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Abstract

In this paper, we present a new algorithm for solving the LQG control problem with variance constraints

which utilizes derivative information about the relevantH2 costs to achieve quasi-Newton convergence. Using

a lifting procedure, this algorithm is then generalized to work with linear periodically time-varying systems.

This algorithm is then applied to the design of controllers for hard disk drives in order to assess the limits of

performance of a particular setup. It is demonstrated that just by utilizing multirate sampling and actuation

characteristics (i.e. without changing the hardware), the performance of this particular setup can improved

by more than 39%.



INTRODUCTION

In the field of optimal control, control design problems are typically formulated as the minimization of a

scalar cost function involving the closed loop system. However, in real-world applications, it is often difficult

to capture the tradeoffs inherent in controller design with a scalar cost function; the controller design process

is inherently multiobjective in nature. One example of such a control design problem is the minimization

of the variance of one closed loop signal subject to variance constraints on several other closed loop signals.

This problem is known as the LQG control problem with variance constraints. In addition to being a useful

tool for practical controller design, it is also useful as a mechatronic design tool to determine the limitations

of performance of a given system. This can be used, for example, to compare several different hardware

setups by determining the best possible closed loop performance that can be achieved for each one [11].

The current approaches to solving this problem fall into two categories: ones which invoke the Lyapunov

shaping paradigm to transform the problem into an linear matrix inequality (LMI) optimization problem [13]

and ones which use Lagrange multipliers to solve the optimality conditions [9, 16, 3]. In the first approach,

it is well-known that the time required to find the optimal controller scales very poorly with increasing plant

dimension. This makes the latter approach more attractive from the standpoint of computational efficiency.

However, the approaches using the latter method only use heuristics to update the Lagrange multipliers.

In this paper, we will present a new methodology for solving this control problem which uses derivative

information to update the Lagrange multipliers and achieve quasi-Newton convergence.

To demonstrate the effectiveness of this methodology, we then consider track-following control of hard

disk drives (HDDs). For several decades, the areal storage density of hard disk drives (HDDs) has been

doubling roughly every 18 months, as predicted by Kryder’s law. As the storage density is pushed higher,

the concentric tracks on the disk which contain data must be pushed closer together, which necessitates more

accurate control of the read/write head.

Currently, it is a goal of the magnetic recording industry to achieve an areal storage density of 1

terabit/in2, which is expected to require the 3σ value of the closed loop position error signal (PES) to

be less than 4.6nm. To help achieve this goal, the use of a secondary actuator has been proposed to give

increased precision in read/write head positioning. In this paper we use a microactuator (MA) which directly

actuates the head/slider assembly with respect to the suspension tip and generates MA displacement (RPES)

measurements [12]. With this in mind, we would like to find controllers which minimize the PES variance

subject to keeping the variance of each control input smaller than prescribed bounds. In this paper, we use

the proposed control design methodology to evaluate the limits of performance of a particular hard drive

under various sampling and actuation conditions. We then compare the results to ones achieved by solving
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the equivalent LMI optimization problem and provide evidence that the proposed approach is superior in a

number of ways, including numerical accuracy and computational efficiency.

CONTROL DESIGN

Preliminaries

To begin, we denote the linear time-invariant (LTI) system we want to control as G. For a given controller,

K, we will denote the closed-loop system as Gcl(K). With this in mind, the control problem we will be

considering is one of the form

min
K
‖L1Gcl(K)‖2

subject to: ‖LiGcl(K)‖2 ≤ γi, i = 2, . . . , n

(1)

where the γi’s and Li’s are respectively scalars and matrices chosen by the control designer and the norm

being considered is the H2 norm. Without loss of generality, we assume that the nullity of [LT
1 · · · LT

n ]T is

zero. An equivalent (unconstrained) optimization problem, called the primal optimization problem, is

min
K

max
λ≥0

L(K,λ)

L(K, λ) := J1 +
n∑

i=2

λi (Ji − γi) , Ji(K) := ‖LiGcl(K)‖2

where λ is the vector containing the λi’s and inequalities are element-wise. By definition, L(K,λ) is the

Lagrangian of Eq. (1). Any controller which satisfies the constraints in Eq. (1) will be called primal feasible.

Note that for any primal feasible controller, L(K, 0) is an upper bound on the optimal cost in Eq. (1).

A related optimization problem, called the dual optimization problem, is

max
λ≥0

g(λ)

g(λ) := min
K

L(K, λ).

By the properties of the dual optimization problem, g(λ) is a lower bound for the optimal cost in Eq. (1).

A controller, K, will be called dual feasible if ∃λ such that g(λ) = L(K, λ). We will call (K,λ) which satisfy

this relationship a dual feasible pair.

A controller will be called primal-dual feasible if it is both primal and dual feasible. We will call (K,λ)

a primal-dual feasible pair if it is a dual feasible pair and K is primal feasible. We now define for any dual
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feasible pair

ν(K,λ) := L(K, 0)− L(K,λ).

In the case that (K, λ) is a primal-dual feasible pair, ν is the duality gap; i.e. it represents the difference

between the upper and lower bounds for the optimal cost in Eq. (1). The important property here is that

∀ε > 0, there exists a primal-dual feasible pair such that the duality gap is less than ε. This fact can be

seen, for instance, by examining the central path of the optimization problem in Eq. (1) and the associated

dual variables [2]. Thus, we can justify reducing the set of controllers over which we are optimizing to ones

which are primal-dual feasible.

Dual Feasible Controllers

In this section, we show how to construct a dual feasible pair given a positive value of λ. To begin, we define

W :=
[
LT

1

√
λ2L

T
2 · · ·

√
λnLT

n

]T

and use the properties of H2 norms to express

g(λ) = min
K

{
‖L1Gcl(K)‖2 +

n∑

i=2

λi

(
‖LiGcl(K)‖2 − γi

)}

= −
n∑

i=2

λiγi + min
K
‖WGcl(K)‖2

Thus, we can see that finding g(λ) and the associated minimizing controller is equivalent to solving an H2

optimal control problem.

Now we let G have the realization




xk+1

zk

yk




=




A B1 B2

C1 D11 D12

C2 D21 0







xk

wk

uk




(2)

where z, y, u, are w are respectively the vectors of performance outputs, measurements, control inputs, and

disturbances. The subscript k refers to the time index. The following assumptions are made about this

model:

• DT
12D12 and D21D

T
21 are nonsingular

• [A,B1] and [A,B2] are stabilizable

3



• [A,C1] and [A,C2] are detectable

When λ > 0, there exists a unique optimal H2 controller for this system, which we will denote as K∗(λ).

This controller can be decomposed into a Kalman filter and an optimal full information (FI) controller.

Defining

QKF := B1B
T
1 , RKF := D21D

T
21, SKF := B1D

T
21

the Kalman filter can be written




x̂o
k+1

x̂k

ŵk




=




A + LC2 −L B2

I + FxC2 −Fx 0

FwC2 −Fw 0







x̂o
k

yk

uk




where

M = AMAT + QKF −
(
AMCT

2 + SKF

) (
C2MCT

2 + RKF

)−1 (
C2MAT + ST

KF

)
(3a)

L = − (
AMCT

2 + SKF

) (
C2MCT

2 + RKF

)−1
(3b)

Fx = −MCT
2

(
C2MCT

2 + RKF

)−1
(3c)

Fw = −DT
21

(
C2MCT

2 + RKF

)−1
. (3d)

Here, x̂o
k and x̂k respectively represent the a priori and a posteriori state estimates and ŵk represents the a

posteriori disturbance estimate. We now turn our attention to the FI controller. Defining

QFI := CT
1 WT WC1, RFI := DT

12W
T WD12

SFI := CT
1 WT WD12, SKw := DT

11W
T WD12

the FI controller can be written

uk =
[
Kx Kw

]



x̂k

ŵk



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where

P = AT PA + QFI −
(
AT PB2 + SFI

) (
BT

2 PB2 + RFI

)−1 (
BT

2 PA + ST
FI

)
(4a)

Kx = − (
BT

2 PB2 + RFI

)−1 (
BT

2 PA + ST
FI

)
(4b)

Kw = − (
BT

2 PB2 + RFI

)−1 (
BT

2 PB1 + ST
Kw

)
. (4c)

Note that the assumption on the Li’s and the nonsingularity of DT
12D12 guarantees that WT W is nonsingular,

which in turn guarantees the existence of the FI controller whenever λ > 0. Unlike the Kalman filter, the

FI controller is a function of W . This fact will become important in the next subsection. Combining these

two results, a realization of K∗(λ) is given by




xo
k+1

uk


 =




A + LC2 + B2Kx + B2HC2 −L−B2H

Kx + HC2 −H







xo
k

yk


 (5)

H := KxFx + KwFw. (6)

Now that we have an expression for K∗(λ), we need to determine a convenient way of finding the costs

involved in Eq. (1). To begin, we define x̃k := xk − x̂k and express the closed loop system as




x̃o
k+1

x̂o
k+1

zk




=




A11 0 B1 + LD21

A21 A22 −LD21 −B2HD21

C1 C2 D







x̃o
k

x̂o
k

wk




A11 := A + LC2, C1 := C1 −D12HC2,

A21 := −LC2 −B2HC2, C2 := C1 + D12Kx,

A22 := A + B2Kx, D := D11 −D12HD21.

(7)

It is straightforward to verify that the controllability gramian for this system, Xc, is given by

Xc =




M 0

0 Y


 (8a)

Y = A22Y A
T

22 + (L + B2H)
(
C2MCT

2 + RKF

)
(L + B2H)T

. (8b)
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Thus, for this controller,

Ji (K∗(λ)) = tr
{

Li

[
C1MC

T

1 + C2Y C
T

2 + DD
T
]
LT

i

}
. (9)

Cost and Controller Derivatives

In this section, we form a first-order model for the costs in Eq. (9) as λ varies. Since the Kalman filter does

not change as λ (i.e. W ) varies, we just have to worry about how the FI controller changes as we change λ.

First, we look at the derivatives of Eq. (4a). For convenience, we now define

Πi := LT
i Li

Φ := BT
2 PB2 + RFI .

(10)

Since the stabilizing solution of a algebraic Riccati equation is analytic [5], we can implicitly differentiate

both sides of Eq. (4a) with respect to λi to get, after some simplification,

P [i] = A
T

22P
[i]A22 + C

T

2 ΠiC2 (11)

where the superscript [i] denotes the partial derivative with respect to λi. Since the closed loop system in Eq.

(7) is stable, A22 is Schur, which in turn implies that this Lyapunov equation always has a unique solution

for P [i]. Once we have this, we can express the derivatives of Eqs. (4b), (4c), and (6) respectively as

K [i]
x = −Φ−1

(
BT

2 P [i]A22 + DT
12ΠiC2

)

K [i]
w = −Φ−1

(
BT

2 P [i] (B1 + B2Kw) + DT
12Πi (D11 + D12Kw)

)

H [i] = K [i]
x Fx + K [i]

w Fw.

(12)

With this in place, we can now express the derivatives of the matrices in Eq. (7). In particular

A
[i]

22 = B2K
[i]
x , C

[i]

1 = −D12H
[i]C2

D
[i]

= −D12H
[i]D21, C

[i]

2 = D12K
[i]
x .

(13)
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Using these expressions, the derivative of Eq. (8b) is given by

Y [i] = A22Y
[i]A

T

22 +
(

A
[i]

22Y A
T

22 + A22Y
(
A

[i]

22

)T

+ B2H
[i] (C2MC2 + RKF ) (L + B2H)T

+(L + B2H) (C2MC2 + RKF )
(
B2H [i]

)T
)

. (14)

Again, because A22 is Schur, this Lyapunov equation for Y [i] is always guaranteed to have a unique solution.

Finally, the derivative of Eq. (9) is given by

∂Jj

∂λi
= tr

{
Lj

(
C

[i]

1 MC
T

1 + C1M
(
C

[i]

1

)T

+ C
[i]

2 Y C
T

2

+C2Y
[i]C

T

2 + C2Y
(
C

[i]

2

)T

+ D
[i]

D
T

+ D
(
D

[i]
)T

)
LT

j

}
(15)

Thus, assuming that we have already solved Eqs. (4a)-(4c), we can find the derivative of J1, . . . Jn with

respect to λi using the following methodology:

1. Compute P [i] by solving the Lyapunov equation, Eq. (11).

2. Compute K
[i]
x , K

[i]
w , and H [i] using Eq. (12).

3. Compute A
[i]

22, C
[i]

1 , C
[i]

2 and D
[i]

using Eq. (13).

4. Compute Y [i] by solving the Lyapunov equation, Eq. (14).

5. Compute (∂Jj)/(∂λi) using Eq. (15) for j = 1, . . . , n.

The computation time in this algorithm will be dominated by computing the two Lyapunov equations

solutions. Thus, we can see that computing the Jacobian of [J1 · · · Jn]T will be dominated by computing

the solution of 2n− 2 Lyapunov equations.

Quasi-Newton Control Design

With the results of the previous section, we can formulate a quasi-Newton algorithm for performing LQG

control design with variance constraints. First, we restrict the set of controllers to ones which are primal-dual

feasible and recognize that since a primal-dual feasible controller is uniquely determined by λ, we can treat

the controller as a function of λ, which leaves the vector λ as the only optimization parameter. With this in
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mind, an equivalent formulation of Eq. (1) is

inf
λ

ν2(K∗(λ), λ)

subject to:





−λi < 0

Ji(K∗(λ), λ)− γi ≤ 0
, i = 2, . . . , n.

(16)

Here, we have used the fact that ν can be made arbitrarily small via choice of positive λ. Thus, the optimal

cost of this optimization problem is always zero. Note that since we have restricted λi to be strictly positive,

the optimal cost might only be achieved in the limit.

Given positive values of λi, we can evaluate the relevant expressions in Eq. 16 using the results of Section

. Also, given the results of Section and noting that

∂ν2(K∗(λ), λ)
∂λi

= 2ν

(
γi − Ji −

n∑

k=2

λk
∂Jk

∂λi

)

we can evaluate the derivatives of all of the relevant expressions in Eq. (16) with respect to λi. Thus, using

these results, we can use the fmincon command in the Optimization Toolbox for MATLAB to solve this

problem. This approach gives quasi-Newton convergence without requiring computation of the Hessian of

any expressions with respect to λ.

Although the optimization problem in Eq. (16) is a nonlinear, nonconvex optimization problem, this

approach tends to work well because it balances decreasing the cost in the primal optimization problem and

increasing the lower bound on the primal optimization problem. In addition, we get a “free” certificate of

optimality when we solve the problem this way, i.e. if ε is small, we know that we are close to the optimal

solution.

GENERALIZATION TO PERIODIC SYSTEMS

In this section, we will consider the control of linear periodically time-varying (LPTV) systems, i.e. ones of

which have a periodic realization given by




xk+1

zk

yk




=




A(k) B1(k) B2(k)

C1(k) D11(k) D12(k)

C2(k) D21(k) 0







xk

wk

uk




(17)
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where the state space entries are periodic with period N . Since we are no longer dealing with LTI systems, we

need to use an appropriate generalization of the H2 norm. In the time domain, the H2 norm of a system can

be interpreted as
√

tr Λ where Λ is the covariance of the system when driven by zero-mean white Gaussian

noise with unit covariance. However, since the second-order statistics of the system output vary with time

for a LPTV system, we are interested in the root-mean-square (RMS) value of
√

tr Λ, which corresponds to

the `2 semi-norm definition

∥∥HLPTV
∥∥2

`2sn
:= lim sup

l→∞

1
2l + 1

l∑

k=−l

tr E
[
zd
k

(
zd
k

)T
]
.

Thus, we are considering a control design problem of the form

min
K

∥∥L1Gcl(K)
∥∥2

`2sn

subject to:
∥∥LiGcl(K)

∥∥2

`2sn
≤ γi, i = 2, . . . , n

(18)

where Gcl(K) is, as before, the closed loop system for a particular controller, K.

The approach that we will take here is to use a lifting procedure [6] to convert the `2 semi-norm of a

system to the H2 norm of a related system. Suppose that a given periodic system, GLPTV has the realization

GLPTV ∼



A(k) B(k)

C(k) D(k)


 .

Now define the LTI system, GLTI by the realization

GLTI ∼




ZT A ZT B

C D




A := blkdiag {A(1), . . . ,A(N)}

B := blkdiag {B(1), . . . ,B(N)}

C := blkdiag {C(1), . . . , C(N)}

D := blkdiag {D(1), . . . ,D(N)}

Z :=




0 Inx 0
. . . . . .

. . . Inx

Inx 0



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where nx is the number of states in GLPTV , Inx
is the nx × nx identity matrix, and ‘blkdiag’ represents the

operator which forms a block diagonal matrix whose blocks are respectively given by its arguments. Note

that Z is an orthogonal matrix. The lifting procedure states that uniform exponential stability of GLPTV is

equivalent to stability of GLTI and

‖GLPTV ‖2`2sn =
1
N
‖GLTI‖2 .

(This is proved, for example, in [4]). Thus, we can see that

∥∥LiGLPTV

∥∥2

`2sn
= ‖LiGLTI‖2 (19)

Li :=
1√
N

IN ⊗ Li (20)

where ⊗ represents the Kronecker product.

With this in mind, we now consider the controller design for the LTI system G, which has the realization

G ∼




ZT A ZT B1 ZT B2

C1 D11 D12

C2 D21 0




where A, B1, B2, C1, C2, D12, and D21 are the lifted (i.e. block diagonal) counterparts of the state space

entries of Eq. (17). To design a controller for this plant, we just apply the methods of Section to the plant

G with the choice of Li’s defined in Eq. (20).

Now we examine the structure of the optimal controller for G. It can be shown [4] that the solution of

Eq. (3a) must have the same block diagonal pattern as A. This implies that M , L, Fx, and Fw respectively

have the form

M = blkdiag {M(1), . . . ,M(N)}

ZL = blkdiag {L(1), . . . ,L(N)}

Fx = blkdiag {Fx(1), . . . ,Fx(N)}

Fw = blkdiag {Fw(1), . . . ,Fw(N)} .
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Note that we have used the orthogonality of Z. Similarly, P , Kx, Kw, and Y respectively have the form

P = blkdiag {P(1), . . . ,P(N)}

Kx = blkdiag {Kx(1), . . . ,Kx(N)}

Kw = blkdiag {Kw(1), . . . ,Kw(N)}

Y = blkdiag {Y(1), . . . ,Y(N)} .

Since these matrices are all compatibly block diagonal, a realization for the optimal LPTV controller is given

by




xo
k+1

uk


 =




(A11 + B2Kx + B2HC2

) ∣∣
k

(−L− B2H)
∣∣
k

(Kx +HC2)
∣∣
k

(−H)
∣∣
k







xo
k

yk




H(k) := Kx(k)Fx(k) +Kw(k)Fw(k)

A11(k) := A(k) + L(k)C2(k).

In the MATLAB implementations of the solvers for algebraic Riccati equations and Lyapunov equations,

there is no way to specify the sparsity structure of the solution. This means that although these solvers will

tend to give accurate results, they will not, in general, have the desired sparsity structure. To deal with this,

we use a three step process. First, we solve the equation using the built-in solver. Then, impose the block

diagonality constraint, i.e. we set all of the off-block-diagonal entries to zero. Finally, we use an iterative

refinement process (such as the one in [1]) to recover the accuracy lost when imposing the block diagonality

constraint. This process is applied when solving Eqs. (3a), (4a), (8b), (11), and (14).

CONTROL OF HARD DRIVES

Figure 1 shows the structure of a hard disk drive with dual-stage actuation. The model of our system is

given by 


z(s)

y(s)


 = Ggen(s)




w(s)

u(s)


 (21)
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VCM

Pivot Arm Suspension microactuator

y
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u
v

u
m

w
a

Figure 1: SCHEMATIC OF THE DUAL-STAGE HARD DRIVE

Table 1: HDD MODEL PARAMETERS
mode i a1,i a2,i c1,i

1 -377 −1.42× 105 1
2 -1390 −2.16× 109 -3.177
3 -2020 −4.52× 109 -4.246
4 -5650 −2× 108 0

mode i Bi

1
[
0 −3750 0
0 −1.99× 109 0

]

2
[
0 −5559 0
0 −1.59× 108 0

]

3
[
3.48× 104 −1817 0
1.07× 109 −5.59× 107 0

]

4
[−3.48× 104 1.11× 104 0
−1.2× 109 2.25× 109 −4× 107

]

where

z :=




yh − r

yh − ys

uv

um




w :=




wr

wa

nPES

nRPES




y :=




yh − r + nPES

yh − ys + nRPES


 u :=




uv

um







yh(s)

ys(s)


 :=

4∑

i=1




1 0

c1,i 0





sI −




a1,i 1

a2,i 0







−1

Bi




wa(s)

uv(s)

um(s)




r(s) :=
(

2.8× 109

s2 + 800s + 2.5× 105
+

1.2× 105

s + 1.9× 103

)
wr(s)

and the model parameters are summarized in Tab. 1. In this model, the elements of w represent the

12
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Figure 2: HDD BODE MAGNITUDE PLOTS

disturbances to our system (zero-mean white Gaussian noise with unit covariance); wr, wa, nPES , and

nRPES respectively represent disturbances on the head position (see [7]), airflow disturbance, PES sensor

noise, and RPES sensor noise. The elements of u represent the control inputs; uv and um respectively

represent the control inputs into the voice coil motor (V ) and the MA (V ). The elements of z and y

respectively represent the signals we would like to keep small in closed loop and our measurements; yh and

ys respectively represent the head displacement relative to the center of the data track (nm) and the the

suspension tip displacement (nm). Note that the first two elements in y are respectively the PES and the

RPES. Figure 2 shows the relevant Bode magnitude plots.

In a physical hard drive, the PES is obtained by reading encoded position information on the servo track.

Since this information is fabricated directly onto the disk, the PES sampling rate cannot be changed. In this

paper, we assume that the fixed PES sampling rate is ω0 := 25kHz. However, unlike the PES, the rate of

the RPES measurements and control actuation is not fixed at this rate. In particular, we could sample and

actuate these signals at the rate Nω0, where N is a positive integer.

In this paper, we will consider designing controllers for N = 1, 2, 4. To begin, we first discretize the plant

using a zero-order hold at the sampling rate 100kHz, which results in the realization in Eq. (2). At this

point, we incorporate the multirate sampling and actuation characteristics of the hard drive, i.e. we impose

the constraints that the PES can only be measured once every 4 time steps, the RPES can only be measured

once every 4/N time steps, and the values of the control input can only be changed once every 4/N time

steps.

The typical approach to enforcing the sampling and actuation constraints [10] will not work here because

13



it would result in singular D21D
T
21 and DT

12D12, which violates the conditions stated at the beginning of

the paper. To deal with the sampling constraints in this control design methodology, we replace entries of

yk with “useless information” from the standpoint of the Kalman filter whenever they are not measured.

Thus, if we define the diagonal periodically time-varying matrix Ωy(k) so that its ith diagonal element is 1

when the ith element of yk is being sampled and zero otherwise, we model this constraint by replacing the

controller input with the signal yk defined by

yk = Ωy(k)yk + (I − Ωy(k)) wk

where wk is fictitious noise which is uncorrelated with wk. To deal with the actuation constraints, we first

define the diagonal periodically time-varying matrix Ωu(k) so that its ith diagonal element is 1 when the

value of the ith element of uk is being changed and zero otherwise. With this, the control input to the plant

can be written

uk = Ωu(k)uk + (I − Ωu(k)) uk−1

where uk is the controller output. Now, if we define new state, performance, disturbance, measurement, and

control vectors respectivley as

x′k :=




xk

uk−1


 , z′k :=




(I − Ωu(k)) uk

zk


 , w′k :=




wk

wk


 ,

y′k := yk, u′k := uk

we can form a LPTV realization of our plant model (with incorporated multirate sampling and actuation

constraints) which is suitable for controller design by the methods in sections and . In this case, it is

straightforward to show from the definitions of L(k), Fx(k), Fw(k), and Kw(k) that L(k)(I − Ωy(k)) = 0,

Fx(k)(I−Ωy(k)) = 0, and Fw(k)(I−Ωy(k)) = 0. Therefore, wk has no effect on the closed loop performance

of the system for any dual feasible controller, which in turn means that this approach to modeling multirate

sampling constraints is equivalent to the typical approach. If we choose our Li’s to have the form

L1 = blkdiag {W ′, L′1}

Li =
[
0 L′i

]
, i = 2, . . . , n

where W ′ is nonsingular, it is straightforward to show that (I−Ωu(k))Kx(k) = 0 and (I−Ωu(k))Kw(k) = 0.

This means that the unused controller output, (I − Ωu(k))uk, is forced to be zero. Moreover, the values of

14



Table 2: RMS 3σ VALUES OF CLOSED LOOP SIGNALS, RICCATI EQUATION ALGORITHM
N PES (nm) RPES (nm) uv (V ) um (V )
1 14.560 426.050 5.000 11.374
2 10.253 64.905 4.975 9.324
4 8.824 49.956 4.218 19.996

Ωu(k)uk do not change as W ′ is changed, which implies that the Ji’s do not change. Thus, by adding the

extra disturbances and performance outputs into our system model, we have modified the typical approach

to incorporating multirate sampling and actuation into control design so that it works for this particular

design methodology.

In our system, we would like to find a control scheme which minimizes the RMS 3σ value of the PES. Due

to hardware limitations, we would like to keep the RMS 3σ values of uv and um respectively smaller than 5V

and 20V so that the actuators are not saturated. It should be noted that the control design being considered

here is not practical for implementation due to robustness issues; we are instead using these control designs

to determine the limits of PES performance for several choices of sampling and actuation rates. To represent

this control design problem in the form of Eq. (18), we choose

L1 = blkdiag
{

I2,

[
1 0 0 0

]}
, L2 =

[
0 0 0 0 1 0

]
,

L3 =
[
0 0 0 0 0 1

]
, γ2 = (5/3)2 , γ3 = (20/3)2 .

With these constraints, we designed controllers for N = 1, 2, 4. The RMS 3σ values of the relevant signals

are summarized in Tab. 2. For each case, the gap between the achieved RMS 3σ PES value and the lower

bound on its optimal value was less than 5 × 10−4nm. This means that the algorithm didn’t get stuck in

local minima for these problems and achieved a high degree of numerical accuracy. Thus, by looking at these

results, we know that we can obtain more than a 39% improvement in PES value just by sampling the RPES

and actuating at a higher rate. Also note that the closed loop RPES, even though it is not a part of the cost

function or constraints, decreases dramatically as N is increased.

For comparison, we also designed a controller for N = 2 via LMI optimization [4] using several optimiza-

tion packages. When using either SeDuMi [14] or SDPT3 [15] with YALMIP [8] as an interface, the resulting

controller gave RMS 3σ PES values of about 103nm. This highlights the fact that it is difficult in general

to achieve a high degree of numerical accuracy using LMI optimization. When the function mincx in the

Robust Control Toolbox was used, the LMI optimization gave the closed loop results summarized in Tab. 3.

Although the resulting controller has comparable PES performance to the one designed using the approach

presented in this paper, the values of the other relevant signals (i.e. RPES, uv, and um) are larger than the
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Table 3: RMS 3σ VALUES OF CLOSED LOOP SIGNALS, LMI ALGORITHM WITH N = 2
PES (nm) RPES (nm) uv (V ) um (V )

10.507 661.435 5.053 18.140

ones resulting from the Riccati equation approach. This highlights the fact that, unlike controllers designed

using the Riccati equation approach, controllers designed using LMI optimization are not Pareto optimal, i.e.

it is possible to decrease the value of one of the Ji’s without increasing the value of any of the remaining Ji’s.

Also, the value of the RMS 3σ value of uv violates its constraint. The reason for this is that small numerical

inaccuracies during the controller reconstruction process caused the state space entries of the controller to

have small numerical errors, which in turn caused a degradation of closed loop performance. This highlights

the fact that the approach in this paper is more favorable from the standpoint of numerical stability. The

biggest difference between these two algorithms, though, is the computation time. On a Lenovo Thinkpad

with a 2.2GHz Intel Core 2 Duo CPU and 2Gb of RAM, the approach presented in this paper took less than

4.2 seconds of computation, using SeDeMi took more than 80 seconds, using SDPT3 took more than 110

seconds, and using mincx took over 16.5 hours.

CONCLUSIONS

In this paper, we presented a new algorithm for constrained LQG controller design. We then used this algo-

rithm as a mechatronic design tool to demonstrate that it is possible to improve its closed loop performance

by more than 39% just by using multirate sampling and actuation. Also, it was shown through this example

that the proposed algorithm has better properties than the LMI optimization in terms of numerical accuracy,

numerical stability, the amount of required computation, and Pareto optimality.
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