued investigations on the topic of slider instability and dynamics

at touchdown/contact through experiments and analytical modeling. Experiments reveal

that the frequency spectrum of slider vibrations at touchdown consists of peaks at the

first pitch mode, its harmonics, and additionally, several peaks at frequencies lower and

higher than the first pitch mode. A simple analytical model which accounts for thermal

protrusion and the special dynamic case of periodic external forcing is used to predict and

offer explanations for slider instability and response observed in the experiments. The slider

is represented by a two-degree of freedom model (accounting for the vertical and pitch

motions), and the load carrying air-bearing surface (ABS) is represented by two springs,

one each for the leading and trailing ends. The thermal protrusion is modeled as a relative

change in the nonlinear stiffness of the trailing end spring, compared to the linear stiffness

of the leading end spring. The coupled nonlinear equations for slider motion are derived and

studied analytically using nonlinear systems theory.

Thermal protrusion continuously changes the system natural frequencies through the

change in the trailing end stiffness, and interesting slider dynamics occur for particular

protrusion ranges. Large amplitude vibrations (instability) as well as their suppression (sta-

bility) observed in experiments may be explained by phenomena characteristic to nonlinear

systems. In particular, the coupling of vibration modes through an internal resonance con-

dition is discussed as a cause for slider instability. Nonlinear systems theory also offers a

prediction of excitation frequencies that lead to large amplitude response and a prediction

of frequencies in the ensuing response. The frequency peaks in slider response obtained

from experiments are well accounted for by theory, and they correspond to the primary and
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combination resonance conditions resulting in subharmonics, superharmonics and fractional

harmonics of the nonlinear system.

II. EXPERIMENTS

Experiments are performed with ‘pemto’ TFC sliders (1.25mm × 0.84mm) on a 95mm

media coated with PFPE lubricant. The spin stand is instrumented with a laser doppler

vibrometer (LDV) to measure slider’s vertical vibration, an acoustic emission (AE) sensor

to monitor contact at the HDI and an in-situ optical surface analyzer (OSA) to investigate

changes to the lubricant surface (Fig 1). A custom built Labview code together with a data

acquisition board and amplifier circuit is used to input pre-programmed power profiles to

the TFC heater with submilliwatt resolution. The test procedure is as follows: The slider is

loaded onto the rotating disc and moved to the desired track. The touchdown power (TDP)

is measured using the automated Labview program which uses AE signal as feedback and

records the power at which there is a sudden change in the AE signal as the TDP [19].

Once the TDP is determined, the transient slider dynamics under contact are investigated

by supplying a power profile that consists of four sinusoidal waves having a 1s time period

[19]. The peak power of this waveform is TDP+20mW in these investigations. All tests are

conducted at 0o skew and at the slider’s design linear velocity of 22m/s.

Candela

OSA

Z LDV

AE

Candela

OSA

Z LDV

AE

FIG. 1. Spin stand set-up with Candela OSA, AE sensor and LDV

The time history of the slider’s vertical velocity, AE signal and supplied heater power

are shown in Fig 2 for the first cycle of the sinusoidal power waveform. For this particular

air bearing surface (ABS) design (shown in Fig 2), peculiar dynamics are observed during

the transient test. The slider shows significant vibrations (denoted as the ‘unstable’ region)
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when the heater power is increased slightly above the TDP. However, when the heater

power is increased above a critical power beyond the TDP, the slider vibrations as well as

AE signal are suddenly suppressed (denoted as the ‘stable’ region). Previous researchers

have speculated that this condition of suppressed vibrations corresponds to a case of lube-

surfing, where a small portion of the thermal protrusion is in continuous contact with the

lubricant [20, 23]. However, the authors of this paper have shown that the evidence from in-

situ lubricant scans support the distinct possibility of the slider flying at a secondary stable

flying-height without lubricant-contact at higher heater powers [19]. Further investigations

are ongoing to fully understand the physics of this phenomenon.
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FIG. 2. Experimental result for the ‘pemto’ slider: Time history of (a) slider’s vertical velocity 3σ

(b) AE signal 3σ (c) power supplied to TFC heater

The current experiments also reveal that the frequency spectrum of slider vibrations at

TDP (unstable region) consists of peaks at the first pitch mode (128kHz), its harmonics,

and additionally, several peaks at frequencies lower and higher than the first pitch mode

(Fig 3). The appearance of multiple peaks in the frequency spectrum highlight the effect
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of nonlinearities, and similar results have been reported for traditional (non-TFC) sliders in

proximity from experiments and simulation [6]. Motivated by this observation, the slider-

ABS nonlinear system is analytically investigated with a focus on understanding whether

it is possible for the slider to have ‘unstable’ dynamics for certain range(s) of heater power

(i.e. thermal protrusion), whether slider dynamics could be rendered ‘stable’ because of

interacting nonlinearities, and whether the experimentally observed peaks in the frequency

spectrum of slider vibrations are explained by theory.
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FIG. 3. Frequency spectrum of the slider’s vertical velocity in the ‘unstable’ zone

III. ANALYTICAL MODEL

The slider is modeled as a rigid body with only two degrees of freedom, corresponding to

the pitch and vertical motion. The air bearing is represented by springs and dampers, one

each for the trailing and leading ends (Fig 4). The spring at the trailing end is assumed to be

nonlinear (with quadratic and cubic terms) accounting for air bearing stiffness changes due

to spacing changes from the slider vibrations as well as other nonlinearities at the HDI, such

as those arising from electrostatic forces, intermolecular forces and slider contact with the

lubricant or disc, to mention a few. Since the focus of this work remains on understanding

the effect of nonlinearities on slider dynamics and stability, it is not of concern as to where

these nonlinearities arise, but only that they are represented by quadratic and cubic terms

as an approximation, thus keeping the math tractable. Thermal protrusion is modeled as an

increase in the stiffness of the spring at the trailing end compared to the fixed stiffness of the

spring at the leading end (through a multiplicative factor α) as explained in the subsequent

section.
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FIG. 4. Schematic of the two degree of freedom model for slider-ABS system

A. Equations of Motion

The equations of motion for the system (Fig 4) are easily derived using Lagrange’s equa-

tions or other techniques. Assuming the leading and trailing end spring stiffnesses to have

the form

k1 = k11 − k12z + k13z
2

k2 = k21

(1)

the nondimensional equations of motion appear as

ζ̈ = F1 − ζ − Λ1 sin θ − δ1ζ̇ − δ2θ̇ cos θ

+ Λ4ζ
2 − Λ5ζ

3 + Λ6ζ sin θ − Λ7ζ
2 sin θ

(2a)

θ̈ = F2 − Λ1ζ cos θ − Λ2 sin θ cos θ − δ2ζ̇ cos θ − δ3θ̇ cos2 θ

+ Λ6ζ
2 cos θ − Λ7ζ

3 cos θ + Λ8ζ sin θ cos θ − Λ9ζ
2 sin θ cos θ

(2b)

where the dot implies derivatives with respect to the nondimensional time τ , ζ is the nondi-

mensional displacement in the vertical direction, θ is the pitch angle, and the other quantities

are related to the system parameters by

τ = ωt ζ =
z

L
ω2 =

k11 + k21

m

Λ1 =
k11l1 − k21l2

mLω2
Λ2 =

k11l
2
1 + k21l

2
2

mL2ω2
Λ3 =

I

mL2

Λ4 =
k12

mω2
Λ5 =

k13L
2

mω2
Λ6 =

k12l1
mω2

Λ7 =
k13l1L

mω2
Λ8 =

k12l
2
1

mω2
Λ9 =

k13l
2
1

mω2

δ1 =
b1 + b2
mω

δ2 =
b1l1 − b2l2

mLω
δ3 =

b1l
2
1 + b2l

2
2

mL2ω

F1 =
F

mLω2
F2 =

M

mL2ω2
(3)
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where m and I represent the slider’s mass and moment of inertia, respectively, F and M

represent the force and moment about the slider’s center of mass G, respectively, and L is

an arbitrary length scale (chosen to be 1nm unless mentioned otherwise). Note that the

model is set-up such that (ζ, θ) = (0, 0) is the equilibrium state. (In reality, the slider has

a non-zero pitch at equilibrium, but can be neglected in this work for convenience and to

keep the math tractable).

Since the range of pitch motion during slider vibration is very small (a few microradians),

the approximations sin θ ≈ θ and cos θ ≈ 1 are valid, and the equations of motion (2) may

be written in matrix form after making these approximations as

Mẍ + Cẋ + Kx + h(x) = F (4)

M =

⎛
⎝1 0

0 Λ3

⎞
⎠ C =

⎛
⎝δ1 δ2

δ2 δ3

⎞
⎠ K =

⎛
⎝ 1 Λ1

Λ1 Λ2

⎞
⎠

x =

⎛
⎝ζ
θ

⎞
⎠ h(x) =

⎛
⎝h1(ζ, θ)

h2(ζ, θ)

⎞
⎠ F =

⎛
⎝F1

F2

⎞
⎠

h1(ζ, θ) = Λ4ζ
2 + Λ6ζθ − Λ5ζ

3 − Λ7ζ
2θ

h2(ζ, θ) = Λ6ζ
2 + Λ8ζθ − Λ7ζ

3 − Λ9ζ
2θ

The nonlinearities of the quadratic and cubic forms are evident and contained in h(x).

Considering only the linear part of (4), the natural frequencies ω1 and ω2 (also called

the linear natural frequencies, where ω1 < ω2) and mode shapes are easily computed for a

chosen set of system parameters through an eigenvalue analysis. The slider-ABS system has

two modes: the ABS first pitch mode corresponding to ω1 is the motion of the slider about

a point close to the trailing end, while the ABS second pitch mode corresponding to ω2 is

the motion of the slider about a point closer to the leading end (Fig 5a).

In this work, the system parameters are chosen to match the slider used in the experiment.

The slider’s mass and moment of inertia are readily calculated from the slider’s dimensions

and material density (Table I) and the spring stiffness values are chosen so that the first

pitch mode frequency matches the experimentally observed value of 128kHz for this slider.

Accordingly, the stiffness value k21 = 3.3 × 105N/m is used, while the stiffness value k11,
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FIG. 5. Linear model analysis: (a) ABS first and second pitch mode shapes (b) first and second

pitch mode frequencies as a function of thermal protrusion ‘α’

which depends on the thermal protrusion is given by k11 = αk21 where α(> 1) increases

with increasing protrusion.

The effect of thermal protrusion on the linear natural frequencies (ω1, ω2) is shown in

Fig 5b. It is evident that increasing α (i.e. the thermal protrusion) does not change the

first pitch mode frequency ω1 significantly. However, the second pitch mode frequency

ω2 increases monotonically with α. It is verified that the mode shapes (Fig 5a) are not

significantly altered by a change in α.

It is well known from nonlinear systems theory that when the linear natural frequencies

of a two degree of freedom nonlinear system are commensurable or nearly commensurable,

a strong coupling of the (otherwise decoupled) modes can occur, and this condition is called

an internal resonance [25]. The occurrence of an internal resonance depends strongly on the

system parameters, and the commensurability conditions for a two degree of freedom system

are given by ω2 ≈ 2ω1 when quadratic nonlinearities are present, and ω2 ≈ 3ω1 when cubic

nonlinearities are present.

Considering the slider-ABS system, based on the preceding calculations for ω1 and ω2 as

a function of α, it is possible that for particular slider designs that have ω1 < ω2 < 2ω1 with

no thermal protrusion (i.e. zero heater power), the thermal protrusion induced by increasing

heater power can cause ω2 to increase through an internal resonance condition (ω2 ≈ 2ω1

or ω2 ≈ 3ω1). For example, Fig 5b shows that ω2 ≈ 2ω1 when α ≈ 2.075 and ω2 ≈ 3ω1

when α ≈ 5 for the system parameters shown in Table I. An internal resonance could result
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System Parameter Value

Slider density (ρ) 4425kg/m3

Slider length (Ls) 1.33mm

Slider width (ws) 0.83mm

Slider height (hs) 0.23mm

L1 Ls/2

L2 0.75 Ls/2

k21 3.3 × 105N/m

k11 αk21 N/m

k12 5 × 107k11 N/m2

k13 1015k11 N/m3

μ̂1 0.01ω1 (1%)

μ̂2 2μ1

F 2.3 mN

M FL1

TABLE I. System parameters

in large amplitude response depending on the system parameters. Therefore, for particular

ranges of heater power, when an internal resonance condition occurs, large amplitude slider

vibrations are possible, and they can lead to slider-lubricant/disc contact, or enhance the

degree of existing slider-lubricant/disc contact.

The nonlinear equations (4) for the slider-ABS system are investigated for internal res-

onance and large amplitude response. This paper presents results only for the internal

resonance condition ω2 ≈ 2ω1 arising from quadratic nonlinearities. The analysis when

ω2 ≈ 3ω1 may be treated in a similar fashion [25].
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B. Analysis of the Nonlinear Equations

The equations of motion are transformed and written in terms of the modal coordinates

η and φ as

η̈ + ω2
1η = −2μ̂1η̇ + A1η

2 + A2ηφ+ A3φ
2 +B1η

3 +B2η
2φ+B3ηφ

2 +B4φ
3 + F̂1 (5a)

φ̈+ ω2
2φ = −2μ̂2φ̇+ A4η

2 + A5ηφ+ A6φ
2 +B5η

3 +B6η
2φ+B7ηφ

2 +B8φ
3 + F̂2 (5b)

A1 = γ1(Λ4γ
2
1 + Λ6γ1γ3) + γ3(Λ6γ

2
1 + Λ8γ1γ3)

A2 = γ1(Λ42γ1γ2 + Λ6(γ1γ4 + γ2γ3)) + γ3(Λ62γ1γ2 + Λ8(γ1γ4 + γ2γ3))

A3 = γ1(Λ4γ
2
2 + Λ6γ2γ4) + γ3(Λ6γ

2
2 + Λ8γ2γ4)

A4 = γ2(Λ4γ
2
1 + Λ6γ1γ3) + γ4(Λ6γ

2
1 + Λ8γ1γ3)

A5 = γ2(Λ42γ1γ2 + Λ6(γ1γ4 + γ2γ3)) + γ4(Λ62γ1γ2 + Λ8(γ1γ4 + γ2γ3))

A6 = γ2(Λ4γ
2
2 + Λ6γ2γ4) + γ4(Λ6γ

2
2 + Λ8γ2γ4)

(6)

B1 = −γ1(Λ5γ
3
1 + Λ7γ

2
1γ3) − γ3(Λ7γ

3
1 + Λ9γ

2
1γ3)

B2 = −γ1(Λ53γ
2
1γ2 + Λ7(2γ1γ2γ3 + γ2

1γ4)) − γ3(Λ73γ
2
1γ2 + Λ9(2γ1γ2γ3 + γ2

1γ4))

B3 = −γ1(Λ53γ1γ
2
2 + Λ7(2γ1γ2γ4 + γ2

2γ3)) − γ3(Λ73γ1γ
2
2 + Λ9(2γ1γ2γ4 + γ2

2γ3))

B4 = −γ1(Λ5γ
3
2 + Λ7γ

2
2γ4) − γ3(Λ7γ

3
2 + Λ9γ

2
2γ4)

B5 = −γ2(Λ5γ
3
1 + Λ7γ

2
1γ3) − γ4(Λ7γ

3
1 + Λ9γ

2
1γ3)

B6 = −γ2(Λ53γ
2
1γ2 + Λ7(2γ1γ2γ3 + γ2

1γ4)) − γ4(Λ73γ
2
1γ2 + Λ9(2γ1γ2γ3 + γ2

1γ4))

B7 = −γ2(Λ53γ1γ
2
2 + Λ7(2γ1γ2γ4 + γ2

2γ3)) − γ4(Λ73γ1γ
2
2 + Λ9(2γ1γ2γ4 + γ2

2γ3))

B8 = −γ2(Λ5γ
3
2 + Λ7γ

2
2γ4) − γ4(Λ7γ

3
2 + Λ9γ

2
2γ4)

(7)

where ω1 and ω2 are the linear natural frequencies, μ̂1 and μ̂2 represent the modal damping

values (the damping matrix C is diagonalized by the modal matrix V by an assumption of

Raleigh damping), and V is given by

V =

⎛
⎝γ1 γ2

γ3 γ4

⎞
⎠ ;

⎛
⎝ζ
θ

⎞
⎠ = V

⎛
⎝η

φ

⎞
⎠ ;

⎛
⎝F̂1

F̂2

⎞
⎠ = VT

⎛
⎝F1

F2

⎞
⎠ (8)

The coupled equations (5) are in their simplest form accounting for the most general case

of quadratic and cubic nonlinearities.

Considering the forcing term to be sinusoidal in nature, the nonlinear coupled equations

(5) are analyzed using the method of multiple scales closely following the methods outlined
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in [25]. The first order uniform solution of the form

η = εη1 + ε3η3 (9a)

φ = εφ1 + ε3φ3 (9b)

is sought, where ε is a small parameter. Defining the different time scales T0 = t, T2 = ε2t,

and Dk = d
dTk

for k = 1, 3, . . . the time derivative is represented by

d

dt
= D = D0 + ε2D2 + . . . (10a)

d2

dt2
= D2 = D2

0 + ε22D0D2 + . . . (10b)

In the following analysis, two cases require slightly different consideration: the primary

resonance case, when the frequency of the forcing term (Ω) is close to one of the system

linear natural frequencies ω1 or ω2, and the secondary resonance (or nonresonant) case, when

Ω is far away from ω1 or ω2.

1. Primary Resonance (Ω ≈ ω1)

The primary resonance condition considered in this work corresponds to Ω ≈ ω1, such as

that occurring when the lubricant is rippled at the first pitch mode and feeds into system

excitation and resonance [14]. Strictly speaking, the forcing term is also dependent on the

system state variables (ζ, θ, ζ̇, θ̇), however, the analysis is simplified by assuming that the

forcing term is independent of state variables and dependent exclusively on time.

The scaling of quantities is to be chosen such that the forcing term, the nonlinearities

and the damping interact at the same order. In the problem of slider vibration with small

amplitudes (onset of instability), the damping and quadratic terms are of comparable order,

while the cubic terms are of higher order. However, when the vibration amplitudes grow

to become sufficiently large, the cubic terms can have the same order as the quadratic and

damping terms. In order to simplify the analysis, it is assumed that quadratic as well as

cubic nonlinearities are of the same order, corresponding to the case of large amplitude

slider vibrations. The solution for the case where cubic terms are absent is easily found by

setting the coefficients corresponding to the cubic terms to zero. Accordingly, the ordering
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of quantities is given by

μ̂i = ε2μi Aj = εαj Bk = βk F̂i = ε3fi cos(Ωt+ τi)

i = 1, 2 ; j = 1, 2 . . . , 6 ; k = 1, 2, . . . , 8
(11)

Substituting (9), (10), (11) into (5), and collecting terms of order ε and order ε3 gives

D2
0η1 + ω2

1η1 = 0 (12a)

D2
0φ1 + ω2

2φ1 = 0 (12b)

D2
0η3 + ω2

1η3 = −2D0D2η1 − 2μ1D0η1 + α1η
2
1 + α2η1φ1 + α3φ

2
1

+ β1η
3
1 + β2η

2
1φ1 + β3η1φ

2
1 + β4φ

3
1 + f1cos(ΩT0 + τ1)

(13a)

D2
0φ3 + ω2

2φ3 = −2D0D2φ1 − 2μ2D0φ1 + α4η
2
1 + α5η1φ1 + α6φ

2
1

+ β5η
3
1 + β6η

2
1φ1 + β7η1φ

2
1 + β8φ

3
1 + f2cos(ΩT0 + τ2)

(13b)

The solution to (12) is given by

η1 = P (T2)e
iω1T0 + cc (14a)

φ1 = Q(T2)e
iω2T0 + cc (14b)

where P and Q are complex quantities, and cc denotes complex conjugate of all preceding

terms. Substitution of (14) into (13) gives secular terms in the RHS of (13). Particularly, in

the presence of an internal resonance condition arising from quadratic nonlinearities (ω2 ≈
2ω1) and primary resonance (Ω ≈ ω1), the secular terms are collected and set to zero to

obtain the solvability conditions

2iω1(D2P + μ1P ) = α2P̄Qe
iσ1T0 + 3β1P

2P̄ + 2β3PQQ̄+
1

2
f1e

i(σ2T2+τ1) (15a)

2iω2(D2Q+ μ2Q) = α4P
2e−iσ1T0 + 3β8Q

2Q̄+ 2β6PP̄Q (15b)

where the overbar denotes the complex conjugate, and σ1 and σ2 are detuning parameters,

(measures of the closeness to the internal resonance condition and the primary resonance

condition, respectively), given by

ω2 = 2ω1 + ε2σ1 (16a)

Ω = ω1 + ε2σ2 (16b)
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Assuming P and Q to be of the form

P =
1

2
r1(T2)e

iψ1(T2) Q =
1

2
r2(T2)e

iψ2(T2) (17)

where ri, ψi, (i = 1, 2) are real quantities that are functions of T2, substituting (17) into (15),

and separating the real and imaginary parts of the resulting equations give the differential

equations for the evolution of ri, ψi, (i = 1, 2) as

4ω1(r
′
1 + μ1r1) − α2r1r2 sin ν1 − 2f1 sin ν2 = 0 (18a)

4ω2(r
′
2 + μ2r2) + α4r

2
1 sin ν1 = 0 (18b)

8ω1r1ψ
′
1 + 3β1r

3
1 + 2β3r1r

2
2 + 2α2r1r2 cos ν1 + 4f1 cos ν2 = 0 (18c)

8ω2r2ψ
′
2 + 3β8r

3
2 + 2β6r

2
1r2 + 2α4r

2
1 cos ν1 = 0 (18d)

where prime denotes differentiation with respect to T2, and

ν1 = σ1T2 + ψ2 − 2ψ1

ν2 = σ2T2 + τ1 − ψ1

The final solution (the time history of the modal coordinates) is given by

η(t) = εr1(ε
2t) cos (Ωt+ τ1 − ν2) (19a)

φ(t) = εr2(ε
2t) cos (2Ωt+ 2τ1 − 2ν2 + ν1) (19b)

and may be written in terms of the original variables ζ and θ using (8).

The steady state amplitude of oscillations are obtained by setting r′i = ν ′i = 0 (i = 1, 2)

in (18) which reduce to

4ω1μ1r1 − α2r1r2 sin ν1 − 2f1 sin ν2 = 0 (20a)

4ω2μ2r2 + α4r
2
1 sin ν1 = 0 (20b)

8ω1σ2 + 3β1r
3
1 + 2β3r1r

2
2 + 2α2r1r2 cos ν1 + 4f1 cos ν2 = 0 (20c)

8ω2(2σ2 − σ1) + 3β8r
3
2 + 2β6r

2
1r2 + 2α4r

2
1 cos ν1 = 0 (20d)

The coupled nonlinear equations (20) may be solved to obtain the frequency response plot

which shows the steady state modal amplitudes rss1 and rss2 as a function of the detuning σ2

(i.e. the forcing frequency Ω), as well as plots to understand the effect of the detuning σ1

(which depends on the thermal protrusion ‘α’) on the steady state amplitude. The solutions

to (20) are obtained numerically and presented in the results and discussion section.
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2. Secondary Resonance

For the nonresonant case (Ω far away from ω1 or ω2) the ordering is to be chosen so that

the forcing term appears at order ε, while the damping and nonlinearities appear at order

ε3. In addition, to include the case of combination resonances which occur when the forcing

consists of a multifrequency excitation, a two frequency excitation occurring at Ω1 and Ω2

(Ω1 < Ω2) is considered. Accordingly, the ordering of quantities is given by

μ̂i = ε2μi Aj = εαj Bk = βk F̂i = ε(fi1 cos (Ω1t+ τi1) + fi2 cos (Ω2t+ τi2))

i = 1, 2 ; j = 1, 2 . . . , 6 ; k = 1, 2, . . . , 8
(21)

Substituting (9), (10), (21) into (5) and collecting terms of order ε and order ε3 gives

D2
0η1 + ω2

1η1 = f11cos(Ω1T0 + τ11) + f12cos(Ω2T0 + τ12) (22a)

D2
0φ1 + ω2

2φ1 = f21cos(Ω1T0 + τ21) + f22cos(Ω2T0 + τ22) (22b)

D2
0η3 + ω2

1η3 = −2D0D2η1 − 2μ1D0η1 + α1η
2
1 + α2η1φ1 + α3φ

2
1

+ β1η
3
1 + β2η

2
1φ1 + β3η1φ

2
1 + β4φ

3
1

(23a)

D2
0φ3 + ω2

2φ3 = −2D0D2φ1 − 2μ2D0φ1 + α4η
2
1 + α5η1φ1 + α6φ

2
1

+ β5η
3
1 + β6η

2
1φ1 + β7η1φ

2
1 + β8φ

3
1

(23b)

The solution to (22) is given by

η1 = P (T2)e
iω1T0 + Γ11e

iΩ1T0 + Γ12e
iΩ2T0 + cc (24a)

φ1 = Q(T2)e
iω2T0 + Γ21e

iΩ1T0 + Γ22e
iΩ2T0 + cc (24b)

where

Γij =
fije

τij

2(ω2
i − Ω2

j )
2

i = 1, 2; j = 1, 2

The response for the nonresonant case consists of the forced response at the excitation

frequencies Ω1 and Ω2 as well as the free response close to the system natural frequencies.

Typically, the free response term decays to zero owing to system damping, however, under

particular conditions and a suitable set of system parameters, the free response term does

not decay but has a steady state amplitude for long time. This condition leads to a secondary

resonance, and is the topic of investigation.
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Substituting (24) into (23) reveals that additional secular terms appear in the RHS

when the excitation frequencies are related to the linear natural frequencies by the following

conditions

Ω1 ≈ ω1

3
Ω2 ≈ ω1

3

Ω1 ≈ ω1

2
Ω2 ≈ ω1

2

Ω1 ≈ 3ω1

2
Ω2 ≈ 3ω1

2

Ω1 ≈ 2ω1 Ω2 ≈ 2ω1

Ω1 ≈ 3ω1 Ω2 ≈ 3ω1

Ω1 ≈ 4ω1 Ω2 ≈ 4ω1

Ω1 ≈ 5ω1 Ω2 ≈ 5ω1

Ω2 ± Ω1 ≈ ω1 Ω2 ± Ω1 ≈ 3ω1

2Ω1 ± Ω2 ≈ ω1 2Ω2 ± Ω1 ≈ ω1

Ω2 − 2Ω1 ≈ ω1 (25)

Ω1 ≈ ω2

4
Ω2 ≈ ω2

4

Ω1 ≈ ω2

3
Ω2 ≈ ω2

3

Ω1 ≈ ω2

2
Ω2 ≈ ω2

2

Ω1 ≈ 3ω2

4
Ω2 ≈ 3ω2

4

Ω1 ≈ 3ω2

2
Ω2 ≈ 3ω2

2

Ω1 ≈ 2ω2 Ω2 ≈ 2ω2

Ω2 ± Ω1 ≈ ω2

2
Ω2 ± Ω1 ≈ 3ω2

2

Ω2 ± Ω1 ≈ ω2 Ω2 ± Ω1 ≈ 2ω2

2Ω1 ± Ω2 ≈ ω2 2Ω2 ± Ω1 ≈ ω2

Ω2 − 2Ω1 ≈ ω2 (26)

Equations (25) and (26) only list conditions for which additional secular terms appear in

the solvability conditions. The existence of a nontrivial solution to the solvability conditions

implies the existence of nonzero free response, i.e. occurrence of a secondary resonance,
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and it depends strongly on the system parameters. The focus in this paper is to identify

excitation frequencies and their combinations that potentially lead to a secondary resonance.

The existence of nontrivial solutions to the solvability conditions for each case is therefore

not discussed.

IV. RESULTS AND DISCUSSION

The discussion pertains to results presented for the system parameters in Table I unless

mentioned otherwise. The force displacement relation for the trailing end spring using these

parameters is plotted in Fig 6 for the linear as well as nonlinear cases.
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FIG. 6. Displacement-force plot for the trailing edge spring; k21 = 3.3 × 105, α = 2.075;

— linear: k11 = αk21, k12 = k13 = 0; −− quadratic nonlinearity: k11 = αk21, k12 �= 0, k13 = 0;

· · · quadratic and cubic nonlinearity: k11 = αk21, k12 �= 0, k13 �= 0

A. Primary Resonance (Ω ≈ ω1)

1. Linear Damped System (k12 = 0, k13 = 0)

For the linear system (i.e. when nonlinearities are absent: k12 = 0, k13 = 0) the responses

of the two modes η and φ are decoupled. The frequency response plot, which shows the

steady state amplitude of oscillations as a function of detuning σ2 (a measure of the closeness

of to primary resonance condition) is shown by the dotted curves in Fig 7. For the linear

damped case, the frequency response curve is always a single valued function of σ2 and has
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a peak in the first modal coordinate (η) at σ2 = 0 corresponding to a resonance condition

of the linear system. The steady state amplitude of forced oscillations in the second modal

coordinate (φ) is small compared to that for η because the frequency of excitation Ω is far

away from ω2.
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FIG. 7. Frequency response plot for the linear damped system and the damped system with only

quadratic nonlinearities when ω2 ≈ 2ω1 (a) First modal coordinate η (b) Second modal coordinate

φ; · · · linear case; — nonlinear case with increasing σ2; −− nonlinear case with decreasing σ2

2. Nonlinear Damped System with only Quadratic Nonlinearities (k12 �= 0, k13 = 0)

When nonlinearities of only the quadratic form are included (k12 �= 0, k13 = 0), the fre-

quency response curves for both modes can be significantly altered depending on the system

parameters. Two important cases need consideration when nonlinearities are included: (a)

when ω2 is far away from 2ω1 (no internal resonance), and (b) when ω2 ≈ 2ω1 (internal

resonance).

When ω2 is far away from 2ω1 (no internal resonance), the system modes are decoupled

to first order, and the frequency response curves are equivalent to that of the linear case.

However, when ω2 ≈ 2ω1 (internal resonance), the frequency response curve is significantly

altered from that of the linear case. The two modes become strongly coupled and the curve

may become a multivalued function of σ2 depending on system parameters. The frequency

response plot is shown in Fig 7 when ω2 ≈ 2ω1 (i.e. σ1 ≈ 0). It is evident that in certain

ranges, for example, when σ2 ≈ ±6, there are two values at which the response could occur

18



for a given value of σ2. The actual amplitude at which system response occurs is determined

by the initial condition. A strong coupling of modes due to internal resonance leads to a

much higher response in the second mode in the nonlinear case compared to the linear case.

Additionally, the single peak in the first mode at σ2 = 0 for the linear case is altered into

two peaks at σ2 ≈ ±6 for the nonlinear case, implying that the largest response in the

first mode occurs when Ω is slightly away from ω1. As the system parameter σ2 is changed

(i.e the excitation frequency Ω is increased or decreased), the well known jump phenomena

characteristic to nonlinear systems occurs. When σ2 is increased from the left the amplitude

of steady state oscillations follows the solid line, and when σ2 is decreased from the right the

amplitude of steady state oscillations follows along the dashed line. Two jumps are evident

in both cases (increasing and decreasing σ2) corresponding to the region where the response

curve is a multivalued function of σ2. A jump occurs when the system moves from a region

of multivalued solutions to a region with unique solution as discussed below considering a

damped system including cubic and quadratic nonlinearities.

3. Nonlinear Damped System with Cubic and Quadratic Nonlinearities (k12 �= 0, k13 �= 0)

For a damped system with cubic and quadratic nonlinearities (k12 �= 0, k13 �= 0), the

frequency response curve depends on whether internal resonance occurs or not. An internal

resonance could occur when ω2 ≈ 2ω1 arising from quadratic nonlinearities, or when ω2 ≈
3ω1 arising from cubic nonlinearities. In this work the focus is on the first case as it is

relevant to the values of ω1 and ω2 typically observed in the problem of slider-ABS systems

with thermal protrusion.

When internal resonance is absent (ω2 is far away from 2ω1), the two modes are decoupled

to first order. The response of the second mode (φ) is the same as that for linear forced

response shown in Fig 7b. However, the response of the first mode (η) is altered from

the linear response as shown in Fig 8. The effect of the cubic nonlinearity is to bend the

linear response curve (to the right, because the cubic nonlinearity stiffens the system in this

case), and the curve may become a multivalued function of σ2. The curve presented for

the nonlinear case in Fig 8 is obtained from an analytical closed form expression derived

in [25]. As σ2 is increased from the left, the steady state amplitude of oscillations change

along the curve ABCEF , while the steady state amplitude of oscillations trace the curve
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FEDBA as σ2 is decreased. The jump down CE in the forward direction, and the jump

up DB in the reverse direction arise because the response curves move from a region of σ2

where multiple solutions exist, to a region where only a unique solution exists to the response

amplitude. The difference in the location of the jumps for increasing and decreasing σ2 leads

to a hysteresis loop. The portion DC of the response curve which lies in the hysteresis loop

corresponds to unstable equilibria of (20) that are not physically realizable. The jumps in

Fig 7 are similar to the jumps in Fig 8. In Fig 7, the branch of unstable equilibria between

the two hysteresis loops (similar to the portion DC of Fig 8) is not shown because it is not

detected by the simple numerical scheme used in this work to compute the equilibria of (20).
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FIG. 8. Frequency response plot for the first modal coordinate η; · · · linear damped case;

− · − damped case with cubic nonlinearities but no internal resonance

When an internal resonance occurs (ω2 ≈ 2ω1), the two modes get strongly coupled. The

frequency response curves for this case are shown in Fig 9. The amplitude of the second

mode is significantly higher in this case even when the excitation frequency is far away from

ω2. Comparing the frequency response curves for the first mode with previous cases, it is

noted that the response curve for this case is similar to that in Fig 7 with the two peaks

altered in amplitude and bent (to the right) because of the inclusion of cubic nonlinearities.

The jump occurring near σ2 = 0 for the chosen set of parameters is of particular interest

because it implies that when Ω is close to ω1, as would happen in the slider-ABS system

model where the lubricant rippling occurs close to the first pitch mode frequency for the

slider, a very small change in Ω could lead to a very large change in the resulting amplitude
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of oscillations. Depending on other system parameters, the detuning between the lubricant

rippling frequency Ω and the first pitch mode frequency ω1 dictates whether the slider has a

large amplitude response or a suppressed amplitude response suggesting a good explanation

for the suppressed amplitude of slider vibrations observed in experiments.
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FIG. 9. Frequency response plot for the damped system with quadratic and cubic nonlinearities (a)

First modal coordinate η (b) Second modal coordinate φ; − · − no internal resonance; — internal

resonance (ω2 ≈ 2ω1) with increasing σ2; −− internal resonance (ω2 ≈ 2ω1) with decreasing σ2

The frequency response curves are plotted in Fig 10 for various values of α (the measure

of thermal protrusion). Noting that changing α changes the detuning σ1 (Fig 11), these plots

may also be viewed as frequency response curves for changing σ1 (a measure of closeness to

the internal resonance condition ω2 = 2ω1). In Fig 10, by fixing the excitation frequency at

say Ω = ω1 (σ2 = 0), it is seen that the amplitude of oscillations for particular values of α

(or σ1) are given by the points where the line σ2 = 0 (the ordinate) intersects the frequency

response curves. In particular, from Fig 10, it is evident that for α = 2.000 and α = 2.075

the ordinate intersects the frequency response curves at two points, but for α = 2.150 the

ordinate intersects the frequency response curves at only one point. The locus of the points

of intersection of the frequency response curves with σ2 = 0 is plotted as a function of σ1

in Fig 12, where the solid and dashed lines denote the points of intersection of the ordinate

with the solid and dashed lines, respectively, in frequency response curves of Fig 10. The

plots reveal that near σ1 ≈ 0, a very slight change in σ1 could lead to a very large change in

the amplitude of oscillations. Particularly, increasing σ1 above zero results in a sudden drop

in the amplitude of oscillations of the first mode. This result is very interesting because it
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implies that for the slider-ABS system, assuming that the excitation frequency (lubricant

rippling Ω) is perfectly tuned to the ABS first pitch mode ω1, a small change in the thermal

protrusion could lead to a sudden suppression of slider vibration amplitude, offering a very

plausible explanation of the suppressed vibration ‘stable’ zone seen in experiments at high

heater power.
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FIG. 10. Frequency response plot for the damped system with quadratic and cubic nonlinearities

showing the effect of α; — internal resonance (ω2 ≈ 2ω1) with increasing σ2; −− internal resonance

(ω2 ≈ 2ω1) with decreasing σ2
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FIG. 11. Effect of thermal protrusion ‘α’ on the internal resonance detuning parameter ‘σ1’

Similar plots are shown in Fig 13 for σ2 = ±0.5. It is interesting to note that when σ2 =

−0.5, an increase in σ1 does not lead to a downward jump in the amplitude of oscillations of

the first mode. Such a condition may also occur for a different set of system parameters even
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FIG. 12. Response amplitude as function of σ1 for σ2 = 0 for the damped system with quadratic

and cubic nonlinearities (a) First modal coordinate (b) Second modal coordinate

when σ2 = 0. In other words, certain slider designs may not exhibit the sudden suppression

in vibrations for increasing thermal protrusion. The experimental results for one such case

is shown in Fig 14, where an increase in heater power beyond the TDP does not show any

suppression of the slider vibrations or AE signal.
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FIG. 13. Response amplitude as function of σ1 for the damped system with quadratic and cubic

nonlinearities showing the effect of σ2 (a) First modal coordinate (b) Second modal coordinate

The time histories of responses are plotted in Fig 15 for the linear case, and the two

solutions for the nonlinear case when α = 2.075 (σ1 = .0463) and σ2 = 0. The amplitudes

of oscillations (ζ ,θ) are much smaller for one solution of the nonlinear case and corresponds

to the case of suppressed vibrations.

The key findings from the foregoing nonlinear analysis may be summarized to explain
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FIG. 14. Experimental result for the ‘femto’ slider: Time history of (a) slider’s vertical velocity 3σ

(b) AE signal 3σ (c) power supplied to TFC heater

the peculiar slider dynamics seen in experiments. When the thermal protrusion causes

the natural frequencies of the slider-ABS system to pass through and internal resonance,

the amplitude of vibrations can significantly increase because of an unfavorable coupling of

modes. Depending on system parameters a further change in thermal protrusion can result

in a sudden suppression of vibrations because of the way nonlinearities interact within the

system.

The external force (F ) and system damping can also have a dramatic influence on the

amplitude of oscillations. To demonstrate this effect Fig 16 and Fig 17 show the frequency

response plot for different values of external force and damping, respectively. The other

system parameters used in this calculation are listed in Table I. It is evident from these

figures that the occurrence as well as location of jumps, and the amplitude of oscillations

is strongly influenced by the external force and damping. At a given damping percentage,

a jump (multiple response amplitudes for a given σ2) can occur only if the external force
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FIG. 15. Time history of response for linear damped system and damped system with quadratic

and cubic nonlinearities when α = 2.075 (σ1 = 0.046) and σ2 = 0; · · · linear case; — nonlinear

case with large amplitude response; −− nonlinear case with suppressed amplitude response

amplitude is above a critical value, and similarly for a given external force amplitude, a jump

can occur only if the damping is below a critical value. The magnitude of external force

and damping, together with the frequency of the external forcing can therefore significantly

alter the nonlinear system response.
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FIG. 16. Effect of external force on the frequency response plot for the damped system with

quadratic and cubic nonlinearities and internal resonance (α = 2.075) (a) First modal coordinate

(b) Second modal coordinate

25



-10 -5 0 5 10
0

10

20

30

40

50

60

70

80

σ2

εr
1

0.6% damping

1% damping

2% damping

(a)

-10 -5 0 5 10
0

2

4

6

8

10

12

σ2

εr
2

1% damping

0.6% damping

2% damping

(b)

FIG. 17. Effect of damping on the frequency response plot for the damped system with quadratic

and cubic nonlinearities and internal resonance (α = 2.075) (a) First modal coordinate (b) Second

modal coordinate

4. Dynamic Frequency Response Plots

The frequency response plots presented so far show the amplitude of oscillations at steady

state as a function of σ2. They are called the stationary frequency response curves, and are

the solutions to the equilibrium equations (20) associated with the differential equations (18).

The dynamic frequency response curves can be obtained by integration of (18) from σ2i to

σ2f and assuming σ2 = σ2i + sT2 where s is the rate of change of σ2. These dynamic curves

may be viewed as the envelop of the transient time history of oscillations of the two modes

as σ2 is increased or decreased (i.e. when passing through a resonance). The equilibrium

solution of (20) with σ2 = σ2i is used as the initial condition for this integration. The

dynamic frequency response plots obtained in this manner are plotted for the case of only

quadratic nonlinearities (Fig 18), and for the case of cubic as well as quadratic nonlinearities

(Fig 19) for s = 0.5. It is evident that the dynamic curves follow the stationary curves fairly

well but show oscillations after encountering a jump. Smaller values of s cause the dynamic

curves to asymptote to the stationary curves, while larger values of s cause them to deviate

from the stationary curves.
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FIG. 18. Dynamic and stationary frequency response plot for the damped system with only

quadratic nonlinearities and internal resonance (α = 2.075) (a) First modal coordinate (b) Second

modal coordinate; — increasing σ2; −− decreasing σ2; bold lines represent the stationary curves
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FIG. 19. Dynamic and stationary frequency response plot for the damped system with quadratic

and cubic nonlinearities and internal resonance (α = 2.075) (a) First modal coordinate (b) Second

modal coordinate; — increasing σ2; −− decreasing σ2; bold lines represent the stationary curves

B. Secondary Resonance

For the nonresonant case (Ω far away from ω1 or ω2), the nonlinear analysis shows that

when the excitation frequencies are related to ω1 and ω2 through one of the particular

combinations listed in (25) and (26) a secondary resonance can potentially occur and result

in interesting system dynamics.

For the two frequency excitation case considered in this work, two of the conditions in
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(25) and (26) (also referred to as the secondary resonance conditions), can be satisfied simul-

taneously. Considering the special case of internal resonance (ω2 ≈ 2ω1), the combinations

under which two secondary resonance conditions are satisfied simultaneously are calculated.

The final result is that two secondary resonance conditions are satisfied simultaneously when

the excitation frequencies Ω1 and Ω2 are related to ω1 through a multiplicative constant c

and satisfy two of the conditions listed in (25) or (26). The actual manifestation of this

secondary resonance is determined by the system parameters, and it occurs only when the

solvability conditions for a simultaneous occurrence of secondary resonance has nontrivial

solutions. The set of all possible values that the parameter c may take is listed below

c = 1, 2, 3, . . . , 14 (27a)

c =
1

3
(1, 2, 4, 5, 7, 8, 10, 11, 13, 14) (27b)

c =
1

2
(1, 3, 5, 7, 9) (27c)

c =
1

6
(5, 7) (27d)

c =
1

4
(3, 5) (27e)

c =
1

5
(1, 2, 3, 4, 6) (27f)

For a three frequency excitation, three secondary resonance conditions can be satisfied si-

multaneously, and the list for c would include more values. When a secondary resonance

does occur, the frequency spectrum of the system response consists of a free response close

to the linear natural frequencies ωm tuned by the nonlinearities in addition to the forced

response at the excitation frequencies Ωn. Since the forcing frequencies Ωn are related to

ωm through various fractions c, the system response spectrum shows peaks corresponding to

these fractional harmonics, which include superharmonics and subharmonics of the second

and third order arising from the system quadratic and cubic nonlinearities, respectively [25].

The theoretical predictions of fractional harmonics arising from the two simultaneous

secondary resonance conditions are shown in Table II. The value ω1 = 128kHz is the

experimentally observed ABS first pitch mode frequency for this slider-ABS system. All of

the frequencies experimentally observed in the spectrum of slider vibrations (Fig 3) are well

predicted by this theory. The only significant peak that appears in experimental results,

but is not predicted from theory is at 233kHz. Investigation reveals that this frequency

corresponds to the fractional harmonic with c = 11
6

and is predicted from theory if a three

28



term excitation is considered. It is pointed out that not all of the theoretically predicted

frequencies are seen in the experiments. This is not surprising because even though a

secondary resonance is potentially predicted from theory, it may not actually occur because

nontrivial solutions to the solvability conditions do not exist for the chosen set of system

parameters.

C. HDI Design Considerations

The results of the analytical work reveal important insight into the dynamics of a slider

under the effect of thermal protrusion. It is shown that depending on the system parameters,

the nonlinearities at the head disc interface in combination with thermal protrusion can lead

to interesting system dynamics for particular ranges of protrusion. These include the strong

coupling of modes through internal resonance leading to large amplitude oscillations, and

the sudden suppression/increase in oscillation amplitude due to jump conditions.

An internal resonance can lead to a large amplitude slider response because of an un-

favorable coupling of vibration modes, and this can result in slider-lubricant/disc contact

or enhance existing slider-lubricant/disc contact. In order to avoid this condition, the ABS

should be designed to have pitch mode frequencies such that ω2 > 2ω1 with zero heater

power, so that thermal protrusion results in the system moving away from an internal res-

onance condition (because ω2 increases and ω1 remains largely unaffected by thermal pro-

trusion). If ω2 < 2ω1 with zero heater power, it may be desirable to transition through the

internal resonance condition in the low heater power range because in that case, the thermal

protrusion is small and head-disc clearance is relatively large, leaving a greater margin to

accommodate any large amplitude vibrations arising from an internal resonance. Internal

resonance and the resulting large amplitude vibrations can also be used favorably, for ex-

ample, by intentionally inducing internal resonance and detecting slider vibrations with a

magnetic signal, one can ascertain the flying height of a slider.

Only the pitch and vertical degrees of freedom are considered in this work, but the analysis

can be extended to a three degree of freedom model that includes slider roll. The internal

resonance conditions for the three degree of freedom model are ωm ≈ 2ωn or ωm ≈ 3ωn for

m,n = 1, 2, 3, and a coupling of modes as well as interesting system dynamics can occur

when thermal protrusion leads to an internal resonance condition.
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Experimental: ω1 = 128kHz

c = p/q Ω = c ω1 Seen in Experiments?

1/5 26

1/3 43

2/5 51

1/2 64

3/5 77

2/3 85 Yes

3/4 96

4/5 102

5/6 107 Yes

1 128 Yes

7/6 149

6/5 154

5/4 160

4/3 171

3/2 192 Yes

5/3 213 Yes

2 256 Yes

7/3 299 Yes

5/2 320

8/3 341 Yes

3 384 Yes

10/3 427

7/2 448

11/3 469

4 512

TABLE II. Possible fractional harmonics when two secondary resonance conditions are simultane-

ously satisfied
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This analytical study also highlights the role of lubricant rippling, or other periodic

excitation in determining slider dynamics. Since a small difference in the frequency of

the excitation and the first pitch mode frequency of the slider can result in very different

amplitudes of response, it is inferred that the ability of the lubricant to ripple as well as

recover/relax needs important consideration from the perspective of having favorable slider

dynamics.

V. CONCLUSION

Slider instability and dynamics at touchdown/contact are investigated in this paper

through experiments and analytical modeling. Experiments reveal that for certain slider

designs, when the heater power is increased beyond a critical power above the TDP, the

slider vibrations are suddenly suppressed. A simple two degree of freedom model that ac-

counts for nonlinearities at the HDI through quadratic and cubic approximations is used to

analytically investigate the interesting features of this problem. It is shown that the thermal

protrusion induced by the heater power can cause the system modes to couple unfavorably

for certain heater power ranges. This condition can manifest as large amplitude slider vibra-

tions and result in slider-lubricant/disc contact or enhance the existing slider-lubricant/disc

contact. System nonlinearities can also lead to a favorable suppression/reduction of slider vi-

bration amplitudes through the jump phenomena characteristic to many nonlinear systems.

Excitation frequencies that result in large amplitude slider vibrations, and the dominant

frequencies at which slider response occurs are also predicted from theory, and they are

in excellent agreement with experimental results. The theoretical analysis in this work

highlights HDI design considerations that can prevent slider instability as well as mitigate

unwanted slider vibrations ensuring HDI reliability at extremely low head-disc clearance.
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