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ABSTARCT 

 

Self ServoWriting (SSW) is an attractive method for writing servo information on hard disks because it 

significantly saves the manufacturing cost and maintains the servowriting quality. Before SSW process, the 

servo writer prepares each HDD unit by writing either concentric seed tracks or spiral reference tracks. This 

report presents several control algorithms for SSW based on concentric seed tracks. During SSW, the 

recording heads must be controlled in both radial and tangential directions of rotating disks.  

   Section 2 discusses position error compensation for SSW process in the radial direction. Two novel control 

algorithms are proposed: Iterative Learning Control (ILC) and Two-Dimensional (2-D) control. An ILC 

structure is designed by learning the previous-track position errors in order to contain the Radial Error 

Propagation (REP) in the position control loop. SSW process is also modeled as a 2-D Roesser Model (2-D 

RM). The 2-D RM allows us to employ powerful tools offered by 2-D system theory. The conditions for 

asymptotic convergence and monotonic convergence are analyzed in both control schemes. An 1L  

optimization problem is formulated to obtain the controller parameters.  

   In section 3, timing error compensation for SSW process in the tangential direction is studied. In order to 

contain the closure error in each track and attenuate the timing error propagation from track to track in the 

timing control loop, an Adaptive Feedforward Compensation (AFC) scheme is proposed and an adaptive filter 

is designed by applying the Filtered-X Least Mean Square (FXLMS) algorithm.  

   Conclusions and challenges for future research are given in section 4. 
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1 INTRODUCTION 

1.1 Servo Writing Process 

Servowriting is a manufacturing process where the data tracks and servo sectors (as shown in Figure 1.1) are 

defined on the disk platters by writing the servo patterns, which are used to measure the head position relative 

the track centerline and generate the feedback signal during read and write operation. There are several 

conventional methods used to write the servo patterns. The common one is to write the position (servo burst) 

and timing (synchronization mark) information onto the disk surface by using an external laser-guided push-

pin mechanism. This costly servo writer accurately move the HDD actuator so that the write head is 

positioned on the desired tracks.  

Servo Sectors

Disk 
Platter

Data 
Tracks

0

1

2

3
4

5

N-1

N: total sectors 
number  

Figure 1.1 Data Tracks and Servo Sectors on a Disk Platter 

   The conventional servowriting method has some disadvantages. It needs expensive external devices for 

positioning the write head to write the servo patterns and requires clean room environment not to contaminate 

the disk drive interior. Furthermore, frequent calibrations may be required. The conventional method faces 

progressively difficult challenges as the Track Per Inch (TPI) continues increasing in the industry. These 

challenges come from different factors. Firstly, conventional servowriting requires several revolutions of the 

spindle to create one servo track. Therefore, the total time required for servowriting an HDD unit increases, 

i.e., the throughput increases, proportionately as the number of tracks per surface increases. This decrease in 
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the throughput of servowriting requires more servo writers to meet the production target. This, in turn, 

requires a more floor space in the clean room. Secondly, for smaller drives, the jigs and fixtures for 

servowriting become smaller. It is challenging to design the push-pin mechanism that is small and yet 

sufficiently stiff.  

   Self ServoWriting (SSW) is an alternative method of writing servo patterns to satisfy the demand for higher 

throughput without increasing the production cost and process time.  

   SSW has been attractive in HDD industry because it not only potentially saves the manufacturing cost and 

operation time, but also effectively maintains the servowriting quality. This process can be performed outside 

expensive clean room. During SSW, the timing (tangential) and position (radial) information are regenerated 

from the previously written track by using the existing head of HDD. Hence, the external servo writers are no 

longer needed and servowriting does not have to be processed in the clean room environment. The process of 

SSW is shown in Figure 1.2 and it generally contains the following steps: 

(1) A seed track which may be written by a servo writer is available on the disk. Position Error Signal 

(PES) is obtained when the read head is track-following on the seed track. 

(2) Assume a constant read-head-to-write-head offset of one track width. Make the read head to follow 

the seed track in the usual track following mode while the write head writes the servo patterns for the 

next track. 

(3) The read head uses the newly written track as a following reference while the write head writes the 

next track. 

(4) Repeat step (3) until all tracks are written.  

track i

track 1i +

read head

write head

track i

track 1i +

track 2i +

sector k 1k + 2k +

 

Figure 1.2 Illustration of SSW Process 
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1.2 Servo System in SSW Process 

The servo system in SSW involves two control loops as shown in Figure 1.3: position control loop and timing 

control loop. In the position control loop, a Voice Coil Motor (VCM) is controlled to maintain the heads over 

the target track centerline during reading and writing operations. And in the timing control loop, a Phase Lock 

Loop (PLL) is generally used to generate the servo writing clock signal.  

WD

Track i

Track i+1

Seed tracks

RD

Pattern 
Generator

R/W 
channel PLL

VCM
VCM
VCM

PES 
Demodulator

Head 
readback

VCM 
Driver

Servo 
Controller

R/W 
head

disk

Timing Control Loop

Position Control Loop

 

Figure 1.3 Block Diagram for SSW Servo System 

1.3 Control Problems in SSW Servo System 

Figure 1.4 illustrates the errors occurring on the disk during SSW process. In the position control loop, some 

position errors along radial direction cause the noncircuity of servo tracks. In the timing control loop, certain 

timing errors in circumferential direction result in ‘warping’ of the servo sectors on the disk.  

Ideal Servo Track

Realized Servo 
Track

Warping of Servo 
SectorsCorrect Timing Mark Position

 

Figure 1.4 Errors on the Disk 



 

 4 

   Therefore, there are two critical control problems in SSW process: 

(1) All the servo tracks should ideally be concentric. If not so, the data tracks will be squeezed, resulting in 

AC track squeeze. In the position control loop, the position of the write head with respect to the track 

centerline is controlled by controlling the VCM. Any disturbance and eccentricity present during this process 

will appear as written-in Repeatable Run-Out (RRO) for the head positioning servomechanism of HDD. This 

written-in RRO increases Track Mis-Registration (TMR) that must be compensated. Naturally, the 

requirements on the accuracy in positioning the write head are more stringent in SSW than in HDD servo 

system.  

(2) The servo sectors of each track must be written perfectly radially coherent with those in the adjacent tracks. 

Otherwise, some servo data will be degraded or corrupted. In SSW process, this is done by controlling a Phase 

Lock Loop (PLL) to generate the clock signal and write the timing marks in the servo patterns. The 

misalignment between the written timing marks and the desired timing marks is measured by timing jitter. 

Excessive timing jitter causes distortion in the read back signal and ‘warping’ of the servo sectors.  

   Therefore, in order to write superior servo patterns, a good SSW servo system is necessary. The remainder 

of this report is organized as follows. In section 2, two control algorithms are developed for SSW position 

control loop. Iterative Learning Control (ILC) design problems are firstly described and solved by using 1L  

optimal control method. In the second approach, SSW position control loop is modeled as a Two-Dimension 

(2-D) system. A 2-D control scheme is proposed and designed by applying 2-D system theory. Section 3 

designs an adaptive filter using Filtered-X Least Mean Square (FXLMS) algorithm to compensate the timing 

errors. Finally, section 4 outlines the conclusions and challenges that need to be tackled.  

 

2 POSITION ERROR COMPENSATION FOR SSW SERVO SYSTEM 

In this section, the control issues and motivations in SSW position control loop are stated first. Secondly, a 

simple ILC structure is proposed for compensating the position errors. The design issue is formulated into 1L  

optimization problem. In the third part, SSW position control system is modeled as a 2-D Roesser model (2-D 

RM). A novel 2-D control algorithm is developed to deal with the issues in the position control loop and to 
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improve the SSW quality. In both control designs, the conditions for asymptotic convergence and monotonic 

convergence are presented.  

 

2.1 Control Issues and Objectives in SSW Position Control Loop 

A. Radial Error Propagation 

During SSW process, each writing step writes a ‘memory’ of all proceeding track errors. These written-in 

errors propagate along radial direction, which is the so-called Radial Error Propagation (REP). REP is the 

main issue in SSW position control loop and SSW process will fail unless REP is controlled no to grow.  

   The block diagram of SSW position control loop is illustrated in Figure 2.1, which contains a typical track 

following servo loop with Voice Coil Motor (VCM) )(zP and the feedback compensator )(zC .  

    In this report, the track profile is normalized with respect to the track pitch and is denoted by y . In Figure 

2.1, the read head follows the thi  track with track profile ( )iy k  while the write head write the ( 1)thi +  track 

with track profile 1 ( )iy k+ . This is possible because of an offset in the radial direction between the read head 

and write head. 

1( )iy k+( )iy k

-
+

( )ie k
( )P z( )C z

Write Head 
Position

Read Head 
Reference

 

Figure 2.1 Block Diagram of SSW Position Control Loop 

   It is noted that the transfer function from ( )iy k  to 1( )iy k+  is the complementary sensitivity function:  

                1i iy k T z y k+ =( ) ( ) ( )                                                                                                        (2.1) 

where, ( ) 11T z P z C z P z C z −
= +( ) ( ) ( ) ( ) ( )  

   Equation (2.1) is the evolution of track profile. In general systems, the gain of T z( ) , as shown in Figure 2.2, 

is larger than 1 in some range of frequencies, which amplifies the frequency components of ( )iy k  and causes 

the written-in errors to build up in the radial direction across the disk. So in order to contain the REP, we need 
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to contain the magnitude of ( )iy k . Furthermore, it is desired to design a correction signal to make lim 0ii
y

→∞
= , 

as illustrated in Figure 2.3. 

                               

Figure 2.2 Typical Response of Complementary Sensitivity Function 

                                                  

Figure 2.3 Ideal Written Track Profile (i.e., without disturbances) 

B. Servo Writing Quality 

In addition to containing REP, another significant goal in SSW process is to assure good servowriting quality. 

An important quantity in this regard is the AC Track Squeeze, which is defined as the minimum spacing 

between two adjacent tracks as illustrated in Figure 2.4. The definition of AC Track Squeeze is written as,  

                          { }1[0, 1]
( ) min 1 ( ) ( ) 100%sq i ik N

T i y k y k+∈ −
  = + − ×                                                                      (2.2) 

Note that ( )iy k  is normalized in tack pitch. 
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Figure 2.4 Illustration of AC Track Squeeze in HDD 
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   Ideally, it is desired that ( ) ( 1)sq sqT i T i< + , i.e., lim ( ) 100 (% track pitch)sqi
T i

→∞
= , for 0,1, 2,...i = .                                        

which can be illustrated in Figure 2.5. 

 

Figure 2.5 Ideal AC Track Squeeze Profile (i.e., without disturbances) 

   From Equation (2.2), we have,  

                           

{ }
( ){ }

{ }

1[0, 1]

1

1

( ) 1 max ( ) ( ) 100%

1 ( ) ( ) 100%

1 ( ) ( ) 100%

sq i ik N

i i

i i

T i y k y k

y y

y y

+∈ −

+∞ ∞

+ ∞ ∞

= − − ×

         ≤ − • − • ×

         = + • − • ×

                                                                (2.3) 

where ( )iy
∞

•  is defined as the maximum magnitude of the head position signal along one track, i.e., 

( )
0 1

( ) max ( ) , for 0,1...i i
k N

y y k i
∞

≤ ≤ −
• =  = . It is clearly seen from Equation (2.3) that ( )sqT i  is related to the 

maximum magnitude of ( )iy k . Therefore we want to control ( )iy
∞

•  in order to improve the AC Track 

Squeeze. 

 

2.2 ILC Design for SSW Position Control Loop using 1L  Optimal Control 

ILC is loosely based on the paradigm of human learning. In a repetitive process, the information from earlier 

iterations of the process can be used to improve the performance in the current iteration. The key motivation 

behind the design of novel ILC scheme is the efficient use of the information from previous iterations so as to 

maximize the performance, minimize the tracking error, improve robustness and accelerate convergence rate. 

ILC was originally developed for robots performing repetitive tasks by Arimoto [6] and Uchiyama [7]. ILC 
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has been implemented in several applications for control of repetitive processes because of its simplicity of 

design, analysis and implementation.  

   An ILC based control scheme can be an effective approach to mitigate the REP in SSW position control 

loop. In this section, a simple ILC scheme is designed. It is followed by the analysis of the conditions for 

asymptotic convergence and monotonic convergence, which are stronger than that have been discussed by Wu 

and Tomizuka [1]. Based on these conditions, the ILC design is formulated into 1L  optimal control problem 

that can be solved by Optimization Programming.  

   In this section, a correction signal ( )iu k  is injected to the position control loop, as shown in Figure 2.6. 

This configuration is same as the one in Wu and Tomizuka [1].  

1( )iy k+( )iy k -

+

( )ie k( )iu k

-
( )P z( )C z

Read Head 
Rederence

Write Head 
Position

 

Figure 2.6 Block Diagram of SSW Position Control Loop with ILC 

   In SSW process, the head position ( )iy k  is not measurable, however, the error signal ( )ie k  and its previous 

cycle values 1( )ie k−  for all 'k s  are available for us to estimate ( )iy k . Hence, it is intuitive to use 1( )ie k−  to 

generate the correction signal ( )iu k ,  

       1i iu k F z e k−= ⋅( ) ( ) ( )                                                                                                               (2.4) 

where F z( )  is a learning filter to be designed. F z( )  has both the causal part and non-causal part, as shown in 

the following equation: 

             2 1 2
2 1 0 1 2
N N C CF z f z f z f f z f z− −= + + + + + +( )                            

where 'N
if s  and 'C

if s  are the weighting factors on non-causal and causal error signals respectively.            

Since { }1( ) : 0 1ie k k N− ≤ ≤ −  is all available from the beginning of the thi  iteration, the non-causal part is 

implementable.  
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2.2.1 Analysis in Lifted Domain 

From Figure 2.6, we have the evolution of track profiles, i.e., the relationship between iy k( )  and 1iy k+ ( ) : 

                      

[ ]
( )

[ ]

1 1

1

i i i i i

i i

i

y k T z y k u k T z y k T z F z e k

T z y k T z F z P z C z y k

T z S z F z y k

+ −

−

= − = −

= −

= −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( )

                                                     (2.5) 

where 1 1S z P z C z= +( ) /( ( ) ( ))  is the sensitivity function, and 1T z S z= −( ) ( )  is the complementary sensitivity 

function. 

By defining the following Super-vectors, 

                        

(0)
(1)
(2)

( 1)

i

i

i i

i

y
y

y y

y N

   
    
 =   
 
        

 − 



   

(0)
(1)
(2)

( 1)

i

i

i i

i

e
e

e e

e N

   
    
 =   
 
        

 − 



   and   

(0)
(1)
(2)

( 1)

i

i

i i

i

u
u

u u

u N

   
    
 =   
 
        

 − 



          

where N  denotes the total servo sector numbers in one track, the evolution of track profiles in the lifted 

domain can be derived from Equation (2.5), 

                        
[ ]

1 1

1

i i i i i

i i i

y Ty Tu Ty TFe

Ty TF PC y T SF y
+ −

−

= − = −

= − = −     ( )
                                                                       (2.6) 

where S, T  and F are the markov matrices of ( )S z  and ( )T z . 

   The impulse response of ( )S z  can be represented as, 

          1 2 1
0 1 2 1

N
NS z s s z s z s z− − − +

−= + + + + +( ) ... ...                                                                        (2.7) 

   Using its markov parameters 0s , 1s ,…, 1Ns − , we construct S as an N N×  matrix: 

0

1 0

2 1 0

1 2 3 0

0 0 0
0 0

0

N N N

s
s s

S s s s

s s s s

  

− − −

                      
                      
 =                   
 

                              
          







   



 

   Matrices T and F are constructed in the same way. 
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0

1 0

2 1 0

1 2 3 0

0 0 0
0 0

0

N N N

t
t t

T t t t

t t t t

  

− − −

                      
                      
 =                   
 

                              
          







   



 and  

0 1 2

1 0 1 2

2 1 0 1

2 1 0

0 1

2 1 0

N N

C N N

C C N

C C

N

C C

f f f

f f f f

f f f f
F

f f f

f f

f f f

 
 
 
 
 =  
 
 
 
  

           

           

           

             

                            

                             







 

  

 

   Note that Equation (2.6) implies that the matrix [ ]T SF−  is essential in relating the current track and next 

track profiles.  

 

2.2.2 Asymptotic Convergence Analysis 

Definition 2.1: (Asymptotic Convergence for SSW process) SSW process is said to be asymptotically 

convergent if the head position iy  converges to zero, i.e., lim 0ii
y

→∞
= . It is easy to see that the asymptotic 

convergence condition for system in Equation (2.6) is,  

      ( ) 1T SFρ − <                                                                                                             (2.8) 

where ( )T SFρ −  denotes the spectral radius of the  matrix ( )T SF− . 

   Asymptotic convergence guarantees that the Radial Error Propagation is well contained. 

 

2.2.3 Monotonic Convergence Analysis 

To improve the AC Track Squeeze, asymptotic convergence is not enough and there needs a stronger 

condition. 

Definition 2.2: (Monotonic Convergence for SSW process): SSW system is said to be monotonically 

convergent if the maximum magnitude of written track profile iy , i.e., iy
∞

 decreases successively.  

   The monotonic convergence can be equivalently expressed as,   

           1i iy y+ ∞ ∞
• < •( ) ( )                                                                                                              (2.9) 

   For the system in Equation (2.5), it requires  
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           1T SF
∞

− <                                                                                                                    (2.10) 

   Notice that designing F  to satisfy the condition in Equation (2.10) is an 1L  control problem and stronger 

than condition in Equation (2.8). Under the monotonic convergence condition in Equation (2.9) or (2.10), the 

peak value of written track profile decreases monotonically, which is followed by the peak of PES also 

monotonically decreases. As a result, the performance of servowriting (i.e., AC track squeeze) is improved. 

Remark: The condition for monotonic convergence in Equation (2.10) is stronger than that has been discussed 

in [1]: 1 2 2i iy k y k+ <( ) ( ) , which keeps decreasing in the sense of energy. Or equivalently, Equation (2.9) is 

one sufficient condition of 1 2 2i iy k y k+ <( ) ( ) . Furthermore, 1 2 2i iy k y k+ <( ) ( ) requires 
2

1T SF− < , 

which is an ∞H  control problem. 

 

2.2.4 1L  Optimal Control Formulation 

In this report, the learning filter F z( )  is considered as a FIR filter with three causal coefficients and two non-

causal coefficients, i.e.,  

                2 1 2
2 1 0 1 2
N N C CF z f z f z f f z f z− −= + + + +( )                                                                   (2.11) 

   Now we introduce the following new transfer functions and their markov matrices:  

(a) 1( )S z  is defined as the one-step advance of ( )S z , i.e., 1S z z S z= ⋅( ) ( )  and 1S  is its markov matrix. 

Matrix 2S  is defined as the markov matrix of 2( )S z , which is the two-step advance of ( )S z , i.e., 

2
2S z z S z= ⋅( ) ( )  

                   

1 0

2 1 0

1 3 1

1 2 1

0 0
0
0

N N

s s
s s s

S s s s

s s s

2  

− −

                     
                     
 =                   
 

                              
 0              







   



 ,   

2 1 0

3 2 1

2 4 2

1 2

0
0
0

0 N

s s s
s s s

S s s s

s s

3  

−

                    
                     
 =                   
 

                              
 0                  







   



                                          (2.12) 
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(b) Similarly, 3( )S z  and 4( )S z  are the one-step delay and the two-step delay of ( )S z , and their 

corresponding markov matrices are 3S  and 4S . 

                
0

3 1

2 3 4

0 0 0 0
0 0 0

0 0

0N N N

s
S s s

s s s

0  

− − −

                      
                      
 =                   
 
                             

          







   



,    4 0

3 4 5

0 0 0 0
0 0 0 0

0 0 0

0N N N

S s

s s s− − −

                      
                       
 =                     
 
                             

          







   



                                             (2.13) 

   Consequently, the matrix SF  is expressed as, 

                      0 0 1 1 2 2 1 3 2 4
N N C C

k kS Ff S f S f S f S f S S f
4

κ=0

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = ∑                                             (2.14) 

where 0 1 1 2 2 3 1
N N CS S f f f f f f= =   =   = ,  , ,  and 4 2

Cf f=   

   It is followed by the expression of T SF
∞

− : 

                 
1

N

k k ij k ij ki j
T SF T S f T S f

4 4

∞
κ=0 = κ=0∞

 
− = − = − 

 
∑ ∑ ∑ _max                                                           (2.15) 

where k ijS _  is the i j( , )  element of matrix kS , for 0 1 4k = , , ..., . 

   By introducing Equation (2.15), the condition in Equation (2.10) can be expressed as, 

                   
1

1
N

ij k ij ki j
T S f

4

= κ=0

 
− < 

 
∑ ∑ _max                                                                                                   (2.16) 

Notice that Inequality (2.16) is an optimization problem. 

 

2.2.5 Consideration of Disturbance and Noise 

During the practical HDD SSW process, the disturbances from spindle/disks and the sensor noise always exist. 

They inevitably deviate the Read/Write heads from the desired track centre and deteriorate the quality of SSW 

process. Hence, in the simulations, we consider the spindle/disks disturbance and sensor noise, which are 

shown in the following Figure 2.7. In this block diagram, ( )id k  represents the disk flutter and spindle 

vibration. The sensor measurement noise is denoted by ( )in k .  
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P(z)C(z)

( )in k ( )iu k ( )ie k

( )iy k 1( )iy k+

( )id k

-
-

+ +

 

Figure 2.7 SSW Position Control Loop with Disturbance and Noise 

   By considering ( )id k  and ( )in k , we have a new evolution equation for the track profile, 

                 

[ ]

1 1

1 1
1

1

i i i i i i i i i

i i i i i

i i i i

y Ty Tu Tn Sd Ty TFe Tn Sd

Ty TF PC y TF PC d Tn Sd
T SF y Tn Sd SFd

+ −

− −
−

−

= − + + = − + +

= − + + +

= − + + +

 

      ( ) ( )
      

                                                        (2.17) 

   From Equation (2.17), it can be seen that the track profile 1iy +  is affected not only by the current-track 

disturbance in  and id , but also by the previous-track disturbance 1id − . Since the response from in k( ) to 

1iy k+ ( )  is T z( )  , and that from id k( )  to 1iy k+ ( )  is S z( ) , the rejection performance on in  and id  is decided 

by T z( )  and S z( ) , which are considered when the feedback compensator C z( )  was designed. On the other 

hand, the rejection performance on 1id −  is determined by S z F z( ) ( ) . Thus, in order to effectively attenuate 

1id − , the filter F(z) should be designed such that SF S
∞ ∞

≤ , or equivalently,  

    1F
∞

≤                                                                                                                    (2.18) 

  Noting the structure of F, i.e.,, 

                          

0 1 2

1 0 1 2

2 1 0 1

2 1 0

0 1

2 1 0

N N

C N N

C C N

C C

N

C C

f f f

f f f f

f f f f
F

f f f

f f

f f f

 
 
 
 
 =  
 
 
 
  

        

           

           

               

                               

                              





 

                                                                            (2.19) 

   we conclude that 1F
∞

≤  can be rewritten as, 

              ( )2 1 0 1 2 1C C N Nf f f f f+ + + + ≤                                                                               (2.20) 

   Now the two conditions in equations (2.16) and (2.20) are formulated into one optimization problem to 
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obtain the feasible values of filter coefficients. This optimization problem can be solved by using Yalmip 

package [2]. 

 

2.2.6 Simulation Results 

In this section, the proposed ILC scheme is applied to a benchmark HDD developed by IEEJapan technical 

committee on Nano-Scale Servo (NSS) system [2006]. The simulated HDD has total servo wedge number 

of 220N = , and the spindle rotation speed is 7200 rpm ; thus the sampling frequency is 

220 (7200 / 60) 26,400× =  Hz . The Bode plot of HDD VCM is as shown in Figure 2.8. 

 

Figure 2.8 Bode Plot of HDD VCM 

   The performance of learning filter F z( )  and S z F z( ) ( )  are firstly examined. Figure 2.9 is the frequency 

response of the filter F z( ) . It is clear that its magnitude is below 0 db at all frequencies. The comparison of 

S z( )  and S z F z( ) ( )  is shown in Figure 2.10. We learn that S z F z( ) ( )  not only preserves the disturbance 

attenuation property of S z( )  at low frequencies, but also has much lower peak value than S z( ) ; in other 

words, S z F z( ) ( )  has better rejection performance on 1id −  than S z( ) . 
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Figure 2.9 Frequency Response of F z( )  

                                    

Figure 2.10 Frequency Responses of S z( )  and S z F z( ) ( )  

   Figure 2.11 and Figure 2.12 compare the closed-loop responses before and after applying the proposed ILC 

control law. It is noted that with ILC, the maximum gain of the closed-loop response, i.e., T z S z F z−( ) ( ) ( )  is 

less than 1. This condition ensures that the effect of non-circular tracks is diminishing as the track number i  

increases. 
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Figure 2.11 Closed-loop Response before applying ILC 

                                                 

Figure 2.12 Closed-loop Response after applying ILC 

   The modeled sensor noise is white noise with a sigma value of 1.5% of a track pitch, and that of the 

disk/spindle disturbance is 1.7% of a track pitch. The first track 0 ( )y k  is assumed to be the seed track 

and has a sigma value of about 11.0% of a track pitch (See Figure 2.13). In the simulation, total 1000 

servo tracks data was collected. Figure 2.14 shows the track profiles with the effect of disturbance and 

noise. It is observed that the Radial Error Propagation is well contained since the head position iy  

converges to some small value. The average one sigma value is about 2.93% track pitch. This is 

comparable to the seed track 0y . 
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Figure 2.13 Seed Track Profile 

                                                    

Figure 2.14 Track Profiles of 1000 Tracks 

   Another important performance measure is the AC track squeeze. The ideal AC track squeeze is one track 

pitch. When the AC track squeeze value is too small, two adjacent tracks with narrow track spacing may 

cause some data corruption. The simulation results in Figure 2.15 and Figure 2.16 tell that the average AC 

track squeeze is about 91.6% track pitch, which is within the acceptable limit. 

                                                    

Figure 2.15 AC Track Squeeze 
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Figure 2.16 Histogram of AC Track Squeeze 

 

2.3 Position Error Compensation using Two-Dimensional (2-D) System Theory 

2.3.1 Two-Dimensional (2-D) Control proposal and its advantages 

In this section, the dynamics of SSW process is described as Two-Dimensional Roesser Model (2-D RM) [3], 

[4]. Two-dimensional (2-D) systems are those systems in which the inputs, outputs and states depend on two 

independent variables. In other words, the dynamics of a 2-D system is propagated along two independent 

directions. As there are two independent dynamic processes in the 2-D system, we are able to use one of them 

to reflect the system dynamics in the time domain and the other to reflect the system dynamics in disk rotation 

domain. In [4], Roesser has developed a well known state-space model for discrete time systems.  

   There are several motivations and significances of employing 2-D system theory to design and analyze SSW 

process:  

a) SSW process is a 2-D system in nature. The 2-D Roesser Model reveals the 2-D characteristic of 

SSW process, i.e., its dynamic propagation along the tangential direction and radial direction.  

b) Based on the 2-D model, the stability and convergence problems of SSW system can be translated to 

the stability and convergence problems of 2-D system. And 2-D system theory [3] gives a useful way 

to show the stability and convergence of the SSW servo system in the time domain and disk rotation 

domain. 
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   In the following part, the 2-D system theory will be employed to design the feedback controller and 

feedforward controller together to guarantee the stability and convergence of SSW process along both 

tangential and radial directions.  Effectiveness and feasibility of the proposed control scheme are verified 

through the computer simulations. 

 

2.3.2 2-D System Theory Review 

This subsection will briefly summarize some useful definitions and theories for the 2-D system. 

A. State-space Model of 2-D RM Systems 

In the 2-D Roesser Model [4], the local state of the system is decomposed into two state components, namely 

the horizontal state hx  and the vertical state vx , i.e., ( , ) ( , ) ( , )
Th vx k i x k i x k i =      , where  k  and i  are non-

negative integer-valued horizontal and vertical coordinates.  1nhx ∈  and 2nvx ∈  are the state components 

which are propagated horizontally and vertically. Compact matrix form of 2-D Roesser’s state-space model is 

given as, 

      

[ ]

11 12 1

21 22 2

1 2

( 1, ) ( , )
( , )

( , 1) ( , )

( , )
( , )

( , )

h h

v v

h

v

A A Bx k i x k i
u k i

A A Bx k i x k i

x k i
y k i C C

x k i

     +    
= +        +         


  =       

                                                                 (2.21) 

Where ru ∈  is the input vector and mY ∈  is the output vector of the 2-D system. The boundary 

conditions for the system in (2.21) are given by (0, )hx i  and ( ,0)vx k , , 0,1, 2...k i = .                   

B. Asymptotic Stability of 2-D RM Systems 

A significant issue in 2-D system is the stability. According to [3], the zero-input state trajectory for the 

system in Equation (2.21), is given by, 

, ,

0 0

0( , ) (0, )
( ,0) 0( , )

h hk i
k j i k i l

vv
j l

x k i x l
A A

x jx k i
− −

= =

           
= +                

∑ ∑                                                           (2.22) 

where ,k iA  is the 2-D state transition matrix defined as: 
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1 2

, 1,0 1, 0,1 , 1

0

, 0, 0 ( 0)
0, 0 0

n n

k i k i k i

I k i

A A A A A k i k i
k or i

+

− −

,                           = =


= +    ≥   ≥   + ≠
                                 <     <

                                                     (2.23) 

and 11 121,0

0 0
A A

A
    

=          
 and 0,1

21 22

0 0
A

A A
         

=      
. 

   The asymptotic stability of 2-D system is defined as follows: 

Definition 2.3 [3] The 2-D RM system in Equation (2.21) is said to be asymptotically stable if and only if for 

zero input  ( , ) 0u k i =  and any finite boundary conditions (0, )hx i  and ( ,0)vx k ,  

  
/ /

( , )
lim ( , ) lim 0

( , )

h

vk and or k and or
i i

x k i
x k i

x k i→∞ →∞ 
     →∞      →∞

 
= = 

  
                                                                    （2.24） 

Theorem 2.1 [3] (1) 11A  is stable, i.e., { }11 1i Aλ <  for all i ; where 'i sλ  are the eigenvalues of 11A ; (2) 

22A  is stable; (3) 11 12

21 22

A A
A A

   
    

 is stable; are necessary conditions for the asymptotic stability of 2-D RM system 

in Equation (2.21). 

C. 2-D Z-Transformation [3] 

   By using the shift operators 1z  and 2z  along the horizontal direction ( k ) and vertical direction ( i ), 2-D Z-

transformation can be defined as: 

[ ] 1 2 1 2
0 0

( , ) ( , ) ( , ) k i

k i
y k i Y z z y k i z z

∞ ∞
− −

= =

Ζ = = ∑∑                                                                          (2.25) 

   Applying the above Z-transformation to 2-D RM in Equation (2.21) yields the 2-D transfer function matrix, 

[ ]
1

1 11 12 11 2
1 2 1 2

21 2 22 21 2

( , )( , )
( , )

z I A A BY z zG z z C C
A z I A BU z z

−−       −   
= =          −       −   

                                             (2.26) 

   And the 2-D characteristic polynomial of the system in Equation (2.21) is: 

  1 11 12
1 2

21 2 22

( , ) det
z I A A

d z z
A z I A
−       − 

=     −       − 
                                                                                  (2.27) 

Theorem 2.2 [3]: 2-D Roesser Model system in Equation (2.21) is asymptotically stable if and only if 
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1

2

1 12
1 2 1 2

21 2 22

( , ) det 0, 1, 1n

n

z I A
d z z for z z

A z I A
11⋅ − Α         − 

= ≠         ≥     ≥ 
      −          ⋅ −  

                                (2.28) 

   By matrix manipulations, Equation (2.28) can be written as, 

                         ( )
( )

1 2 1

2 1 2

1 2

1
1 11 2 22 21 1 11 12 1 2

1
2 22 1 11 12 2 22 21 1 2

( , )

det( ) det ( ) 0, 1, 1

det( ) det ( ) 0, 1, 1

n n n

n n n

d z z

z I A z I A A z I A A fo r z z

z I A z I A A z I A A fo r z z

−

−

 = − ⋅ − + − ≠   ≥   ≥ 

 = − ⋅ − + − ≠   ≥   ≥ 

    

   

   

                    (2.29) 

   From [3], Equation (2.29) is reduced to the following two equivalent conditions:    

                
( )

1

2 1

1 11 1

1
2 22 21 1 11 12 1 2

det( ) 0, 1

det ( ) 0, 1, 1

n

n n

z I A z

z I A A z I A A z z−

 − ≠   ≥


 − + − ≠   = ≥  

                                                  (2.30a) 

                    
( )

2

1 2

2 22 2

1
1 11 12 2 22 21 2 1

det( ) 0, 1

det ( ) 0 1, 1

n

n n

z I A z

z I A A z I A A z z−

 − ≠   ≥


 − + − ≠ , = ≥  

                                                  (2.30b)                                                        

 

2.3.3 2-D Representation of SSW Servo System 

From Figure 2.1, we can describe the SSW position control loop in the following state-space form: 

                      
1

( 1) ( ) ( )

( ) ( )
i p i p i

i p i

x k A x k B u k
y k C x k+

+ = +
 =

                                                                                              (2.31) 

where ( , , ,0)p p pA B C  is the state space realization of HDD VCM and ( )iu k  denotes the control input for 

VCM. 

   It can be seen from Equation (2.31) that there exist two independent processes: one reflects the system 

dynamics along the time domain described by k ; the other reflects the dynamics of the disk rotation along the 

radial direction described by i . From this view point, the 2-D model definitely offers an excellent 

mathematical model to describe the entire dynamics involved in the SSW position control loop.  

   In this Section, we reformulate the block diagram of SSW position control loop in Figure 2.1 into the block 

diagram in Figure 2.17, by defining the 2-D 1 2( , )z z  transformation:  
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                        1

2

( 1, ) ( , )
( , 1) ( , )

y k i z y k i
y k i z y k i

+ = ⋅
 + = ⋅

                                                                                                        (2.32) 

i.e., 1z  denotes the delay in time k , and 2z  denotes the delay in iteration i . 

( , 1)y k i +( , )y k i -

+ ( , )e k i ( , )u k i
1 2( , )C z z

0
p p

p

A B

C

    
 

      

 

Figure 2.17 Block Diagram of SSW Position Control Loop in 2-D Model 

( , )y k i  is the Read Head position on the thi  track, while ( , 1)y k i +  is the Write Head position on the 

( 1)thi +  track. ( , )e k i  and ( , )u k i  are the Position Error Signal (PES) and control input respectively. 

0,1,2...i =  denotes the track number, and 0,1,..., 1k N= −  denotes the servo wedge number, and N  is the 

total servo wedge number in one track.  

   Referring to 2-D Roesser Model [4], we define ( , )x k i  as the horizontal state and ( , )y k i  as the vertical 

state. So the 2-D state in SSW system is written as, 

                        
( , ) ( , )
( , ) ( , )

h

v

x k i x k i
y k i x k i

 =


=
                                                                                                                 (2.33) 

   and Equation (2.31) can be written in 2-D format,  

                        
0( 1, ) ( , )

( , )
( , 1) 0 ( , ) 0

p p

p

A Bx k i x k i
u k i

y k i C y k i
      +   

= +      +            
                                                                         (2.34) 

 

2.3.4 2-D Controller Design 

A. The Proposed Control Law 

In Figure 3.1, the PES ( )ie k  is expressed as, 

                        
( , )

( , ) ( , ) ( , 1) ( , ) ( , ) [ 1]
( , )p p

x k i
e k i y k i y k i y k i C x k i C

y k i
 

= − + = − = −     
 

                                   (2.35) 
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Note that Equations (2.34) and (2.35) are the 2-D RM of dynamics shown in Figure 3.1, where ( , )u k i  is the 

input of 2-D system and ( , )e k i  is its output.  

   We know that in the position control loop, only the error signal ( )ie k  is measurable. So we need to design 

an observer to estimate the 2-D state 
( , )
( , )

x k i
y k i

 
 
 

: 

                        
  ( )
  ( )

1

2

( 1, ) ( , ) ( , ) ( , ) ( , )

( , 1) ( , ) ( , ) ( , )

p p

p

x k i A x k i B u k i L e k i e k i

y k i C x k i L e k i e k i

 + = + + −


+ = + −




                                                       (2.36) 

where 1L  and 2L  are the observer gains; and the estimated error is written as, 

                        




( , )
( , ) 1

( , )
p

x k i
e k i C

y k i

 
 = −     

  

                                                                                                        (2.37) 

   The 2-D control law is designed as, 

      

[ ]1 2
1

1 2 1 2

1 2 1

( , )
( , ) ( , 1)

( , )

( , ) ( , ) ( 1, 1) ( 2, 1) ... ( , 1)

( , ) ( , ) ( ) ( 1, 1)

l

d
d

l

x k i
u k i K K F e k d i

y k i

K x k i K y k i F e k i F e k i F e k l i

K x k i K y k i F z e k i

=

= −   − + ⋅ + −

           = − ⋅ − ⋅ + ⋅ + − + ⋅ + − + ⋅ + −

           = − ⋅ − ⋅ + ⋅ + −

 
 
  

∑




 

 

                   (2.38) 

where 1, 2,...l =  is the PES learning steps; 1K  and 2K are constant matrices and 1( )F z  can be regarded as a 

learning filter to be designed. 

   With the 2-D control law expressed in Equation (2.38), the system in Figure 2.17 can be equivalently 

illustrated in Figure 2.18. 

( , )y k i ( , 1)y k i +
-

( , )e k i ( , )u k i
1

1z
−

1K
( , )x k i( 1, )x k i+

1
1 2z z −⋅ ( 1, 1)e k i+ −

2-D 
Observer

2K

0
p p

p

A B
C

    
 

      

( , )y k i ( , 1)y k i +

PES learning

Feed-forward

Feedback

1( )F z
Noncausal 
Learning

 

Figure 2.18 Equivalent Block Diagram of Position Control Loop in 2-D Model 
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Remarks: 

(1) 1K  is the feedback gain for the horizontal state ( , )x k i . (See the feedback loop in Figure 2.18) 

(2) 2K  is the feedback gain for the vertical state ( , )y k i . (See the feedforward loop in Figure 2.18) 

(3) The last item in Equation (2.38), i.e.,
1

( , 1)
l

d
d

F e k d i
=

⋅ + −∑ , is the PES learning from the previous 

track, and l  is the learning step. 

 

B. Design Example 

In this subsection, we give one design example of 2-step PES learning. And the control law is expressed as 

follows. 

                        [ ]


1 2 1 2

( , )
( , ) ( 1, 1) ( 2, 1)

( , )

x k i
u k i K K F e k i F e k i

y k i

 
= −   − + ⋅ + − + ⋅ + − 

  
                                     (2.39) 

where 1F  and 2F  are constant matrices to be determined.  

   By combining and reforming equations (2.34-2.37) and (2.39), we obtain the closed-loop system as, 

    




1 2

1 1 1 1 1 2

( 1, 1) 0

( 1, 1) ( ) ( )
( 1, 1) 0 0
( 1, 1)

p p p

p p p p p

x k i A B K B K
x k i L C A B K L C L L B K
y k i

y k i

+ +                  −                               −
 

+ + −     − +             − −  = + +                                       
 + + 





1

( , 1)

( , 1)
( , 1)0 0

0 0 0 0 ( , 1)

p p

x k i

x k i
y k i

y k i

B FC

+  
  

+   +   +                             
                                                                   +   

−         

                           


1

1 1

2 2 2 2

0 0 ( 1, )
0 0 ( 1, )
0 0 0 (

( )

p

p p p

p

p p p

B F x k i
B FC B F x k i
C y k
L C C L C L L

                        + 
 
−                                 + 

                                                 + 
  −      +              − 



2 2

2 2

2 2

0 0

0 0

1, ) 0 0 0

( )( 1, )

p p p

p p p

p

p p p

B F C B F
B F C B F

i C
L C C L C Ly k i

−                                  
  −                                   +                                                     
 
   −      +       + 




2 2

( 2, )

( 2, )
( 2, )

( 2, )

x k i

x k i
y k i

L y k i

+   
   

+   
   +   
          − +  

        (2.40) 

which can be simplified to,  

1 2 3( 1, 1) ( , 1) ( 1, ) ( 2, )x k i A x k i A x k i A x k i+ + = + + + + +                            (2.41) 

where  ( , ) ( , ) ( , ) ( , ) ( , )
T

x k i x k i x k i y k i y k i =          is the state vector; 
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1 2

1 1 1 1 1 2
1

0

( ) ( )

0 0 0 0
0 0

p p p

p p p p p

A B K B K
L C A B K L C L L B K

A

                −                             −

−     − +          − −
=

                                                             
                             0 0

 
 
 
 
 

                                  

,

1 1

1 1
2

2 2 2 2

0 0

0 0

0 0 0

( )

p p p

p p p

p

p p p

B FC B F
B FC B F

A
C
L C C L C L L

−                                  
 
−                                  =                                                   

  −      +              − 

 and 

2 2

2 2
3

2 2 2 2

0 0

0 0

0 0 0

( )

p p p

p p p

p

p p p

B F C B F
B F C B F

A
C
L C C L C L L

−                                  
 
−                                  =                                                   

  −      +              − 

 

   By defining the new states as, 

[ ]2 3

( , )
( , ) ( , 1)

( 1, )

( , )
( , )

( 1, )

x k i
k i x k i A A

x k i

x k i
k i

x k i

φ

γ

     
= + −     

+   


    
=  

+  

 

   We can recast Equation (2.41) into, 

1 1 2 1 3

2 3

( 1, ) ( , )
( , 1) ( , )

0 0 0

A A A A A
k i k i

I A A
k i k i

φ φ
γ γ

        
+     

=                    +                       

                                                                                 (2.42) 

   It is noted that Equation (2.42) is 2-D RM, where ( , )k iφ  is the horizontal state and ( , )k iγ  is the 

vertical state. 

 

2.3.5 Stability and Convergence Analysis for Position Control Loop in 2-D  

As discussed above, the controlled plant, the proposed control law and the resulting closed-loop system are all 

represented by a 2-D model. So, in order to design the controller parameters, it is important to analyze the 

stability and convergence of SSW system in the 2-D model. 

A. Asymptotic Convergence Analysis 

From Figure 3.1, we know that the PES is the difference between the head position on the previous track, i.e., 

( , )y k i  and that on the current track, i.e., ( , 1)y k i + . During SSW, if the control sequence is modified to 

reduce the PES to be infinitesimal as the track number increases, the SSW position control loop is said to be 

asymptotically convergent. Mathematically, the following definition is given. 
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Definition 2.4: SSW position loop is asymptotically convergent if 

lim ( , ) 0, 0,1,..., 1
i

y k i for k N
→∞

=       = −                                                                                (2.43) 

or  

lim ( , ) 0, 0,1,..., 1
i

e k i for k N
→∞

=       = −                                                                                 (2.44) 

So Equations (2.43) - (2.44) are equivalent to, 

                        
( , )

lim 0
( , )i

x k i
y k i→∞

 
= 

 
, for 0,1,..., 1k N = −                                                                                (2.45) 

which is apparently the condition for asymptotic stability of SSW position system stated in Equation (2.42). 

So we have the following theorem to establish the asymptotic convergence analysis.  

Theorem 2.3: A sufficient condition for the SSW position system in Equation (2.42) to be asymptotically 

convergent is that it is asymptotically stable. 

Remark: The vertical boundary condition ( ,0)y k  is regarded as the seed track profile, which is given 

prior to SSW process, i.e., 

( ,0)y k seed track=   , for 0,1,..., 1k N= −                                                       

and the horizontal boundary value (0, )x i  is arbitrarily set to zero during SSW process, i.e., 

                      (0, ) 0x i = , for 0,1,...i =                                                                                        

B. Monotonic Convergence 

The AC Track Squeeze defined in Equation (2.2) can be written in 2-D format: 

{ }
[0, 1]

( ) min 1 ( , 1) ( , ) 100%  (track pitch)sq k N
T i y k i y k i

∈ −
= + + − ×                                          (2.46) 

And the condition for monotonic convergence is given by: 

                        ( , 1) ( , )y i y i
∞ ∞

• + < •                                                                                                        (2.47) 

where ( )
0 1

( , ) ( , )
k N

y i max y k i
∞ ≤ ≤ −

• = , 0,1....i =  

   Let T  denote the transfer function from ( , )y k i  to ( , 1)y k i + , i.e.,  

( , 1) ( , )y k i T y k i+ = ⋅                                                                                                            (2.48) 
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It is known that the 1L  norm of T  is defined as, 

 1
( , )

( , )
T y k i

T
y k i

∞

∞

⋅
=                                                                                                                (2.49)  

So the condition in (2.47) is equivalent to, 

 1 1T <                                                                                                                                    (2.50) 

Remarks: 

(1) It is known that 1T T∞ ≤ , hence 1 1T <  is stronger than 1T ∞ <  which was analyzed in [1] for 

ILC design.  

(2) let ( , )t k i  ( 0,1,..., 1; 0,1,...k N i= −  = ) be the impulse sequence of system T , and the z-transform of 

this sequence is defined as, 
1

1 2 1 2
0 0

( , ) ( , )
N

k i

k i
T z z t k i z z

− ∞
− −

= =

 = ∑∑ . Thus, the problem of Monotonic 

Convergence for SSW position control loop can be stated as, 
1

0 0
( , ) 1

N

k i
t k i

− ∞

= =

<∑∑ . 

2.3.6 Controller Parameters Design  

A. Observer Gains 1 2( , )L L  Design 

In the first step, the observer gains 1L  and 2L  are designed based on the 2-D state error equation.  

   Defining the 2-D state error vectors as, 

                        
 

 

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x k i x k i x k i

y k i y k i y k i

 = −


= −
                                                                                                        (2.51) 

we obtain the error dynamics as follows, 

                        












1 1 11 12

2 2 21 22

( 1, ) ( , ) ( , )

( , 1) ( , ) ( , )
p p e e

p p e e

A L C L A Ax k i x k i x k i
C L C L A Ay k i y k i y k i

+     −           +  
= =        +     −     +              

                                               (2.52) 

   The above equation is obviously 2-D RM. To design 1L  and 2L , we recall Theorem 2.1 and Theorem 2.4 

and the following conditions are obtained: 

(a) 11 1( ) ( ) 1e p pA A L Cρ ρ= + <  
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(b) 22 2( ) ( ) 1eA Lρ ρ= − <  

(c) 1
11 12 22 21(1 )e e e eA A A A−+ −  <1  

Remarks:  

(1) 1( ) 1p pA L Cρ + <  implies the stability problem of 1-D system ( , )T T
p pA C − . 

(2) 2( ) 1Lρ − <  implies 2 1L <  since 2L  is scalar in this design. 

(3) 1
11 12 22 21(1 )e e e eA A A A−+ −  <1  derives  1 1

2
1 1

1

1
p p p

p p p

A L C L C
L

A L C L C

− + − ⋅
<

− + + ⋅
. 

 

B. 2-D State Feedback Gains 1 2( , )K K  Design 

To design the 2-D state feedback gains 1K  and 2K , we assume that the control law does not contain the PES 

learning term, i.e.,  

                    [ ]


1 2

( , )
( , )

( , )

x k i
u k i K K

y k i

 
= −   −  

  
                                                                                                 (2.53) 

   By applying this control signal, we have the closed-loop system as, 

  




1 2

1 1 1 1 2 1

0( 1, )
( )( 1, )

( , 1) 0 0

( , 1)

p p p

p p p p p

p

A B K B Kx k i
L C A B K L C L B K Lx k i

y k i C

y k i

                 −                         −+ 
  −     − + )        (− −+  = +                                                     
 
 + 








2 2 2 2

( , ) ( , )

( , ) ( , )
0 ( , ) ( , )

( ) ( , ) ( , )p p p

x k i x k i

x k i x k i
A

y k i y k i
L C C L C L L y k i y k i

     
     
     =               
     −            +                      −     

                            (2.54) 

By denoting the horizontal state vector as 


( , )
( , )

( , )

x k i
x k i

x k i

 
=  

 
, and the vertical state vector as 



( , )
( , )

( , )

y k i
y k i

y k i

 
=  

 
, 

we rewrite equation (2.54) as 

                  11 12

21 22

( 1, ) ( , ) ( , )

( , 1) ( , ) ( , )

A Ax k i x k i x k i
A

A Ay k i y k i y k i

         +  
= =          +           

                                                                (2.55) 

   To satisfy Theorem 2.1 and Theorem 2.4, we need the following conditions to design 1K  and 2K .  

(a) 1
11

1 1 1

( ) 1p p

p p p p

A B K
A

L C A B K L C
ρ ρ

                  − 
= < −      − +  
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(b) 1
11 12 22 21(1 )A A A A−+ −  <1  

Remarks:  

(1) 1

1 1 1

1p p

p p p p

A B K
L C A B K L C

ρ
                  − 

< −      − +  
 implies the stability problem of 1-D systems ( , )p pA B  and 

( , )T T
p pA C −  since 1

1 1 1

p p

p p p p

A B K
L C A B K L C

                  − 
 −      − +  

 satisfies the Separation Principle.  

(2) 1
11 12 22 21(1 )A A A A−+ −  <1  can derive: 

1

1 1 12
1

1 2 1

2 2 2 2

1
0

 
00 0

1

p p

p p p pp

p p

p p p

A B K
L C A B K L CB K

L B K L C
L L L C C L C

−

                  − 
−    −      − +         −          − −                                   − ⋅          − −      +     

<
 

        which can be used to calculate 2K . 

C. PES Learning Gains 1 2( , )F F  Design 

By employing Theorem 2.1 and Theorem 2.4 again, the following conditions are derived to guarantee the 

asymptotic stability and convergence of SSW system in Equation (2.42). 

(a) 1( ) 1Aρ <  

(b) 2( ) 1Aρ <    

(c) 
1

2 3
1 1 2 1 3

  
  1

 0   0
A A

A A A A A I
−

  
+ − <        

 

Remarks:  

(1) 1( ) 1Aρ <  implies 1

1 1 1

1
(

p p

p p p p

A B K
L C A B K L C

ρ
                  −              

<   −     − + )   
 which has been satisfied when designing 

1K . 

(2) 2( ) 1Aρ <   implies 2 1L <  and 
( )1

1

p p

F
B Cρ

< . 

(3) ( ) 1
1 1 2 2 1A A A I A

−
+ − <    derives matrix 2F . 
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2.3.7 Simulations 

   Same as in Section 2.2.5, we consider the disturbance and sensor noise in the simulations, as shown in 

Figure 2.19. 

( , 1)y k i +( , )y k i -

+ ( , )e k i ( , )u k i
1 2( , )P z z1 2( , )C z z

( , )n k i ( , )d k i

 

Figure 2.19 Block Diagram of SSW Servo System with Disturbance and Sensor Noise 

In the figure, ( , )n k i  denotes the sensor noise due to PES demodulation and ( , )d k i  is the disk/spindle 

disturbance. 

   The HDD model used for simulations is same as that in Section 2.2.6. 

   Summarized below are the simulation results using 2-step PES learning control scheme in Equation (2.39). 

The controller parameters 1 2 1 2 1 2( , , , , , )K K L L F F  are listed in the following Table 1. 

Table 1 Controller Parameters 1 2 1 2 1 2( , , , , , )K K L L F F  

1K  2K  1L  2L  1F  2F  

[-.9637  1.8102  -.0639   -.238] -.0586 [.0007  -.0009  .0068   .0245] .011 -.0018 -.01 

 

   The seed track ( ,0)y k  is same as what used in ILC design, which is plotted in Figure 2.12. In the 

simulations, total 1000 tracks are propagated. 

   One sigma values (i.e., standard deviation) of the first one thousand self servo-written tracks are depicted in 

Figure 2.20. It is apparent that the written tracks converge to a steady value range and its average sigma value 

is about 1.71% of a track pitch, which is much smaller than that of seed track and within the acceptable limit. 

   Figure 2.21 plots the AC track squeeze ( sqT ) and its distribution is depicted in Figure 2.22. The mean AC 

track squeeze is 93.40% of a track pitch, which shows good quality of servowriting. 
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Figure 2.20 Sigma Value of 1000 SSW Written Tracks (% Track)  

   

 

 

 

 

 

             

 

Figure 2.21 AC Track Squeeze (% Track) 

                                                   

Figure 2.22 Histogram of AC Track Squeeze 
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   Figure 2.23 shows one sigma value of PES and its mean is 3.19% track pitch. It also proves good 

performance of the proposed 2-D control scheme. 

       

Figure 2.23 Sigma Value of PES (% Track) 

                           

3 TIMING ERROR COMPENSATION FOR SSW SERVO SYSTEM 

 

In this section, a control scheme based on Adaptive Feedforward Compensation (AFC) is proposed for SSW 

timing control loop. An adaptive filter is designed to minimize the closure error in one track and contain the 

timing error propagation from track to track. The Filtered-X Least Mean Square (FXLMS) technique is used 

for designing the adaptive filter.  

3.1 Timing System in SSW 

In SSW process, in order to ensure proper alignment of the servo sectors, the propagation of servo patterns 

has to be synchronized to the seed clock track or the reference timing marks in previous track. Generally, the 

seed clock track is prewritten at the Outer Diameter (OD) of a disk by a separated clock head before the SSW 

process. To write a stable and accurate clock signal in presence of the media defects and disk/spindle 

disturbances, a Phase Lock Loop (PLL) is generally employed, as shown in Figure 3.1.  
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Write HeadRead Head

Compensator
(LF)

Phase 
Detector Phase 

Error

VCO

Pattern 
Circuitry

Input 
Phase

Output 
Phase

Phase Lock Loop (PLL)

 

Figure 3.1 PLL in SSW Process 

   The PLL in Figure 3.1 comprises a Voltage Controlled Oscillator (VCO) for generating a write clock signal 

used to propagate the servo sectors across the disk during SSW process. The difference between the reference 

phase signal and output phase signal goes though the Phase Detector (PD) and generates the phase error. The 

phase error is filtered by the Loop Filter (LF) to generate the VCO control signal.  

   The block diagram of linearized PLL is shown in Figure 3.2. where input i kφ ( )  denotes the head phase 

signal in current track and output 1i k+φ ( )  denotes the head phase signal in the next track. ie k( )  is the phase 

error generated by the PD; pk  is the gain of PD and ( )C z  denotes the transfer function of LF which is 

generally a low-pass filter. The VCO is normally modeled as an integrator. The phase signal is defined in the 

next section. 

1( )i k+φ( )i kφ

-

+ ( )ie k
C(z)kp

1
1z −

VCOGain Compensator

 

Figure 3.2 Block Diagram of Linearized PLL in SSW Timing Control Loop 
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3.2 Control Problems in SSW Timing Control Loop 

3.2.1 Phase Definition 

Let us assume that there are N  timing marks in one track (see the solid lines in Figure 3.3). Ideally, they are 

evenly spaced and marked by (0)t , (1)t ,…, ( 1)t N − . But in practice, these timing marks are not even due to 

the written-in timing jitters. In Figure 3.3, the dashed lines marked by ' (0)t , ' (1)t ,…, ' ( 1)t N −   are used to  

denote the actual timing marks.  

0t( )

1( )t

2( )t

3( )t

4( )t

5( )t

1( )t N −

iTrack 

1i −Track ( )

0, ( )t

1, ( )t

2,( )t

3
,( )

t

4, ( )t

5, ( )t

1, ( )t N −

'

desired timing mark

actual timing mark

( ) :
( ) :

t k
t k  

Figure 3.3 Illustration of Timing Marks in Servo Patterns 

Definition 3.1: The difference between the desired timing mark and the actual timing mark is called Timing 

Jitter corresponding to the thk  timing mark, i.e.,  

                                      t k t k t k∆ = −,( ) ( ) ( )                                                                                                   (3.1) 

Definition 3.2: The phase corresponding to the thk  timing mark is given by the following equation,  

                                      
( ) 2 2

s s

t k t k N t kk
T N T

π πφ
− ⋅ ∆ ⋅

= =
, ( ) ( ) / ( )

( )
/

                                                          (3.2) 

where sT  denotes the spindle revolution period. 

Note that the phase is a normalized timing jitter. 
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3.2.2 Problem Statements in Timing Control Loop 

During SSW process, ( )t k  and ' ( )t k  are expected to be same; in other words, the timing jitters are unwanted. 

Therefore, in order to eliminate the timing jitters, an effective control scheme is necessary to resolve the 

control issues in SSW timing control loop. There are two main issues in this control loop.  

(1) The first important issue is the closure error in one track, which is the phase propagation along 

circumferential direction. As shown in Figure 3.4, kd  is used to denote the angular distance between two 

adjacent timing marks ' ( 1)t k −  and ' ( )t k , wherein the angular difference between ' (0)t  and ' ( 1)t N −  is 

named timing closure Nd , i.e., 
1

1
2

N

N k
k

d dπ
−

=

= − ∑ . The difference between Nd  and the ideal angular distance 

in two adjacent servo sectors is defined as the closure error d∆ , which is written as 2Nd d Nπ∆ = − . 

Closure error d∆  is unwanted because it adversely disturbs PLL operation and affects the servo propagation 

process.  

iTrack 

1i −Track ( )

0, ( )t

1, ( )t

2,( )t

3
,( )

t

4, ( )t

5, ( )t

1, ( )t N −
1

d

2
d

3
d

Nd

 

Figure 3.4 Illustration of Angular Distance between Adjacent Sectors 

(2) The other significant issue in the timing control loop is the track-to-track timing error propagation, i.e., the 

phase propagation along radial direction. When the PLL is synchronized to propagate the servo sectors, some 

disk disturbance, spindle disturbance and sensor noise are amplified by the loop. These components of timing 

jitters will propagate from track to track and grow unboundedly, resulting in ‘wandering’ or ‘warping’ of 

servo sectors across the disk surface, as illustrated in Figure 3.5.  The ‘warping’ of servo sectors deteriorates 

the quality of the product servo patterns. 
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Warping of Servo 
Sectors

Correct Timing Mark

 

Figure 3.5 Warping of Servo Sectors on the Disk 

   Hence, in order to resolve the above two issues and improve SSW quality, there is a need to minimize the 

closure error in one track and attenuate the timing error propagation from track to track. 

 

3.3 Adaptive Filter Design for Timing Control Loop 

3.3.1 Modeling of Timing Control Loop 

The block diagram for timing control loop is shown in Figure 3.6, which is a simplified  form of Figure 3.2. In 

the figure, ( )P z  is the PLL open loop transfer function, i.e., 
( )

( )
1

pk C z
P z

z
⋅

=
−

. 

1( )i k+φ( )i kφ

-

+ ( )ie k ( )P z
PLL open loop 

 

Figure 3.6 Block Diagram for Timing Control Loop 

   It is noticed that the closed-loop in Figure 3.6 can be equivalently represented in the open loop form in 

Figure 3.7, where ( )S z  is the sensitivity function, i.e., 

                              1( )
1 ( )

S z
P z

=
+

                                                                                                                 (3.3) 

( )i kφ ( )S z ( )ie k
 

Figure 3.7 Open Loop Representation of Figure 3.6 
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Definition 3.3: ie k( )  in Figure 3.6 and Figure 3.7 is the timing error between two adjacent tracks for the 

same sector, i.e.,  

                               1i i ie k k kφ φ += −( ) ( ) ( )                                                                                                      (3.4)  

It is called the Radial Timing Error.  

Definition 3.4: The timing error between two adjacent sectors in the same track is defined as: 

                              1i i ik k kε φ φ= − −( ) ( ) ( )                                                                                           (3.5) 

It is called the Circumferential Timing Error. 

3.3.2 Adaptive Filter Design for Timing Control Loop 

In this section, an Adaptive Feedforward Compensation (AFC) scheme based on Filtered-X Least Mean 

Square (FXLMS) algorithm will be proposed. 

A. Adaptive Feedforward Compensation (AFC) 

The general structure of AFC is shown in Figure 3.8. The AFC aims to generate the input of a dynamic 

system ( )S z  so that its output follows the desired output ( )ix k . The scheme consists of two main elements: an 

adaptive filter ( )W z  and an LMS algorithm block. The LMS algorithm adjusts the coefficients of ( )W z  to 

minimize the performance index. In Figure 3.8, the reference signal ( )ir k  is filtered by ( )S z  before it is 

utilized by the LMS algorithm to adjust the filter coefficients. Because of this filtering notion, the adaptive 

LMS algorithm is called the Filtered-X LMS algorithm.  

( )i kφ
( )S z ( )ie k

( )i k
∧

φ ( )S z

LMS

W z( )

( )S z

( )ir k

( )ir k

-

+
( )ix k

( )iz k

 

Figure 3.8 Block Diagram of AFC using FXLMS Algorithm 
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B. The Proposed Control Scheme 

It is known that the radial timing error ie k( )  in Figure 3.6 and Figure 3.7 is the only measurable signal in the 

timing system, that is to say, the head phase signal ( )i kφ  is not measurable for designing the filter. So it is 

desired to estimate ( )i kφ  and approximate the circumferential timing error ( )i kε  which will be used as well 

as the radial timing error ( )ie k  to contain the closure error and attenuate the timing error propagation. Note 

that the estimated head signal  ( )i kφ in Figure 3.8 serves as a feed-forward control signal to be designed, as 

shown in Figure 3.9. We note that the closer to ( )i kφ   ( )i kφ , the smaller the radial timing error ( )ie k . At the 

same time, the closure error in one track will also be contained if the radial timing error ( )ie k and 

circumferential timing error ( )i kε  are both considered in the design of the adaptive filter in FXLMS.  This 

will be discussed in the following discussion. 

1( )i k+φ( )i kφ

-

+ ( )P z
PLL open loop 

( )ie k ( )i kφ
-

 

Figure 3.9 Timing Control Loop with the Feedforward Correction Signal  ( )i kφ  

   The proposed control scheme is illustrated in Figure 3.10, where ( )W z  is an adaptive filter to be designed 

for obtaining the estimated head phase signal  ( )i kφ . A popular choice of ( )W z  is a Finite Impulse Response 

(FIR) digital filter. Notice that FIR filters are always stable. The class of FIR adaptive filters using FXLMS 

algorithm is well known regarding its convergence conditions and steady state performance. Assume the FIR 

filter ( )W z  has the same length as the number of servo sectors in one track: 

                   1 2 10 1 2 1 N
i i i iW z w w z w z w N z− − − += + + + + −( ) ( ) ( ) ( ) ... ( )                                                              (3.6) 

Remark: iw k( )  in Equation (3.6) denotes the filter coefficient for the thk  servo sector in the thi  track.  
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+
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Figure 3.10 The Proposed Control Scheme for Timing Control Loop 

   The adaptive filter ( )W z  receives the reference input ( )ir k  and generates the estimated head signal  ( )i kφ  

so that the system output ( )ie k  is ideally zero. To simplify the design, the reference signal ( )ir k  is chosen as 

an impulse train, i.e.,  

                                    
1      0, 1, 2,...

( )
0      otherwisei

k i
r k

= =
= 


                                                                                      (3.7) 

   The sensitivity function ( )S z  in Equation (3.3) is generally given by its markov 

coefficients, ( ), 0,1,...s k k = , as shown in the following equation.  

                           1 2 10 1 2 1 NS z s s z s z s N z− − − += + + + + − +( ) ( ) ( ) ( ) ... ( ) ...                                                      (3.8) 

   Furthermore, because the length of  ( )W z  is selected as N , its thk  coefficient is equal to the estimated head 

signal  ( )i kφ i.e., 

                             ( ) ( )i ik w kφ =   for 0,1,..., -1;  1, 2,...k N i= =                                                                      (3.9) 

Similarly, the filtered reference signal ( )ir k  can be written as, 

                            ( ) ( )i ir k s k=  for 0,1,..., -1;  1, 2,...k N i= =                                                                       (3.10) 

   Notice that by introducing the feed-forward signal  ( )i kφ , the timing errors ( )ie k  and ( )i kε  in equations 

(3.4) and (3.5) are rewritten as: 
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

0

0

ii i i i
j

i i
j

e k x k z k x k s j k j

x k s j w k j

∞

=

∞

=

= − = − ⋅ φ −

= − −  

∑

∑

( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( )

                                                                   (3.11) 

                       
 ( )  ( )

0

0

1 1

1

i i i ii
j

i i
j

k S z k k s j k j k j

s j w k j w k j

∞

=

∞

=

ε = φ φ = φ − φ −

= − − − −  

∑

∑

( ) ( ) ( - ) - ( ) ( ) ( - ) - ( )

      ( ) ( ) ( )

                                          (3.12) 

where we have noted Equation (3.9). 

C. Design Analysis  

This subsection describes the procedure of designing the adaptive filter ( )W z  to estimate the head signal 

 ( )i kφ  and circumferential timing error ( )i kε . Two definitions are firstly introduced. 

Definition 3.5: The circumferential timing error energy for one sector is defined as: 

                      
2

2

0
1i i i i

j
k k s j w k j w k j

∞

=

 
β = ε = − − − −   

 
∑( ) ( ) ( ) ( ) ( )                                                               (3.13) 

Definition 3.6: The total radial timing error energy for one track is defined as:   

                    
2

1 1
2

0 0 0

N N

i i i i
k k j

e k x k s j w k jα
− − ∞

= = =

 
= = − −   

 
∑ ∑ ∑( ) ( ) ( ) ( )                                                                      (3.14) 

   FXLMS algorithm is a method that ensures the energies 2
i ik kβ = ε( ) ( )  and 

1
2

0

N

i i
k

e kα
−

=

= ∑ ( )  to be minimum 

by adjusting the filter coefficients ( )iw k  adaptively. Therefore, the design problem is equivalent to two 

minimization problems. 

(1) Minimize the circumferential timing error energy for one sector 2
i ik kβ = ε( ) ( ) : 

It is considered that the filter coefficient ( )iw k  is repeatedly corrected in order to minimize the square 

error 2
i ik kβ = ε( ) ( ) . The adjustment of ( )iw k  is based on the gradient of i kβ ( )  with respect to ( )iw k . For 

this purpose, we differentiate i kβ ( )  with respect to the filter coefficient ( )iw k . Noting Equation (3.13), the 

following equation is obtained. 
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                         ( )( ) 2 ( ) (0) 2 ( ) (0)
( )

i
ii i

i

k k s k r
w k
β ε ε∂

= − = − ⋅
∂

                                                                                (3.15) 

where we have noted Equation (3.10). 

By using LMS algorithm, the update equation for ( )iw k  at the thk  sector is expressed as, 

                         1
1 0l l l

ii i iw k w k k r+ = + µ ε( ) ( ) ( ) ( )                                                                                        (3.16) 

where 1µ  is the step size parameter; 1 2l L= , ,...,  denotes the thl  iteration for updating the filter coefficient 

( )iw k  and L  is the number of iterations to be decided by the designer. Equation (3.16) means that the filter 

coefficients ( )iw k  is updated in one track (i.e., for 0,1,..., 1k N= − ) L  times before going to next track. 

(2) Minimize the total radial timing error energy along one track 
1

2

0

N

i i
k

e kα
−

=

= ∑ ( ) : 

In this minimization problem, the filter coefficient vector [ ](0)   (1)    ( 1) T
i i i iw w w w N= − (i.e., the filter 

coefficients in one track) is updated for next track minimize the error energy
1

2

0

N

i i
k

e kα
−

=

= ∑ ( ) . By 

differentiating both sides in Equation (3.14) partially with respect to ( )iw n  ( 0,1,..., 1n N= − ), we have the 

following equation. 

                            
( )

1

0 0 0

1

0

2

2

N
i

i i
k j ji

N

i i
k

k x k s j w k j s k n
w n

e k r k n

− ∞ ∞

= = =

−

=

   ∂α
= − − − −   ∂    

= − −

∑ ∑ ∑

∑

( )
( ) ( ) ( ) ( )

( )

         ( ) ( )

                                             (3.17) 

where we have noted Equation (3.10). 

By using LMS algorithm, the update equation for ( )iw k  is expressed as, 

                            
1

1 2
0

N

i i i i
n

w k w k e k r k n
−

+
=

 
= + µ  

 
∑( ) ( ) ( ) ( - )                                                                         (3.18) 

where 2µ  is the step size parameter. After 1iw k s+ ( ) '  are obtained, the head starts to write the timing marks 

on the ( 1)thi +  track. Then, the sectors in the ( 1)thi +  track iteratively update 1
l

iw k+
 ( )  L  times by using the 

update algorithm in Equation (3.16), and so on. 
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Remark: Minimization of 2
i ik kβ = ε( ) ( )  is equivalent to minimizing the closure error in one track; and 

minimization of 
1

2

0

N

i i
k

e kα
−

=

= ∑ ( )  is to attenuate the timing error propagation.   

   By combining equations (3.16) and (3.18), the AFC with FXLMS algorithm for updating the filter 

coefficients on the whole disk surfaceis described by the following equations: 

                        

1

1

1

0
l l l

ii i i

i i

w k w k k r

w k w k

+ = + µ ε

 =with I.C.:

( ) ( ) ( ) ( )

    ( ) ( )
                                                                                      (3.19a) 

                        
1

1 2
0

NL L
ii i i

n
w k w k e k r k n

−

+
=

 
= + µ  

 
∑( ) ( ) ( ) ( - )                                                                      (3.19b) 

for 1 2 0 1 1 1 2l L k N i= = − =, ,..., ;    , ,..., ;  , ,... . 

Remark: Using the above equations, we have the filter coefficient ( )iw k  for each servo sector which is an 

optimal value to ensure minimum closure error and minimum timing error propagation. 

 

3.4 Simulation Results 

In the numerical simulation study, the mechanical jitter ( )id k  and the noise jitter ( )in k  are taken into 

consideration, as shown in Figure 3.11.  

1( )i k+φ( )i kφ

-

+ ( )P z
PLL  open loop

( )ie k ( )i kφ
- +

( )in k

+

( )id k

 

Figure 3.11 Timing Control Loop with Jitters 

Figure 3.12 shows the frequency response of PLL open loop ( )P z  used in the simulations.  
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Figure 3.12 Frequency Response of PLL Open Loop ( )P z  

Figure 3.13 compares the frequency responses of the adaptive filter ( )W z  in the 1st, the 20th and the 800th 

tracks. To show the feasibility of the proposed control method, the ILC structure presented in section 2.2 was 

also designed for the timing control loop and its results are compared with the AFC method. Figure 3.14 

shows the comparison of the profile of  ( )i kφ  in the 1000th track. We can see that with the proposed control 

scheme, the write head reached a much smaller phase than the phase attained by the ILC method and the 

phase of the seed track (i.e., 0i = ). The timing jitter in the proposed control scheme is 0.003 sT  while that in 

ILC scheme is 1.277 sT . Both of them are comparable to that in the seed track (1.512 sT ).  

                                   

Figure 3.13 Frequency Responses of Adaptive Filter ( )W z  in Different Tracks 
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Figure 3.14 Comparison of Phase Profile  ( )i kφ  

The profiles of circumferential timing error ε  and radial timing error e  are compared in Figure 3.15 and 

Figure 3.16.  Again, it is apparent that the proposed control approach attains a smaller circumferential timing 

error ( 0.031 sT ) and a smoother radial timing error ( 0.282 sT ) which compare to ILC results of 0.25 sT  

circumferential timing error and 0.298 sT  radial timing error. 

                            

Figure 3.15 Comparison of Circumferential Timing Error iε  
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Figure 3.16 Comparison of Radial Timing Error ie  

 

4 CONCLUSIONS AND CHALLENGES 

4.1 Conclusions 

The control issues and objectives in SSW servo system have been presented in this report. Effective control 

schemes were designed for both position control loop and timing control loop.  

   In the position control loop, two control approaches were proposed: ILC and 2-D control. In ILC control 

structure, an external correction signal was designed by learning the previous-track errors. The conditions for 

asymptotic convergence and monotonic convergence were derived. An 1L  optimal control problem was 

formulated for designing the learning filter. SSW process is then modeled as a 2-D Roesser Model. A 2-D 

control structure is proposed and designed. The stability and convergence of the corresponding SSW in 2-D 

model are analyzed and proved. It has been shown that the proposed 2-D control scheme is not only able to 

guarantee the stability along both the tangential direction and radial direction, but also learn the previous PES 

information to mitigate the Radial Error Propagation. Simulation results verified that the proposed control 

system achieves good performance and assures the quality of SSW process. 
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   In the timing control loop, an AFC scheme was proposed to estimate the head phase signal and 

circumferential timing error. Both the radial timing error information and the circumferential timing error 

information are used for designing the adaptive filter, which was used in the FXLMS algorithm to ensure 

minimum closure error in each track and minimum track-to-track timing error propagation. The simulation 

results showed the effectiveness of the proposed approach.  

 

4.2 Future Challenges  

The major challenge for future research is to design effective control algorithms for the SSW process which 

refers to the prewritten spiral reference. In the spiral SSW process, the quality of SSW is dependant on the 

accuracy of the spirals. When the spirals are written, due to thermal expansion of the disks and Head Stack 

Assembly (HSA), some speed errors and positions errors occur in the spirals.  

A. Repeatable Phase Error 

When the spirals are written, some slow drifts of the spiral start location occur due to thermal expansion, and 

consequently results in repeatable phase error when the final product servo pattern is written, as shown by the 

dashed lines in Figure 4.1. Hence, in spiral SSW, we need to contain repeatable phase error and prevent its 

propagation along radial direction to ensure the performance of SSW process. 
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OD Time

data track 
center
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Ideal spiral trajectories
Spiral trajectories with drifts

 

Figure 4.1 Drifts of Spirals 
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B. Speed Errors in the Spirals  

During spiral writing, the external write head is expected to be moved in the radial direction at a constant 

speed. As illustrated in Figure 4.2, if the speed is faster than the desired constant speed (see the dashed curve), 

the density of product data tracks will be smaller than the desired track density during SSW (see the dashed 

line). On the other hand, if the speed is slower (see the dotted curve), it will deteriorate AC track squeeze 

while the product data track density increases (see the dotted line). Therefore, there is a need to optimize the 

product data track density to compensate for the spiral density variations due to the speed error during spiral 

writing. Furthermore, in order to improve the AC track squeeze, effective algorithms for generating PES are 

necessary. 

Time
OD

ID

Desired data 
track center

 

Figure 4.2 Speed Errors in the Spirals 
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