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Abstract

The temperature inside modern hard disk drives can become as high as 100◦C during operation.

The effects of such high temperatures on the slider’s flying attitude and the shear forces on the slider

and the disk are investigated in this paper. General formulae for the shear forces are derived, and

the generalized Reynolds equation is modified to take into account the temperature effect on the

mean free path of air as well as the air viscosity. Numerical results are obtained for two different air

bearing surface designs. It is shown that the temperature changes result in non-negligible changes

in the slider’s flying height and the shear forces. These changes could further induce changes in

the deformation and instability of the lubricant layer and thereby affect the reliability of the hard

disk drives.
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I. INTRODUCTION

In modern hard disk drives (HDDs), the temperature inside the HDDs can rise to as high

as 100◦C. Since the temperature is related to the gas molecules’ speed [1], the temperature

increase affects the motion of the air molecules in the head-disk interface (HDI), which

is the gap between the slider and the disk in the HDDs as shown in Fig. 1. Due to its

dependence on the motion of the air molecules, the slider’s flying performance is affected

by the temperature change as well. In this paper we focus on two important issues of HDD

slider’s flying performance at steady state: the slider’s flying attitude and the shear forces on

the slider and the disk. The slider’s flying attitude, including the slider’s flying height, pitch

and roll angles, is related to the capacity of the HDDs. According to Wallace’s equation [2],

the capacity of a HDD is inversely related to the slider’s flying height at the read-write

element, which is located at the trailing edge of the slider. Thus, a lower flying height and

a more stable flying attitude of the slider is critical to the increase of the HDDs’ capacity.

The shear forces on the slider and the disk are related to the reliablity of HDDs. As shown

in Fig. 1, the magnetic disk, which is used to store the data, is actually covered by a thin

layer of lubricant, which serves to reduce the possibility of the slider’s contact onto the disk.

The shear force on the lubricant has been shown to be the dominant factor determining the

deformation and instability of the lubricant layer [3][4]. This deformation and instability

serve as a mechanism for the transfer of the lubricant from the disk to the slider [5], which

increases the likelihood of the slider’s impact on the disk and can result in the wear of the

disk as well as the loss of data stored on the disk.
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FIG. 1: The head-disk interface (HDI) is composed of a slider, a disk and the air gap in between.

A layer of lubricant covers the disk and serves to reduce possible impact of the slider on the disk.

Cha et al. [6] numerically solved the classical Reynolds equation for a slider with a

minimum flying height around 60nm, and they qualitatively argued that an increase in

temperature induced increases in both the mean free path λ and the air viscosity µ. The
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increases in λ and µ led to opposite effects on the slider’s flying height and finally resulted

in a small change in the slider’s flying height. Their experiments confirmed this qualitative

argument and showed that the flying height only changed by 1nm when the temperature

increased by 20◦C. Since the minimum flying height of the slider in the current HDDs is

less than 10nm and is being reduced to less than 5nm, the classical Reynolds equation is no

longer applicable, and a change of 1nm or so in the slider’s flying height, if it exists, is no

longer a negligible change. Zhang et al. [7] also studied the temperature effect on the slider’s

flying height when investigating the effect of humidity on the slider’s flying performance at

different temperatures. They, however, did not provide any details on how they included the

temperature effect into their simulations. Even less work has been on the shear forces on the

slider and the disk when compared to studies on the temperature effect on the slider’s flying

atttide. An approach to studying the temperature effect on the slider’s flying performance

and interface shear is thus needed.

In this paper we modify the generalized Reynolds equation, which is derived from the

Boltzmann equation, by using a variable soft sphere (VSS) model for the air molecules to

include a temperature effect on the mean free path and air viscosity. The formulae for the

shear forces are also derived and serve as a basis for the study on how temperature increase

affects the shear forces on the slider and the disk. This paper is organized as follows. The

formulae for the shear forces on the slider and the disk are derived in section II. In section III,

we review and modify the generalized Reynolds equation. Numerical results are presented

and discussed in section IV. Finally, a summary and conclusion are given in section V.

II. SHEAR FORCES ON THE SLIDER AND THE DISK

In current HDDs the slider’s minimum flying height is around 10nm, and the thickness

of the air gap in the head-disk interface (HDI), h, ranges from several nanometers to several

micrometers. Since the mean free path of air is around 65nm, the air in the HDI is rarefied,

and the Knudsen number in the HDI, defined as Kn = λ/h, changes from less than 0.1 to

large than 10. It is generally known that continuum theory, even supplemented with slip

boundary conditions, applies only when the Knudsen number is less than 0.1 [8]. Thus,

continuum theory can not describe air flow in current HDIs, where kinetic theory is needed.

Flow of a rarefied gas is described by the Boltzmann equation, which, for a steady problem
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with no external forces, such as the present one, reduces to [1]

ξi
∂f

∂xi

= J(f, f), (1)

where f is the velocity distribution function of the gas molecules and ξi is the molecular

velocity. J(f, f) is a complicated integral whose exact form is not of concern here.

In view of the complexity of the Boltzmann equation, Eq. (1), Bhatnagar, Gross and

Krook [9] proposed a model equation by using ν(fe − f) to replace the right hand side of

Eq. (1). Here ν is a collision frequency that is related to the mean free path of the gas,

and fe is a local Maxwellian with its parameters determined by f . Despite its simple form,

the BGK-Boltzmann equation is a nonlinear equation because of the appearance of f in fe.

When the velocity of the flow is much less than the average thermal velocity of the gas, the

BGK-Boltzmann equation can be linearized by assuming

f = f0(1 + φ), (2)

where f0 is the Maxwellian distribution at the ambient state:

f0 =
ρ0

(2πRT0)3/2
exp

(
− ξiξi

2RT0

)
,

where ρ0, T0 are the ambient pressure and the ambient temperature, and R is the specific

gas constant.

Using Eq. (2) in the BGK-Boltzmann equation, i.e. Eq. (1) with its right hand side

replaced by ν(fe−f), and retaining only linear terms, we get the linearized BGK-Boltzmann

equation for a steady flow of an isothermal gas

ξi
∂φ

∂xi

= ν

(
−φ− 1 +

ρ

ρ0

+
ξivi

RT0

)
. (3)

The corresponding boundary condition accompanying Eq. (3), after it is linearized, is [10]

φ(xi, ξi) = (1− α)φ(xi, ξi − 2ξjnjni)− α
2
√

π

(2RT0)2

∫

ξknk<0

ξjnjφ exp(− ξkξk

2RT0

)dξ, (4)

where α is the accommodation coefficient and ni is the outward unit normal of the boundary.

Fukui and Kaneko [11] showed that for the air flow in the HDI, a solution satisfying Eq. (3)

and compatible with the boundary condition Eq. (4) can be expressed as

φ =
1

p0

dp

dx
x +

ξx√
2RT0

φ1(y, ξy, ξiξi), (5)
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with φ1 determined by

λ√
2RT0

ξy
∂φ1

∂y
=

√
π

2

(
−φ1 + 2

U√
2RT0

)
− λ

p0

dp

dx
, (6)

and

φ1|ξy>0
disk =(1− αdisk)φ1|ξy<0

disk + 2αdisk
U√
2RT0

, (7)

φ1|ξy<0
slider =(1− αslider)φ1|ξy>0

slider, (8)

where the x direction is parallel to the disk, the y direction is perpendicular to the disk,

dp/dx is the local pressure gradient, l is the length of the slider and U is the disk speed.

From Eq. (5) and kinetic theory [10], it can be shown that the shear force on the slider

or the disk is a linear combination of contributions from the Couette and Poiseuille flow

components.

For plane Poiseuille flow driven by a pressure gradient dp/dx and existing between two

plates separated by a distance h, the momentum conservation equation, which is one of the

first three moments of Eq. (1) with respect to ξi, can be simplified to

−dp

dx
+

∂σxy

∂y
= 0. (9)

Integrating Eq. (9) from the lower plate to the upper plate and using the symmetry of

plane Poiseuille flow with respect to the center line, we get

σxy|upper plate = −σxy|lower plate =
h

2

dp

dx
. (10)

For plane Couette flow existing between two plates separated by h and with the lower

plate fixed and the upper one moving at speed U , Sherman’s interpolation formula can be

used [12]. This formula is based on an interpolation scheme between two limits: continuum

flow and free molecular flow, and it has been shown to be consistent with experiments. For

plane Couette flow of a continuum fluid, the shear force on the lower plate is

Fcon = µ
U

h
, (11)

while for plane Couette flow of a free molecular gas, the shear force on the lower plate is [13]

Ffm =
1

2
ρU

√
2kT

πm
. (12)
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Then according to Sherman’s formula, the shear force on the lower plate in plane Couette

flow of an arbitrarily rarefied gas is

Fc =Ffm

{
1 +

Ffm

Fcon

}−1

=
1

2
ρU

√
2kT

πm

µ

µ +
√

1
2
ρh2kT

πm

. (13)

Thus, the shear force on the slider and the disk are:

τw|disk =Fc − h

2

dp

dx
, (14)

τw|slider =− Fc − h

2

dp

dx
. (15)

Before we can use these two formulae to calculate the shear stresses, we need to know the

pressure field and the viscosity. The first one, i.e., the pressure field, can be obtained from

the generalized Reynolds equation while the second one can be modeled using the variable

soft sphere (VSS) model for air molecules.

III. THE GENERALIZED REYNOLDS EQUATION AND THE VARIABLE SOFT

SPHERE (VSS) MODEL

A. The Generalized Reynolds Equation

The classical Reynolds equation, which is derived from continuum theory, does not apply

to air flow in the entire HDI, and the Boltzmann equation or its equivalent is needed. Under

the same assumptions as in the classical Reynolds equation, i.e., the thickness of the air gap

in the HDI is much less than the length and the width of the slider, and the air flow in

the direction perpendicular to the disk is negligible, Fukui and Kaneko [11] started with the

linearized Boltzmann equation, Eq. (3), and derived a generalized Reynolds equation for a

steady flow in the HDI:

(
b

l

)2
∂

∂X

(
QpPH3 ∂P

∂X

)
+

∂

∂Y

(
QpPH3 ∂P

∂Y

)
= Λb

∂PH

∂X
, (16)

where b is the width of the slider, l is the length of the slider, X = x/l, Y = y/b, P = p/pa

is the nondimensinal pressure, p is the air pressure, pa is the ambient pressure, H = h/h0

is the nondimensinal air gap thickness, h is the air gap thickness, h0 is the minimum air
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gap thickness, Qp is the nondimensional mass flow rate of the Poiseuille flow component,

Λb = 6µUb2/ (pah
2
0l) is the bearing number, µ is the air viscosity at the ambient state, and

U is the disk speed.

The solution of Eq. (16) relies on two parameters: the bearing number Λb and the nondi-

mensional mass flow rate Qp. The bearing number depends on the air viscosity while the

mass flow rate Qp = Qp(D, β) is a function of the accommodation coefficient β and the

inverse Knudsen number D =
√

πh/(2λ) where λ is the mean free path. Since both λ

and µ are functions of temperature, the change in temperature affects the solution of the

generalized Reynolds equation as well.

B. The Variable Soft Sphere (VSS) Model

To investigate the dependence of the slider’s flying performance on the temperature, we

need the formulae for the mean free path and the air viscosity as functions of temperature.

These two formulae depend on the models used for the air molecules. The simplest one is

the hard sphere model, which regards the air molecules as rigid spheres with interaction

between each other happening only at collision. One of the more important quantities for

collision is the angle χ [1], as shown in Fig. 2.

b
d

c
r

χ

FIG. 2: Collision between two air molecules with relative speed cr. Here b is the projected distance,

χ is the angle after collision, and d is the diameter of air molecules.

For the hard sphere (HS) model, χ = 2 cos−1(b/d) where d is the diameter of air molecules

and b is the projected distance. However, some macroscopic quantities calculated via the
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HS model, such as viscosity, can at most qualitatively agree with experimental results.

The variable soft sphere (VSS) model [14] [15] serves to improve the deficiency in the HS

model while keeping its simplicity. It is an empirical model with an empirical relation for d

and χ with parameters determined by fitting the experimental results. In the VSS model,

d = dref (cr,ref/cr)
υ and χ = 2 cos−1[(b/d)1/α] where cr is the pre-collision relative speed

between two pre-collision molecules, υ and α are two parameters used to fit experimental

results, and the quantities with a subscript ref correspond to their values at a reference

state. It can be shown that the mean free path for VSS molecules is [1]

λ =
kTref√
2πd2

refp

(
T

Tref

)ω+0.5

, (17)

while the viscosity is

µ =
5(α + 1)(α + 2)

√
πmk(4k/m)υT υ+0.5

16αΓ(4− υ)σT,refc2υ
r,ref

=µref

(
T

Tref

)ω

, (18)

where k = 1.38065× 10−23m2kgs−2K−1 is the Boltzmann constant, ω = υ + 1/2, p is the air

pressure, T is the temperature, σT is the collision cross section, and the quantities with a

subscript ref correspond to their values at a reference state.

IV. RESULTS AND DISCUSSION

Equations (16)–(18) involve several reference quantities. Here we choose the following

reference values [1] [16]:

Tref = 273K, µref = 1.81× 10−5Ns/m2, dref = 4.13× 10−10m

m = 5.6× 10−26kg, pa = 1.013× 105N/m2

The finite volume method (FVM) [17] is used to solve the modified generalized Reynolds

equation, Eq. (16), and it gives the pressure field in the HDI. The shear forces on the slider

and the disk are then calculated with Eqs. (14) and (15). Two designs of the air bearing

surface (ABS), which is the surface of the slider facing the disk, are considered, and they

are shown in Fig. 3. These two sliders are both Femto sliders (with length l = 0.85mm and

width b = 0.7mm).
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FIG. 3: Air bearing surface (ABS) of slider A and slider B. Both sliders are Femto sliders (with

length l = 0.85mm and width b = 0.7mm). Different colors correspond to difference etching depths.

Figure 4 shows the change of the slider’s flying height at the read-write element with

temperature for the two ABS designs. When flying over the inner track, slider A has a

flying height of 7.47nm at 25◦C, and it decreases to 6.02nm when the temperature increases

to 95◦C. When flying over the other two tracks, slider A has a higher flying height and the

increase in temperature leads to a smaller change in the slider’s flying height. Similar trends

occur for slider B. When slider B flies over the inner track, its flying height at the read-

write element decreases from 5.59nm to 4.08nm when the temperature increases from 25◦C

to 100◦C. Compared to slider A, slider B has a lower flying height, and the temperature

increase has more effect on slider B. When both sliders fly at a height less than 10nm, the

temperature change induces a non-negligible change in the slider’s flying height, and the

lower the slider’s flying height, the more the flying height decreases with the temperature.

The change of the other two quantities of the slider’s flying attitude, i.e., the slider’s pitch

and roll angles, are shown in Figs. 5 and 6. For slider A, the pitch and roll angles are almost

constant as the temperature increases. For slider B, although the pitch and roll angles do
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FIG. 4: Change of the slider’s flying height with temperature for the slider flying at inner track,

middle track or the outer track.

change with the temperature, their changes are still negligible. Thus, temperature increase

only results in negligible changes of the slider’s pitch and roll angles.

As shown in Eq. (16), the slider’s flying attitude is mainly determined by two parameters:

the mean free path, λ, which appears in the calculation of mass flow rate of the Poiseuille

flow component Qp, and the air viscosity at the ambient state, µ, which appears in the

definition of the bearing number Λb. These two parameters increase with temperature, and

they result in different changes in the slider’s flying height: an increase in λ decreases the

slider’s flying height while an increase in µ increases the slider’s flying height [6]. The final

trend of the change of the flying attitude with temperature is a net result of these two

effects. Although, for both slider A and slider B, the slider’s flying height decreases with

temperature it is not guaranteed that this trend holds for all sliders, and opposite trends

might exist for some other sliders. When comparing the results of slider A and slider B, we

find that the effect of the temperature on the slider’s flying attitude also depends on the

ABS designs. Thus it might be possible to design a specific ABS pattern to reduces the
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FIG. 5: Change of pitch angle with the temperature.

dependence of the slider’s flying height on the temperature.

The shear forces on the slider and the disk are linear combinations of contributions

of the Couette and Poiseuille flow components. Since the present problem has a large

bearing number which is an indication of the importance of the Couette flow component

compared to the Poiseuille flow component, the Couette flow component dominates the

air flow. Thus only the shear forces due to the Couette flow components are presented in

Figures 7 and 8. For most regions on the ABS, the effect of temperature increase on the

shear force is negligible. The noticeable effect of the temperature increase on the shear force

appears at the region near the read-write element. Since the slider’s flying height and its

stability at the read-write element determine the HDDs’ capacity, changes of the shear force

beneath the read-write element could result in changes in the deformation and instability

of the lubricant, which may increase the possibility of the slider’s contact onto the disk and

affect the reliability of the HDDs.
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FIG. 6: Change of roll angle with the temperature.

V. SUMMARY AND CONCLUSION

An approach to studying the effect of temperature change on a HDD slider’s flying at-

titude and the shear forces on the slider and the disk is presented in this paper. Based on

the linearized Boltzmann equation and a similarity solution proposed by Fukui and Kaneko,

we show that the shear forces are linear combinations of the contributions from the Couette

and Poiseuille flow components. The former contribution is calculated through Sherman’s

formula, which interpolates the results for continuum flow and free molecular flow and gen-

erates a general formula applicable for an arbitrarily rarefied gas. The latter contribution is

calculated through a formula derived from the conservation equations. These two formulae

depend on the pressure gradient and the mean free path. The generalized Reynolds equa-

tion, proposed by Fukui and Kaneko and used to solve for the air flow field in the head disk

interface, is then modified to include the temperature effect on the mean free path and the

air viscosity. These modifications are based on the variable soft sphere model, which is an

empirical model that gives results agreeing well with experiments. The modified generalized
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Shear Force on the Slider at T=300K for Slider A
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FIG. 7: Shear force due to the Couette flow component in the head disk interface for slider A.

(a) the shear force at T = 25◦C. (b) The difference of the shear force at T = 25◦C from that at

T = 100◦C

Reynolds equation is solved using a finite volume method, and the shear forces are calculated

afterwards. Numerical results are obtained for two slider designs, and the results show that

the temperature change induces non-negligible changes in the slider’s flying height as well

as the shear force. Since these non-negligible changes are dependent on the ABS designs, it

may be possible to design some specific ABS patterns to reduce the dependence of the shear

force and the slider’s flying height on the temperature.
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Shear Force at T=300K for Slider B
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FIG. 8: Shear force due to the Couette flow component in the head disk interface for slider B.

(a) the shear force at T = 25◦C. (b) The difference of the shear force at T = 25◦C from that at

T = 100◦C
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