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Abstract 

Bit Patterned Media (BPM) recording is one of the promising techniques for future 

disk drives in order to increase the areal density above 1 Tbit/in2. However the BPM can 

change the topography of the disk surface and thus have an effect on the flying 

characteristics of the air bearing sliders. So achieving a stable flying attitude at the Hard 

Disk Interface (HDI) becomes one of the main considerations for BPM. In this paper, we 

apply three methods (complete Homogenization, Taylor expansion Homogenization and 

Averaging) to solve this BPM problem and finally choose the Taylor expansion 

Homogenization method to investigate the slider’s flying attitude on partially planarized 

patterned media as well as at transitions over different pattern types such as might occur 

at boundaries between data and servo sections. 
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Introduction 

The hard disk drive industry is continuously trying to achieve higher data storage 

densities and higher reliability. Currently, achieving areal densities of 4 Tbit/in2 by early 

2013 and 10 Tbit/in2 by the end of 2015 has become the next goal [1].  However, 

continuously increasing the areal density faces the challenge of thermal stability of 

recorded data.  The proposal of BPM disks is one of the promising methods to overcome 

this problem since in patterned media an individual recorded bit is stored in distinct 

magnetic islands which are uniformly distributed on the disk.  

For 1 Tbit/in2 density, the pattern wavelength is estimated to be 25 nm with a feature 

size of 18 nm [2]. These sizes are much smaller than the air bearing slider’s dimension. 

Several numerical techniques had been proposed to solve the slider’s flying attitude on 

surfaces with regularly spaced surface features. Mitsuya et al. [3] introduced an 

Averaging method to simulate hydrodynamic lubrication of surfaces with two 

dimensional isotropic or anisotropic roughnesses. Later Mitsuya et al. [4] derived a 

simplified averaged Reynolds equation involving flow factors resulting from Boltzmann 

molecular free flow and applied this method to the moving roughness. Jai et al. [5] used a 

Homogenization method based on a double-scale approach to solve the hard disk problem 

with a rough slider and a rough disk. Later the Homogenization method was extended to 

the transient Reynolds equation derived in [6].  

A number of researchers have worked on the flying characteristics of the air bearing 

slider (ABS) over a BPM disk. Gupta et al. [7] applied the Homogenization method to 

simulate the static problem of the hard disk interface (HDI) with a BPM disk without 

considering the effect of intermolecular forces, which occurs at sub 5nm spacing. The 
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relationship between the flying height, pitch, roll, stiffness and bit pattern parameters 

were investigated in this paper. Li et al. [8] investigated the flying characteristics of 

femto sliders (0.85mm×0.7mm×0.23mm) over BPM using direct simulation. This paper 

showed that a mesh size to bit diameter ratio smaller than 1:6  required to guarantee a 

sufficiently high resolution of the air bearing pressure. To reduce the numerical 

complexity of the direct method, Murthy et al. [9] transferred the pattern from the disk 

surface to the slider surface and limited the region of the pattern to the center trailing pad 

of the slider. All the above researches showed the effect of the pattern height and pattern 

area ratio on the slider’s flying height. However, they were all analyzed for steady 

conditions. Knigge et al. [10] performed experiments on a disk with a flat zone and a 

patterned zone. They found similar results for the relationship between the flying height 

change and the pattern parameters. Nevertheless, because of the technical challenge of 

the BPM manufacture, experimental work is very limited. 

Here we first apply three methods: the complete Homogenization, the Taylor 

expansion Homogenization method and the Averaging method to investigate the slider’s 

dynamic flying attitude over a BPM disk. After comparing the computation times and 

accuracy, it is found that the Taylor expansion Homogenization method is preferable to 

the other two. Then this method is used to investigate the slider’s flying attitude on 

partially planarized patterned media and at transitions over different pattern types. 
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Model Techniques  

 The BPM is modeled as uniformly distributed cylinders on a flat disk as show in 

Fig.1 with the bit pattern parameters shown in Fig.2, in which h is the pattern height, p is 

the wavelength and d is the diameter. So the area of one bit island is πd2/4.   

 

Fig. 1 Model of BPM Fig. 2 Parameters of  BPM 
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The governing equation for the gas lubricated bearing between a slider and a disk is 

the generalized Reynolds equation, which can be written in two space dimensions as 

3 (( ) ( ) PHQPH P HP
T

σ )∂
∇ ⋅ ∇ −∇ ⋅ Λ =

∂
                              (1) 

Where Q is the Poiseuille flow factor using the F-K correction [11,12]. P and H are the 

dimensionless pressure and spacing. Λ  is the bearing number vector and σ is the squeeze 

number. T is the dimensionless time. 

We assume the steady head disk spacing on an unpatterned disk is 0 ( , )H X T and 

introduce two rapid variables Xy
ε

=  and Tτ
ε

= , where ε is the pattern wavelength non-

dimensionalized by the slider’s length. Then the spacing can be rewritten as: 

0( , , , ) ( , ) ( )D
UH X T y H X T H y eτ = − −τ ,                                    (2) 
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where HD  is an elevation of the disk surface from a reference surface. Ue  is the unit 

vector in the disk velocity (U ) direction. The introduction of the rapid variables requires 

a mesh size substantially smaller than the pattern feature size to solve Eqn. (1) directly. 

Obviously it is very time consuming for the computation. Since the Homogenization and 

Averaging methods are used to solve the roughness problem and the BPM can be thought 

as one kind of uniform roughness, we first turn to these two methods to solve the BPM 

problem. 

 The Homogenization method introduced in [6] includes a global problem and a local 

problem. The global problem is very similar to the generalized Reynolds equation except 

that it involves two homogenization coefficient matrixes. The local problem is a set of 

partial differential equations used to calculate those coefficients. The global problem is 

expressed as follows:          

* * 0
0 0

(( )x x x
P HP P
T

σ ∂⎡ ⎤∇ ⋅ Α ∇ −∇ Θ =⎣ ⎦ ∂
)                                     (3) 

where the homogenization coefficients are: 
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Here the two over bars imply averaging with respect to the rapid variables y  and τ and 

over bar is the average with respect to y . The functions ω1, ω2, χ1 and χ2 are 1-period 

solutions of the following local problems: 

3
0( ) (y y i yQP H QP H eω−∇ ⋅ ∇ = ∇ ⋅ 3

0 )i                              (6) 

3
0 0( ) (( (1 ) ) )D

y y i yQP H H H ei
σχ−∇ ⋅ ∇ = ∇ ⋅ − −
Λ

                    (7) 

The Homogenization method can produce quite good results [13], but it is also 

somewhat computationally expensive, especially for the dynamic cases. Buscaglia and Jai 

[14] proposed a new approach to reduce its computational cost by approximating the 

homogenization coefficients by a Taylor series expansion. We call this method the Taylor 

expansion Homogenization in this paper. In this method the coefficients   in (4) and 

in (5) are replaced by their Taylor expansions up to order n=4 which was shown to be 

sufficiently accurate. Here the variable α= (α

*A

*Θ

1, α2) = (H,P): 

*
* 0 0 0 * 0

1 1 2 2
1 1 2

1( ) (( ) ( ) )
!n

n
i

A
i

T A A
i

α α α α α α
α α=

∂ ∂
= + − + −

∂ ∂∑（ ） （α ）          (8) 

*
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T
i

α α α α α α
α αΘ

=

∂ ∂
= Θ + − + − Θ
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The complete Homogenization method needs to solve the local problems at every node 

while the Taylor expansion Homogenization method only needs to solve one set or 

several sets of local problems. The homogenization coefficients at the other nodes can be 

approximated by the Taylor expansion around the coefficients which have already been 

calculated by solving the local problem directly. 
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Another method which can reduce the computational cost significantly is the 

Averaging method. For a moving disk, the averaged Reynolds equation is obtained as 

follows: 

3
( ) ( )( ave ave

PHQPH P PH
T

σ ∂
∇⋅ ∇ −Λ =)

∂
                                  (10) 

where   

3 3
( ) (1 )ave P P

3H Hα α= + − H                                           (11) 

 
( ) (1 ) 2 (1 )( )ave S S SH H H Hα α β α= + − + − −H                           (12) 

where H is the arithmetic average spacing defined as 
HdXdY

H
dXdY

= ∫∫ and H is the 

harmonic average spacing which is calculated by: 2H H H 3− −=  and  3 31H H −= . Pα  

and Sα  are mixing ratios given in a table in [3]. They are equal to 1 for a longitudinal 

pattern and equal to 0 for a transverse pattern. β=1 is for the moving disk, and β=0 is for 

the static disk.  

The femto-sized sliders used in this study are shown in Fig. 3. The minimum flying 

height (MFH0) of slider I flying over an unpatterned disk is about 2 nm while it is about 

11.5 nm for slider II. In the next section we will first investigate the sliders’ flying 

heights using the above three methods to determine the most economical method, and 

then we will choose this method to study the slider’s attitude with a BPM disk. 
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Fig. 3 parameters of  BPM 

Slider I Slider II 

 

Simulation results and analysis 

Slider flying attitude over a BPM disk 

Fig. 4 shows a comparison of the minimum flying height measured from the pattern 

media top surface using three methods for slider II: Averaging, Taylor expansion 

Homogenization and complete Homogenization method. In the figure, the abscissa shows 

the BPM area ratio, which is the area covered by the bit pattern divided by the total area, 

and PH represents bit pattern height non-dimensionalized by MFH0. Here the complete 

Homogenization method is taken as the reference method since it produces results very 

close to the direct simulation method [13]. The results show that for small bit pattern 

heights (PH=0.1, 0.25), both the Averaging and Taylor expansion Homogenization 

methods give essentially the same change tendency in the minimum flying height to bit 

pattern area ratio and bit pattern height: the minimum flying height increases with an 

increase of bit pattern area ratio and decreases with an increase of the bit pattern height. It 

can be explained thusly: when the bit pattern area ratio increases, the disk is covered 

more by the raised bit pattern so the pressure rises and the bearing force becomes larger 

than the suspension load. In order to balance the suspension load, the spacing should 

increase simultaneously. On the other hand, when the bit pattern height increases while 
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bit pattern area ratio keeps the same, if the slider’s minimum flying height is MFH0 from 

the top of the patterned disk, the spacing between the slider and the disk’s recess parts 

will increase, therefore the pressure will decrease at these parts. This leads to the spacing 

between the slider and the pattern’s top surface decrease in order to regain the balance. 

These results are very similar to what was obtained in [7] for the static cases. However, 

as the pattern heights increase these two methods begin to produce some differences. In 

order to determine which method is more accurate, the slider’s attitudes on two higher 

pattern heights (0.5, 0.75) are computed again using the complete Homogenization 

method. We find that the minimum flying height calculated by the Taylor expansion 

Homogenization method is almost the same as that from the complete Homogenization 

method. Moreover, the computation time of the Taylor expansion Homogenization 

method is almost on the same order as the Averaging method and both of them are much 

faster than the complete Homogenization method. So we conclude that for smaller pattern 

heights (pattern heights less than a quarter of the minimum flying height) we can use 

either the Averaging or Taylor expansion Homogenization method, but for higher pattern 

heights it is better to use the Taylor expansion Homogenization method. In the following 

study, the Taylor expansion Homogenization method is used.  
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Fig.4 Comparison of minimum flying height from top surface of the pattern media using three methods 

 

First the experiment empirical equation of the flying height loss as a function of the 

bit pattern height and recess area ratio in the static solutions are verified (the static 

solutions give almost the same results as the dynamics solutions, but much faster).  Fig. 5 

shows the flying height loss with a change of the bit pattern height for different recess 

area ratios, the number beside the line is the slope of that line. It shows the flying height 

loss is linearly proportional to the bit pattern height for every recess ratio. And the slope 

of each line is close to, but not exactly the same as, the recess area ratio represented by 

that line. From Fig.6 some nonlinearity is observed, especially for higher pattern height. 

This nonlinear effect was also obtained by the direct simulation [9] and it was explained 

as: a change of the bit pattern diameter leads to a change of the pattern profile not only in 
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Fig.5 Flying height loss with bit pattern height for different recess area ratios 
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Fig.6 Flying height loss with recess area ratio for different bit pattern heights 
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Fig.7 Flying height loss with bit pattern height for slider I and slider II  

 

the slider’s width direction but also the slider’s length direction so that the side flow is 

prevalent in this case. However, for small pattern height, the flying height change can 

still be considered as a linear function of the recess area ratio. Moreover, the relationship 

between the flying height loss and the dimensional bit pattern height is almost 

independent of slider’s design, which is shown in Fig.7. Thus we conclude that for small 

bit pattern height (such as for a more planarized bit pattern media) the empirical 

relationship proposed by Knigge et al. [10] is still reliable: 

  recess

total

AFH h
A

Δ = i                                                             (13) 

Here h is the dimensional pattern height (see Fig.2), and . 2 2A /A 1  / /recess total d pπ= − 4
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 But for high pattern heights, especially higher than MFH0, the above relation is not so 

accurate. We should simulate more cases to obtain a quadratic curve if needed. 

Transition between different BPM types (different flying heights) 

Next we investigate the slider’s dynamic flying attitude at transitions over different 

pattern types, as might be associated with data and servo zones. Fig. 8 is a schematic of a 

slider flying at the transition between data zone and servo zone. We assume the 

circumferential wedge of each servo zone is about 2 degrees. So the servo circumferential 

length is about 1.1 mm at the computed radius and the femto slider’s length is 0.85 mm.  

Slider Data zone

Servo zone

 

Fig.8 A slider flying at transition between data zone and servo zone  

 

Fig. 9 shows the minimum flying height change when the slider experiences a 

transition between two different pattern types. Here we assume the first pattern type 

(PH=0.25,AR=0.25) covers 10 times more area than the second pattern type 

(PH=0.25,AR=0.5). From the figure, we see that the minimum flying height increases 

and decreases periodically during the transitions. And the minimum flying height on the  
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Fig. 9 Minimum flying height when the slider transition between different pattern types (same pattern 

height but different area ratio)  
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Fig.10 The pitch change when the slider transition between different pattern types   
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Fig.11 The roll change when the slider transition between different pattern types 
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first bit pattern (data zone) is almost the same as the flying height obtained in Fig. 4 for 

the same bit pattern type. But the minimum flying height on the second bit pattern (servo 

zone) has a small difference from the flying height obtained in Fig. 4. That’s because the 

circumferential length of the second bit pattern is not long enough for the slider to obtain 

a steady condition.  At the time the slider begins to fly from the first bit pattern to the 

second, one part of the slider is on the first bit pattern and the other part is on the second 

bit pattern. This is the reason that the slider has a gradual change during the transition. 

After the slider has completely transformed to the second bit pattern, it begins to seek a 

new steady attitude. From Fig. 10 and 11, we see the pitch and roll also change 

periodically when the slider experiences a transition between different pattern types. The 

peak-peak value of pitch is around 0.3 µrad. The change of roll is even small; the peak-

peak value is less than about 0.1 µrad.  So we can ignore the transition effect on the pitch 

and roll. 

We also investigated the slider’s flying attitude on a patterned disk with a smaller 

servo zone with the circumferential wedge of 0.2 degrees, which is much closer to the 

real disk’s servo zone. In this simulation the slider first flies on the first pattern type (data 

zone) until it attains a steady condition and then it begins to experience transitions as 

shown in Fig.12. The slider’s periodic motion can also be observed for this case. During 

transitions, the minimum flying heights on both pattern types oscillate because the 

circumferential length on each zone is not long enough for the slider to obtain a steady 

flying height. The average minimum flying height on the data zone is very close to the 

minimum flying height in the previous static calculation, but the flying height at the servo 

zone is much smaller than the previous one. When the slider flies from the data zone to 
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the servo zone, the flying height   increases since these two zones have the same pattern 

height but the area ratio is larger in the servo zone than it is in the data zone. Before the 

slider totally transitions to the servo zone, the slider’s leading edge begins to transfer to 

the data zone again because the circumferential length of the servo zone is smaller than 

the slider’s length. Therefore the minimum flying height starts to decrease after a small 

increase (see servo zone part in Fig.12). And the peak-peak value is less than 0.25 nm 

which is much smaller than in the previous case. If in a real disk the circumferential 

wedge of the servo zone is smaller than 0.2 degrees, which is used in this simulation case, 

the peak-peak value will be even smaller. 
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Fig.12 Minimum flying height when the slider transition between different pattern types (smaller servo 

zone) 

 

Transition between different BPM types that produce a constant flying height 
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Here we investigate the slider’s flying attitude at transitions over different pattern 

types which can produce the same minimum flying height. Fig.13 shows the slider’s 

minimum flying height using the Taylor expansion Homogenization method. The 

horizontal straight line is used to find two different pattern types which can produce the 

same minimum flying height. We choose the minimum flying height of 7.5 nm for which 

the corresponding pattern types are: AR=0.25, PH=0.5 and AR=0.52, PH=0.75. Here we 

also choose the circumferential wedge of the servo zone to be 0.2 degrees. Fig.14 shows 

the minimum flying height change when the slider experiences a transition between the 

selected two pattern types. As before, the slider flies on the first pattern type until a 

steady state is reached and then it experiences the transitions. It turns out that the slider’s 

flying attitude has almost no change after the slider obtains a steady condition on the first 

pattern type (see Figs.14-16).  And this is also to be expected in actual hard disk drives. 
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Fig.13 Two pattern types which can produce the same minimum flying height 
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Fig.14 Minimum flying height when the slider transition between two pattern types which can produce the 

same minimum flying height 
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Fig.15 The pitch change when the slider transition between different pattern types  
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Fig.16 The roll change when the slider transition between different pattern types 
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Conclusion 

In this paper we investigate three modeling techniques to simulate the time-

dependent HDI problem for BPM disks. It is found that the Taylor expansion 

Homogenization is the most economical accurate method for all ranges of pattern heights 

while the Averaging method is only reliable for small pattern heights.  

Then the Taylor expansion Homogenization method is applied to investigate the 

slider’s flying attitude on the BPM disk. For small pattern heights, the minimum flying 

height loss is almost a linear function of the pattern height and area ratio. The 

experimentally observed empirical relation in [10] is verified. For larger pattern heights, 

we need to consider nonlinearities. 

Next, the slider’s transition between two different pattern types is also studied for 

both large and small circumferential wedges of the servo zone. It is found that the slider’s 

spacing increases and decreases periodically during transitions. The pitch and roll also 

change periodically but the maximum change is very small. Moreover, the peak-peak 

value of the minimum flying height for the small servo zone is smaller than that for the 

larger servo zone. And for real disk this peak-peak value might be even smaller if the 

extent of the servo zone is smaller. 

Finally, we select two different pattern types which can produce the same minimum 

flying height for the slider’s transition study. It shows that using the selected pattern 

types, the slider’s flying attitude remains almost constant across the transitions. 
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