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Abstract

This paper presents a new control synthesis approach for dual-stage track-following servo systems with

multi-rate sensing and actuation. For these systems, the robust track-following problem can be formulated

as a periodic time-varying guaranteed cost control problem. To reduce the conservatism of the guaranteed

cost control framework, uncertainty scalings such as those used in the D-K iteration heuristic for µ-synthesis

are introduced. Although this results in a non-convex optimization problem, it is shown that it lends itself

to a methodology similar to D-K iteration. Using this methodology, a controller is designed for a set of hard

disk drives which minimizes the worst-case `2 semi-norm performance of the system.



Introduction

For several decades now, the areal storage density of hard disk drives (HDDs) has been doubling roughly

every 18 months, as predicted by Kryder’s law. As the storage density is pushed higher, the concentric

tracks on the disk which contain data must be pushed closer together, which requires much more accurate

control of the read/write head. The current areal storage density of hard drives, as reported by [4], is 345

gigabits/in2.

The current goal of the magnetic recording industry is to achieve an areal storage density of 1 terabit/in2.

It is expected that the track width required to achieve this data density is 46nm. This means that the 3σ

value of the closed loop position error signal (PES) should be less than 4.6nm to achieve this specification.

To help achieve this goal, the use of a secondary actuator has been proposed to give increased precision in

read/write head positioning. In this paper, as in [7], we use a microactuator (MA) which directly actuates the

head/slider assembly with respect to the suspension tip and generates measurements of the MA displacement

(RPES). This allows for the design of higher bandwidth controllers which give smaller PES magnitudes.

However, since there tend to be large variations in HDD dynamics due to variations in manufacture and

assembly, it is not enough to achieve this performance for a single plant; the controller must guarantee the

desired level of performance for a large set of HDDs. Thus, we are interested in finding a controller which

gives robust performance over a set of HDDs. One framework for solving this problem is guaranteed cost

control. This methodology is a multiobjective control design methodology whose objectives involve worst-

case quadratic costs over a modeled set of parametric uncertainty. Both the state feedback synthesis problem

and the output feedback synthesis problem can be solved using convex optimization involving linear matrix

inequalities (LMIs), as in [9] and [3], respectively. Like H∞ control, however, guaranteed cost control is

unable to take advantage of the uncertainty structure in the model. This motivates the usage of uncertainty

scalings, as are used in the D-K iteration heuristic for µ-synthesis.

This paper derives the relevant conditions for guaranteed cost control of HDDs with uncertainty scalings

and shows that this results in a non-convex controller optimization problem. However, the problem becomes

convex when the values of either of two sets of variables is fixed. Trivially, the problem becomes convex

when the uncertainty scalings are fixed. However, unlike D-K iteration, not all of the control parameters

need to be fixed in order to optimize the uncertainty scalings. Based on this, a control design methodology

similar to D-K iteration is presented and applied to the design of a robust HDD controller.

1



Guaranteed Cost Control

Preliminaries

Throughout this paper, we will be considering discrete time linear periodically time-varying (LPTV) systems

which admit a periodic time-varying state space realization.We will denote the state space realization of an

LPTV system, Hd, by

Hd ∼




Ad
k Bd

k

Cd
k Dd

k




where the subscript refers to the time index and it is assumed that all state space matrices are periodic with

period N , e.g. Ad
N+1 = Ad

1.

For linear time-invariant (LTI) systems, a commonly used measure of performance is the H2 norm. In

the time domain, if zLTI is the output of an LTI system HLTI , the H2 norm has the interpretation of

being the root-sum-square standard deviation of the elements of zLTI when HLTI is driven by zero-mean

white Gaussian noise with unit covariance. However, for an LPTV system Hd with output zd, the second-

order statistics of zd vary periodically with time. Thus, what we are interested in is the root-mean-square

value (over time) of the root-sum-square standard deviation of the elements of zd. This corresponds to the

definition of the `2 semi-norm given by

∥∥Hd
∥∥2

2
:= lim sup

l→∞

1
2l + 1

l∑

k=−l

tr E
[
zd
k

(
zd
k

)T
]
.

Thus, we are interested in finding an upper bound on the `2 semi-norm of a LPTV system. The following

lemma, which is proved, for example, in [2], gives a sharp upper bound on the `2 semi-norm of a LPTV

system.

Lemma 1. ‖Hd‖22 < γ ⇔ ∃Pk, Wk such that

γ >
1
N

N∑

k=1

tr Wk




Wk Cd
kPk Dd

k

• Pk 0

• • I



Â 0




Pk+1 Ad
kPk Bd

k

• Pk 0

• • I



Â 0
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for k = 1, . . . , N where bullets represent elements which follow from symmetry and PN+1 = P1.

With some manipulation, these matrix inequalities can be shown to be equivalent to those obtained using

a lifting procedure such as the one used by [6]. The big difference between these two methodologies is that

the matrices in the lifting approach are large and sparse whereas the ones here are dense and have low

dimension, i.e. they exploit the relevant sparsity structure. Thus, working with periodic systems will result

in more efficient optimization schemes.

Although this paper does not explicitly consider multiobjective control design, one of the goals is to

present a methodology which will trivially extend to that case. Thus, we would like to minimize the conser-

vatism of our analysis when performing multiobjective control design. For LTI systems, it was shown in [8]

that the use of an extended norm characterization using an instrumental variable reduces the conservatism

introduced in multiobjective controller design. Thus, in this paper we will be using the following lemma

which can be deduced from the previous one using the methodology in [8].

Lemma 2. ‖Hd‖22 < γ ⇔ ∃Pk, Gk,Wk such that

γ >
1
N

N∑

k=1

tr Wk (1a)




Wk Cd
kGk Dd

k

• Gk + GT
k − Pk 0

• • I



Â 0 (1b)




Pk+1 Ad
kGk Bd

k

• Gk + GT
k − Pk 0

• • I



Â 0 (1c)

for k = 1, . . . , N where PN+1 = P1.
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Analysis LMIs

In this section, we develop the necessary theory to derive an upper bound on the worst-case `2 semi-norm

over all modeled uncertainty. First we define the LPTV system

H∆ ∼




A∆
k B∆

k

C∆
k D∆

k


 :=




Ak + ΦAB
k E

11

k Bk + ΦAB
k E

12

k

Ck + ΦCD
k E

21

k Dk + ΦCD
k E

22

k




ΦAB
k := E

13

k ∆AB
k

(
I − E

14

k ∆AB
k

)−1

ΦCD
k := E

23

k ∆CD
k

(
I − E

24

k ∆CD
k

)−1

(2)

where Ak, Bk, Ck, Dk, E
ij

k are known matrices with period N , and the matrices ∆AB
k and ∆CD

k are unknown

real matrices (not necessarily periodic) with the form

∆AB
k ∈ ∆AB :=

{
diag

[
α1Im(1), . . . , α

qIm(q)

]
:
∣∣αi

∣∣ ≤ 1
}

∆CD
k ∈ ∆CD :=

{
diag

[
β1In(1), . . . , β

rIn(r)

]
:
∣∣βi

∣∣ ≤ 1
}

.

This form could be arrived at, for example, by expressing [A∆
k B∆

k ] as an LFT, expressing [C∆
k D∆

k ] as an

LFT, and then bringing the parametric uncertainty in both LFTs inside of their respective loops.

We now define the sets of matrices

SAB :=





diag[D1, . . . Dq] :
Di ∈ Rm(i)×m(i)

detDi 6= 0





SCD :=





diag[D1, . . . Dr] :
Di ∈ Rn(i)×n(i)

detDi 6= 0





and note that for each ∆AB
k ∈ ∆AB and ∆CD

k ∈ ∆CD

∆AB
k = SAB∆AB

k

(
SAB

)−1
, ∀SAB ∈ SAB

∆CD
k = SCD∆CD

k

(
SCD

)−1
, ∀SCD ∈ SCD

i.e. any matrix in these sets will commute with their respective uncertainty matrices.

Also, for each SAB ∈ SAB and SCD ∈ SCD, we define the sets of unstructured uncertainty

∆AB,u
(
SAB

)
:=

{
∆ :

∥∥∥
(
SAB

)−1
∆SAB

∥∥∥ ≤ 1
}

∆CD,u
(
SCD

)
:=

{
∆ :

∥∥∥
(
SCD

)−1
∆SCD

∥∥∥ ≤ 1
}
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where ‖∆‖ denotes the maximum singular value of ∆. Note that

∆AB ⊂ ∆AB,u
(
SAB

)
, ∀SAB ∈ SAB

∆CD ⊂ ∆CD,u
(
SCD

)
, ∀SCD ∈ SCD.

(3)

With this notation in place, we can now state and prove two lemmas which we will need to find an upper

bound on the guaranteed `2 semi-norm performance of an uncertain LPTV system.

Lemma 3. If E
23

k 6= 0 and Sk ∈ SCD, then the following conditions are equivalent:

1. ∃Pk, Gk,Wk such that




Wk C∆
k Gk D∆

k

• Gk + GT
k − Pk 0

• • I



Â 0, ∀∆CD

k ∈ ∆CD,u (Sk) (4)

2. ∃Pk, Gk,Wk, τ such that




τSkST
k 0 E

21

k Gk E
22

k τE
24

k SkST
k

• Wk CkGk Dk τE
23

k SkST
k

• • Gk + GT
k − Pk 0 0

• • • I 0

• • • • τSkST
k




Â 0 (5)

Proof. First we define for convenience

Ψ := Gk

(
Gk + GT

k − Pk

)−1
GT

k

L :=



0 0

0 Wk


−




E
21

k E
22

k

Ck Dk







Ψ 0

0 I







E
21

k E
22

k

Ck Dk




T

.

Via Schur complements, it is easily verified that (4) holds if and only if Ψ Â 0 and

[
ΦCD

k I

]
L

[
ΦCD

k I

]T

Â 0, ∀∆CD
k ∈ ∆CD,u (Sk) .
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Defining ξ := (ΦCD
k )T x, the previous condition holds if and only if Ψ Â 0 and




ξ

x




T

L




ξ

x


 > 0, ∀x 6= 0,∆CD

k ∈ ∆CD,u (Sk) . (6)

Now note that

ξ =
[
I − (

∆CD
k

)T
(
E

24

k

)T
]−1 (

∆CD
k

)T
(
E

23

k

)T

x

⇒ ξ =
(
∆CD

k

)T




E
24

k

E
23

k




T 


ξ

x




⇒ ST
k ξ =

(
S−1

k ∆CD
k Sk

)T
ST

k




E
24

k

E
23

k




T 


ξ

x


 .

Thus, ∆CD
k ∈ ∆CD,u(Sk) if and only if

ξT SkST
k ξ ≤




ξ

x




T 


E
24

k

E
23

k


 SkST

k




E
24

k

E
23

k




T 


ξ

x


 .

Since E
23

k 6= 0, ∃ξ, x such that the above inequality is strict. Thus, we can use the S-procedure (see [1]) to

say that (6) holds if and only if ∃τ > 0 such that




ξ

x




T

L




ξ

x


 > τ




ξ

x




T






E
24

k

E
23

k


 SkST

k




E
24

k

E
23

k




T

−




SkST
k 0

0 0










ξ

x


 , ∀ξ, x 6= 0.

It is straightforward to show using Schur complements that this condition along with the condition Ψ Â 0 is

equivalent to (5), which concludes the proof.

Lemma 4. If E
13

k 6= 0 and Sk ∈ SAB, then the following conditions are equivalent:

1. ∃Pk, Gk such that




Pk+1 A∆
k Gk B∆

k

• Gk + GT
k − Pk 0

• • I



Â 0, ∀∆AB

k ∈ ∆AB,u (Sk) (7)
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2. ∃Pk, Gk, τ such that




τSkST
k 0 E

11

k Gk E
12

k τE
14

k SkST
k

• Pk+1 AkGk Bk τE
13

k SkST
k

• • Gk + GT
k − Pk 0 0

• • • I 0

• • • • τSkST
k




Â 0

The proof of this lemma is omitted because it is nearly identical to the proof of the previous lemma.

We now take a minute to discuss the relevance of the technical condition in Lemma 3 that E
23

k must be

nonzero. Suppose that E
23

k = 0. Then ΦCD
k = 0, which in turn means that C∆

k = Ck and D∆
k = Dk. In

other words, it is trivial to directly check whether or not (4) holds because C∆
k and D∆

k are known. Thus,

even though the lemma does not apply in this case, there is still a way to account for it without introducing

conservatism. Similarly, when E
13

k = 0, (7) can be checked directly because A∆
k and B∆

k are known.

With these two lemmas in place, we can now state and prove the main result of this section, which gives

a convex upper bound on the guaranteed `2 semi-norm of a given system.

Theorem 5. Assume that a system, H∆, has the realization (2) and the matrices L and R are given. Then

‖LH∆R‖22 < γ ∀∆AB
k ∈ ∆AB , ∆CD

k ∈ ∆CD if ∃FAB
k ∈ SAB , FCD

k ∈ SCD, Pk, Gk,Wk such that

γ >
1
N

N∑

k=1

tr Wk (8a)




FCD
k 0 E

21

k Gk E
22

k R E
24

k FCD
k

• Wk LCkGk LDkR LE
23

k FCD
k

• • Gk + GT
k − Pk 0 0

• • • I 0

• • • • FCD
k




Â 0 (8b)




FAB
k 0 E

11

k Gk E
12

k R E
14

k FAB
k

• Pk+1 AkGk BkR E
13

k FAB
k

• • Gk + GT
k − Pk 0 0

• • • I 0

• • • • FAB
k




Â 0 (8c)

for k = 1, . . . , N where PN+1 = P1.
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Proof. First choose τ = 1, perform the Cholesky factorizations

FAB
k = RAB

k

(
RAB

k

)T

FCD
k = RCD

k

(
RCD

k

)T

and note that
RAB

k ∈ SAB

RCD
k ∈ SCD.

We now consider two cases. If LE
23

k 6= 0, we use Lemma 3 to conclude that




Wk LC∆
k Gk LD∆

k R

• Gk + GT
k − Pk 0

• • I



Â 0,∀∆CD

k ∈ ∆CD,u
(
RCD

k

)
. (9)

If LE
23

k = 0, we note that since LC∆
k = LCk and LD∆

k = LDk, the 2nd, 3rd, and 4th rows and columns of

(8b) are equivalent to (9). Thus, in either case, we conclude that (9) holds. Similarly,




Pk+1 A∆
k Gk B∆

k R

• Gk + GT
k − Pk 0

• • I



Â 0, ∀∆AB

k ∈ ∆AB,u
(
RAB

k

)
. (10)

Fixing ∆AB
k ∈ ∆AB , ∆CD

k ∈ ∆CD and using Lemma 2 with (8a), (9), (10), and (3) concludes the proof.

Before using Theorem 5, it should always be checked whether or not E
13

k and/or LE
23

k are nonzero.

There are two reasons for this. For instance, suppose that E
13

k = 0. In this case, using condition (8c) would

introduce unnecessary conservatism into the analysis, i.e. our analysis would be less conservative if we instead

directly checked (7). Second, from a computational standpoint, it makes more sense in this case to check

(7) because that LMI has smaller dimensions and contains fewer variables than (8c). Similar considerations

apply when LE
23

k = 0. Thus, when LE
23

k = 0, (8b) in Theorem 5 should be replaced by its 2nd, 3rd, and 4th

rows and columns. Similarly when E
13

k = 0, (8c) in Theorem 5 should be replaced by its 2nd, 3rd, and 4th

rows and columns.
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Output Feedback Controller Design

In this section, we apply the generalization of the Lyapunov shaping paradigm presented in [8] to controller

design using the LMIs in Theorem 5. First, we let the uncertain LPTV plant, Hu, have the form




xk+1

z∞k

zk

yk




=




Ak B1
k B2

k B3
k

C1
k D11

k D12
k D13

k

C2
k D21

k D22
k D23

k

C3
k D31

k D32
k 0







xk

w∞k

wk

uk




w∞k = ∆kz∞k , ∆k ∈ ∆

where

∆ :=
{

diag
[
α1Im(1), . . . , α

q′Im(q′)

]
: αi ∈ [−1, 1]

}
.

Now we let the controller have the form




xK
k+1

uk


 =




AK
k BK

k

CK
k DK

k







xK
k

yk


 .

When the controller is brought inside the loop, the plant has the state space form




xk+1

z∞k

zk




=




Ak E
13

k Bk

E
x1

k E
x4

k E
x2

k

Ck E
23

k Dk







xk

w∞k

wk




w∞k = ∆kz∞k , ∆k ∈ ∆

where the new state is given by

xk :=




xk

xK
k




9



and the state space matrices are given by

Ak :=




Ak + B3
kDK

k C3
k B3

kCK
k

BK
k C3

k AK
k




[
E

13

k Bk

]
:=




B1
k + B3

kDK
k D31

k B2
k + B3

kDK
k D32

k

BK
k D31

k BK
k D32

k







E
x1

k

Ck


 :=




C1
k + D13

k DK
k C3

k D13
k CK

k

C2
k + D23

k DK
k C3

k D23
k CK

k







E
x4

k E
x2

k

E
23

k Dk


 :=




D11
k + D13

k DK
k D31

k D12
k + D13

k DK
k D32

k

D21
k + D23

k DK
k D31

k D22
k + D23

k DK
k D32

k


 .

When the time-varying gain ∆k is also brought inside the loop, it results in the realization in (2) with

E
11

k = E
21

k = E
x1

k

E
12

k = E
22

k = E
x2

k

E
14

k = E
24

k = E
x4

k .
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At this point, we apply the generalization of the Lyapunov shaping paradigm presented in [8]. This results

in the following expressions for the terms in (8b) and (8c):

AkGk =




AkXk + B3
kĈk Ak + B3

kD̂kC3
k

Âk Yk+1Ak + B̂kC3
k




Bk =




B2
k + B3

kD̂kD32
k

Yk+1B
2
k + B̂kD32

k




CkGk =
[
C2

kXk + D23
k Ĉk C2

k + D23
k D̂kC3

k

]

Dk =
[
D22

k + D23
k D̂kD32

k

]

E
13

k =




B1
k + B3

kD̂kD31
k

Yk+1B
1
k + B̂kD31

k




E
23

k =
[
D21

k + D23
k D̂kD31

k

]

E
11

k = E
21

k =
[
C1

kXk + D13
k Ĉk C1

k + D13
k D̂kC3

k

]

E
12

k = E
22

k =
[
D12

k + D13
k D̂kD32

k

]

E
14

k = E
24

k =
[
D11

k + D13
k D̂kD31

k

]

Gk =




Xk I

Zk Yk




Pk =




P 1
k P 2

k

• P 3
k


 .

(11)

First note that the right-hand sides of all these equalities are affine in P 1
k , P 2

k , P 3
k , Xk, Yk, Zk, Âk, B̂k, Ĉk,

D̂k. Also note that, Wk, FAB
k , and FCD

k remain unchanged after applying the Lyapunov shaping paradigm.

Utilizing Theorem 5 with the expressions in (11) gives a set of matrix inequalities in the optimization variables

Wk, P 1
k , P 2

k , P 3
k , Xk, Yk, Zk, Âk, B̂k, Ĉk, D̂k, FAB

k , and FCD
k . Of these variables, only P 1

k and P 3
k are

symmetric. To reconstruct the controller from these variables, first choose Mk and Nk such that

NkMk = Zk − YkXk (12)
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and then substitute them into




AK
k BK

k

CK
k DK

k


 =




N−1
k+1 −N−1

k+1Yk+1B
3
k

0 I


 ×




Âk − Yk+1AkXk B̂k

Ĉk D̂k







M−1
k 0

−C3
kXkM−1

k I


 . (13)

Note that if we fix FAB
k and FCD

k , the matrix inequalities in Theorem 5 become affine in the above

optimization parameters. This means that minimizing the guaranteed `2 semi-norm performance of the

system using this formulation is convex when these variables are fixed. Alternatively, when B̂k, D̂k, and Yk

are fixed, the matrix inequalities become affine in the above optimization parameters, again resulting in a

convex optimization to minimize the guaranteed `2 semi-norm performance of the system. Based on these

two facts, we can construct the following methodology for control design:

1. Initial Controller Design: Find a controller of the same order as the plant which achieves robust

stability over some unstructured uncertainty set, ∆(Sk). This should be done using mixed H2/µ

synthesis, D-K iteration, or H∞ optimal control. For certain plants, it may be appropriate to simply

set the initial controller equal to 0.

2. Initial Uncertainty Scalings: First fix the controller found in the previous step and bring it inside the

loop. Then use Theorem 5 to find permissible values of Pk, Gk,Wk, FAB
k , and FCD

k . (Do not use (11)

in this step.)

3. Control Design: Fix the value of FAB
k and FCD

k found in the previous step and minimize the guaranteed

`2 semi-norm performance using convex optimization applied to Theorem 5 with (11).

4. Uncertainty Scaling: Fix the values of B̂k, D̂k, and Yk found in the previous step and minimize the

guaranteed `2 semi-norm performance using convex optimization applied to Theorem 5 with (11).

5. Check Stop Criterion: Check a relevant stopping criterion. If it is not met, return to step 3.

6. Reconstruct Controller: Use (12) and (13) to reconstruct the controller.

In this methodology, there are two subtleties which a good implementation should exploit during a

preprocessing phase. First, to reduce conservatism, it should be checked for each LMI at each time step

whether or not the uncertainty scalings are necessary. For instance, if LD21
k , D31

k = 0, then LE
23

k = 0 and the

generalized Lyapunov shaping paradigm should be applied to only the 2nd, 3rd, and 4th rows and columns in

(8b) for that time index. Second, the coupling between variables should be checked at each time step. For

instance, if D31
k = 0, then FAB

k and FCD
k are decoupled from B̂k and D̂k, i.e. in step 4 of the methodology

above, it is only necessary to fix Yk for that particular time index.

12



This methodology is similar to D-K iteration because in both, the controller design process alternates

between finding a controller which optimizes performance and scaling the uncertainty to reduce conservatism

in the uncertainty model. There is one benefit, however, that this methodology has over D-K iteration.

Although it is necessary to fix the controller when scaling the uncertainty in D-K iteration, only some of the

control parameters need to be fixed when scaling the uncertainty in this methodology. Moreover, in some

cases, none of the control parameters need to be fixed in order to scale the uncertainty.

Although this paper does not consider multiobjective control design, all of the techniques presented here

could be trivially extended to allow for control design with multiple guaranteed `2 semi-norm performance

objectives. In particular, we would apply Theorem 5 to each objective, i.e. each choice of (L,R). In this

case, since our controller reconstruction does not depend on the values on Wk, FAB
k , FCD

k , P 1
k , P 2

k , and P 3
k ,

these variables can be allowed to be constraint-dependent, i.e. each application of Theorem 5 with (11) could

have different values for these variables.

Track-Following Control

Figure 1 shows the structure of a hard disk drive with dual-stage actuation. The model of our system in

VCM

Pivot Arm Suspension microactuator

yhy
s

u
v

u
m

a
w

Figure 1: Schematic of the dual-stage hard drive

discrete time with uncertain parameters is given by




p(z)

y(z)


 = Hgen(z)




w(z)

u(z)


 (14)
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where

p :=




yh − r

yh − ys

uv

um




w :=




wr

wa

nPES

nRPES




y :=




yh − r + nPES

yh − ys + nRPES


 u :=




uv

um







yh(z)

ys(z)


 :=

4∑

i=1




1 0

c1,i c2,i





zI −




a1,i 1

a2,i 0







−1

Bi




wa(z)

uv(z)

um(z)




aj,i := aj,i + mj,iδi, δi ∈ [−1, 1]

r(z) :=
(

2.355
z − 0.9627

+
0.557z + 0.5541

z2 − 1.984z + 0.9841

)
wr(z)

and the model parameters are summarized in Table 1. (Note that this model has three normalized uncertain-

Table 1: HDD model parameters

mode i

[
a1,i

a2,i

] [
m1,i

m2,i

] [
c1,i

c2,i

]

1
[

1.9924
−0.9925

] [
0
0

] [
0.9054
−0.0946

]

2
[

1.1818
−0.9726

] [
0.1171
−0.0071

] [
0.7883
6.5939

]

3
[

0.4461
−0.9605

] [
0.1995
−0.0102

] [−1.9184
9.8265

]

4
[

1.8188
−0.8937

] [
0.0455
−0.0299

] [
0
0

]

mode i Bi

1
[
0 0.4716 0
0 0.3212 0

]

2
[
0 0.1239 0
0 −0.0655 0

]

3
[−0.0678 0.0353 0

0.0317 −0.0165 0

]

4
[

0.1111 −0.6329 1.5314
−0.0209 −0.2080 1.4749

]

ties: δ2, δ3, and δ4.) In this model, the elements of w represent the disturbances to our system (zero-mean

white Gaussian noise with unit covariance); wr, wa, nPES , and nRPES respectively represent disturbances

on the head position (see [5]), airflow disturbance, PES sensor noise, and RPES sensor noise. The PES

measurement noise is relatively large in this model (1nm at 1σ) because we are assuming that we are mea-
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suring the PES via a laser doppler velocimeter, as we will do when we try to implement the controller in the

future. The elements of u represent the control inputs; uv and um respectively represent the control inputs

into the voice coil motor (V ) and the MA (V ). The elements of p and y respectively represent the signals

we would like to keep small in closed loop and our measurements; yh and ys respectively represent the head

displacement relative to the center of the data track (nm) and the the suspension tip displacement (nm).

In our final controller design, although we will measure the RPES and actuate our system at the rate of

50kHz, we are bound by the constraint that the PES can only be measured at the rate of 25kHz. Thus, as

discussed in [6], the signal which should be sent to our controller is

ỹk = Ωkyk

where

Ωk =





diag [1, 1] , k odd

diag [0, 1] , k even
.

Note that because Ωk is a LPTV gain with period 2, it results in a LPTV system with period 2 when it is

brought inside the model (14).

With this in place, we chose the output and input weights to respectively by

L =




1 0 0 0

0 0 1 0

0 0 0 1




, R = I

and minimized the guaranteed `2 semi-norm performance of Hgen with the multi-rate sampler Ωk using the

above methodology. Table 2 shows the guaranteed costs of the closed loop system obtained by taking the

square roots of the diagonal elements of 0.5(W1 +W2). Note that because the RPES was not being penalized

in the control design, no estimate of the worst case RPES was generated. To verify these bounds, we then

Table 2: Worst case RMS 1σ signal values, as reported by solver
Signal PES (nm) RPES (nm) uv (V ) um (V )
Value 5.0480 N/A 3.2536 1.8923

performed a Monte Carlo analysis of the `2 semi-norm of our uncertain closed loop system to each signal

in y. This analysis consisted of two parts–examining the performance of the nominal system and examining

the worst case performance (for each signal in y) over 400 random samples of the closed loop system. These

results are shown in Table 3.
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Table 3: Monte Carlo analysis of RMS 1σ signal values
PES (nm) RPES (nm) uv (V ) um (V )

Nominal 4.8133 9.7314 1.7252 1.8014
Worst Case 4.8969 10.4680 1.8538 1.8195

Conclusion

In this paper, we have proposed a new method for designing track-following controllers for HDDs which

achieve robust performance. The control design methodology proposed, although it is not guaranteed to find

a controller which locally minimizes guaranteed `2 semi-norm performance over the structured uncertainty

set (i.e. it globally optimizes the guaranteed `2 semi-norm performance over some, slightly conservative, un-

structured uncertainty set), it is conceptually similar to the D-K iteration heuristic for µ-synthesis which has

been widely successful in many control design applications. However, unlike D-K iteration, the methodology

presented here does not require all of the control parameters to be fixed in order to optimize the uncer-

tainty scalings. This design methodology was used to design a HDD controller with multi-rate sampling and

actuation characteristics which achieves robust performance.
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