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Abstract

In this brief report, we derive analytical formulae for the force and torque on a spherical particle

in a weak shear flow of a highly rarefied gas. The rotation axis of the particle is not restricted

with regard to its direction. So this paper is an extension of [N. Liu and D. Bogy, Phys. Fluids

20, 107102 (2008)] where the rotation axis is in the same direction as the gradient of the incoming

shear flow. The contributions to the force from rotation of the particle and nonuniformity of the

flow are shown to be decoupled. These two effects, however, do produce a coupled effect in the

torque. Combined with the equation of motion, the trajectory of a spherical particle in a weak

shear flow of a highly rarefied gas can be analyzed based on these analytical formulae together

with appropriate initial conditions.
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When a spherical particle moves in a shear flow of a rarefied gas, there exists three

length scales: the radius of the particle R0, the mean free path of the gas λ, and a length

characterizing the shear strength G of the incoming flow lG = Uf0/G where Uf0 is the

speed of the particle relative to the flow at the center of the sphere, taken as a reference

speed. Based on these three lengths, two Knudsen numbers can be defined: Knp = λ/R

and KnG = λ/lG. When the radius of the sphere is much smaller then the mean free path,

i.e., Knp À 1, the flow, seen by the particle, is highly rarefied. By “weak shear flow” we

mean that the shear strength G is so small that the other Knudsen number KnG is much

smaller than 1. One application of this kind of problem is the motion of small particles in

the gap between the slider and the disk in a hard disk drive. These particles may contact

the slider and accumulate there, which increases the possibility of slider-induced damage of

the disk and data loss. The flow in the gap, which is called the head disk interface (HDI), is

set up by the disk moving at a speed of 10− 30m/s and is mainly a shear flow. For a large

portion of the HDI, the gap spacing is around 1µm [1]. Given that the mean free path of air

is 65nm, the Knudsen number KnG in those regions is on the order of 0.1. The particles are

generated from different means and their sizes range from a few to hundreds of nanometers.

For many slider designs, the gap spacing at the entrance of the HDI is less than 200nm, so

only those particles with radius less than this value can enter the HDI. For smaller particles

with size around 10nm, which are of concern here, the Knudsen number Knp À 1.

The motion of a single particle in a fluid is usually calculated using Newton’s second

law [1, 2], and the essential part of this calculation is to obtain the forces on the particle. A

widely known and documented result is the drag force on a sphere moving without rotation

in a highly rarefied gas [3–7]. The first step to investigate general motion of particles is to

consider the effect of the particle’s rotation. Wang [8] studied the forces on a particle rotating

around an axis perpendicular to the direction of the incoming uniform flow of a highly

rarefied gas, and showed that the particle’s rotation induces a lift force along the direction

perpendicular to both the incoming flow and the axis of rotation. This lift force was found

to be in the opposite direction from its counterpart in a continuum flow. Further studies

considered nonuniformities of the incoming flow, among which a linear shear flow is the

simplest. The linear shear flow is also a good approximation to a flow with its characteristic

length scale much larger than the size of the particle, which underlies Saffman’s explanation

of the drift of small spheres in a Poiseuille flow based on his result for the lift force on a
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sphere in a linear shear flow of continuum fluid [9]. Kröger and Hütter [10] studied the forces

on a sphere in a linear shear flow of a highly rarefied gas and qualitatively showed that an

additional force is induced by the shear. Liu and Bogy [11] performed a quantitative study

of this problem, and they derived a formula for the force on a sphere in a linear shear flow

of a highly rarefied gas. They, however, restricted the analysis to the special case where the

axis of rotation lies in the same direction as the gradient of the incoming shear flow. This

brief report serves to extend Liu and Bogy’s work to the general case where the particle’s

rotation direction is arbitrary with respect to the incoming flow. The primary results are

analytical formulae of the force and torque on the sphere.

We first give an overview of the approach to be used here, which is the same as that

adopted by Liu and Bogy [11]. Since the incoming flow, as seen by the particle, is highly

rarefied, the interaction between the molecules coming to the particle and those reflected

by the particle can be neglected. Then the force on a unit area of the surface of the

particle becomes a linear combination of contributions from the incoming and reflected

molecules. Due to the weakness of the shear strength of the incoming flow, the Knudsen

number KnG ¿ 1 and the velocity distribution function for the incoming molecules can

be obtained through the Chapmann-Enskog theory [4, 12]. The force on a unit area of

the surface of the particle induced by the incoming molecules is then calculated through

an integration based on this distribution function. The contribution from the reflected

molecules is obtained from the boundary conditions relating the incoming and reflected

molecules. Finally, the total force and torque on the particle are obtained by integrating the

force on a unit area over the surface of the particle.

For the following analysis, two coordinate systems–one global and one local–have been

set up and are shown in Fig. 1. In the global coordinate system {XY Z}, the axis X points

in the flow direction while the axis Y points to the gradient of the shear flow, and the flow

velocity is Uf = Uf0 + GY . In the local coordinate system {xyz} fixed to the sphere and

located at (R0, θ, φ), x is along the direction tangential to the parallel while y points to the

center of the sphere. Here we allow for an arbitrary rotation of the sphere, so the axis of the

rotation is not necessarily the same as the gradient of the incoming shear flow as in [11].

To get the force on a unit area of the surface of the sphere, we need the Chapman-Enskog

velocity distribution function expressed in the local coordinate system. Let u, v, w be the

components of the molecular velocity of the gas molecules in the local coordinate system,
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FIG. 1: The two coordinate systems set up for a spherical particle rotating at angular velocity Ω

in a linear shear flow of a highly rarefied gas with the gradient of the shear being G. Note the axis

of rotation is not necessarily parallel to the gradient

u′, v′, w′ be the components of thermal velocity of the gas molecules in the local coordinate

system, and let ΩX , ΩY , ΩZ be the components of the rotation vector in the global coordinate

system. Then the velocity distribution function can be written as [4]

f = f0 (1 + DU ′V ′) . (1)

Here,

f0 =

(
β√
π

)3

exp
{−β2[(u− u0)

2 + (w − v0)
2 + (w − w0)

2]
}

, (2)

u0 =Uf0 sin φ− ΩY R0 sin θ − ΩXR0 cos θ cos φ + ΩZR0 cos θ sin φ, (3)

v0 =Uf0 sin θ cos φ, (4)

w0 =Uf0 cos θ cos φ + ΩXR0 sin φ + ΩZR0 cos φ, (5)

β = 1/
√

2RT , R is the gas constant, T is the temperature of the particle and is assumed to

be the same as the temperature at the far field, D = −(5/4)
√

πβGλ, and

U ′V ′ = u′w′ sin θ sin φ− u′v′ cos θ sin φ +
1

2
(w′2 − v′2) sin 2θ cos φ− v′w′ cos 2θ cos φ. (6)

The only difference of Eq. (1) from the distribution function used in [11] is the exact form

of u0, v0 and w0, i.e., Eqs. (3)– (5). Thus the formulae for the forces on a unit area of the
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surface of the sphere that were derived in Ref. [11] and expressed as functions of u0, v0 and

w0 can be used as a basis for our further derivation. For self completeness of this report, we

list these results here. In the local coordinate system, let p be the force along y direction

and τx, τz be that along the x, z directions, respectively. Then

p =(2− σp)pi + σppw, (7)

τx =τxi − τxr = σττxi, (8)

τz =τzi − τzr = σττzi, (9)

and

pi =ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
v2fdudvdw

=
ρ

2
√

πβ2

{
βv0exp(−β2v2

0) +
√

π(
1

2
+ β2v2

0)[1 + erf(βv0)]

}

− ρD

4β4
[1 + erf(βv0)] sin θ cos θ cos φ, (10)

τxi =ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
uvfdudvdw

=
ρu0

2
√

πβ

{
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0)]
}− ρD

8β4
[1 + erf(βv0)] sin φ cos θ

− ρD

4
√

πβ3
u0exp(−β2v2

0) sin θ cos θ cos φ, (11)

τzi =ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
wvfdudvdw

=
ρw0

2
√

πβ

{
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0)]
}

+
ρD

8β4
[1 + erf(βv0)](sin

2 θ − cos2 θ) cos φ

− ρD

4
√

πβ3
u0exp(−β2v2

0) sin θ cos θ cos φ, (12)

pw =
ρ

4β2

{
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0]
}− ρD

8β4
exp(−β2v2

0) sin θ cos θ cos φ, (13)

where the quantities with a subscript i correspond to the contribution of the incoming flow,

ρ is the density of air, erf(z) = (2/
√

π)
∫ z

0
exp(−t2)dt is the error function, and σp and στ

are normal and tangential accommodation coefficients, which are allowed to be different.

Using Eqs. (7)– (13), we can get the total force and torque on the sphere by performing

integration over the surface of the sphere. Here we need for this integration the relations

Eq. (3)– (5) for transferring the above results in Eqs. (7)– (13) back into the global coordinate
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system, and we also use the identity

∫ 2π

0

erf(b cos φ) cos φdφ =
2b√
π

∫ 2π

0

exp(−b2 cos2 φ) sin2 φdφ, (14)

where b is any function independent of φ. Since the speed of the flow is usually much less than

the speed of sound, which is the case when the motion of particles in the HDI is of concern,

higher order terms in βUf0 can be neglected. After a lengthy integration and retaining only

terms up to the linear order in βUf0, we obtain the force components {FX , FY , FZ} on the

sphere

FX =

∫ 2π

0

∫ π

0

(p sin θ cos φ + τx sin φ +τz cos θ cos φ) R2
0 sin θdθdφ

=
1

3
ρ
√

2πRT [4(2 + στ − σp) + πσp] R
2
0Uf0, (15)

FY =

∫ 2π

0

∫ π

0

(−p cos θ + τz sin θ) R2
0 sin θdθdφ

=− 1

6
(2 + στ − σp)πρGR2

0λUf0 +
2

3
στπρΩZR3

0Uf0, (16)

FZ =

∫ 2π

0

∫ π

0

(−p sin θ cos φ + τx cos φ −τz cos θ sin φ) R2
0 sin θdθdφ

=− 2

3
στπρΩY R3

0Uf0, (17)

and the torque components {TX , TY , TZ} on the sphere

TX =

∫ 2π

0

∫ π

0

(τx cos θ cos φ− τz sin φ) R3
0 sin θdθdφ

=− 4

3
στρR4

0

√
2πRTΩX − 1

12
στρπR4

0λGΩY , (18)

TY =

∫ 2π

0

∫ π

0

τxR
3
0 sin2 θdθdφ

=− 4

3
στρR4

0

√
2πRTΩY − 1

12
στρπR4

0λGΩX , (19)

TZ =

∫ 2π

0

∫ π

0

(−τx cos θ sin φ− τz cos φ) R3
0 sin θdθdφ

=− 4

3
στρR4

0

√
2πRTΩZ +

5(2π − 1)

48
στρR3

0

√
2πRTλG, (20)
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or written in vector form

F =
1

3
ρ
√

2πRT [4(2 + στ − σp) + πσp] R
2
0Uf0 − 2

3
στρπR3

0Uf0 ×Ω

− 1

6
(2 + στ − σp)ρπR2

0Uf0λG (21)

T =− 4

3
στρR4

0

√
2πRTΩ− 1

12
στρπR4

0λ

(
G ·ΩUf0

Uf0

+
Ω ·Uf0

Uf0

G

)

+
5

48
(2π − 1)στρR3

0

√
2πRTλ

Uf0 ×G

Uf0

(22)

where G = GJ and J is the unit vector along the Y axis in the global coordinate system.

The first term in Eq. (21) is the drag force experienced by the particle. At first sight,

this term looks different from the well-known result for the drag force on a sphere moving

in a quiescent flow of a highly rarefied gas. Since we consider here the case in which the

speed of the flow is much less than the speed of sound, only terms up to the linear order

in βUf0 are retained, and the first term in Eq. (21) is just the reduced form of the general

drag force formula with higher order terms in βUf0 neglected. The second term in Eq. (21)

is the lift force induced by the rotation and the last term is the lift force induced by the

nonuniformity of the flow. These lift forces have opposite directions from their counterparts

in a continuum flow. For the case of a particle rotating about an axis perpendicular to the

incoming uniform flow of a highly rarefied gas, i.e., ΩZ = 0 and G = 0, Eq. (21) reduces to

Wang’s result [8]. When the axis of rotation is in the same direction as the shear direction,

i.e., ΩX = ΩZ = 0, Eq. (21) reduces to the formula derived in [11]. The contributions of the

shear and the rotation to the total force are decoupled, which is the same as in the special

case studied by Liu and Bogy [11].

As in the continuum case [9], the torque T is independent of Uf0. However, due to

the rarefaction of the gas, the torque here is proportional to the tangential accommodation

coefficient στ . The normal accommodation coefficient σp does not come into play since the

normal force at any location on the surface of the sphere produces no torque. The first term

in Eq. (22) is induced by the particle’s rotation and is along the direction of the axis of

rotation. A similar result exists for a particle rotating in a continuum flow, since, due to

asymmetry of the flow field, the forces experienced by the upper half and lower half spheres

are different, and torque arises. The last term in Eq. (22) is induced by the nonuniformity of

the flow and points to a direction perpendicular to both the flow direction and the gradient

of the flow. A particle moving in a linear shear flow of a continuum fluid experiences a
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similar torque, which is again induced by the asymmetry of the flow field around the sphere.

The second term in Eq. (22) is due to the coupling effect of the shear and the rotation.

This term is absent in the classical analysis of a particle rotating in a linear shear flow of

a continuum fluid [9]. This kind of classical analysis is usually based on the linear Stokes

equation, which is a reduced Navier–Stokes equation for the case when the flow velocity is

so small or the viscosity is so large that the inertial effect can be neglected. Due to the

linearity of the Stokes flow, the effects of rotation and shear are decoupled and no coupling

terms similar to the second term in Eq. (22) appears. Lift force can not exist in such a

Stokes flow analysis as well. In a classical paper analyzing the motion of a sphere in a weak

shear flow of a continuum fluid, Saffman [9] used a perturbation method [13] and derived

an analytical formula for the lift force on the sphere. Due to the complexity involved in this

derivation, he did not carry out the study of the torque to the same level of approximation

as the lift force. Since the Navier-Stokes equation itself is nonlinear, coupling between the

shear and the rotation effects might also exist for the continuum case based on it rather

than the Stokes approximation.

The terms solely due to the rotation effects, i.e., the first terms in Eq. (21) and (22),

are independent of the Knudsen number while the other terms, involving G, are all of first

order in the Knudsen number KnG since the term λG can be written as Uf0λ/(Uf0/G), or

Uf0KnG. This fact is consistent with our use of the Chapman-Enskog distribution function

where only terms up to the linear order in KnG are retained.

Given the formulae Eqs. (21) and (22), the motion of particles in a shear flow of a highly

rarefied gas, with appropriate initial conditions, can be determined from Newton’s second

law

m
dUf0

dt
=− F (23)

Ip
dΩ

dt
=T (24)

where t is the time and Ip is the moment of inertia of the particle.

In summary, the force and torque on a spherical particle in a weak shear flow of a highly

rarefied gas are investigated in this report. Built upon previous results for the forces on a

unit area of the surface of the sphere, we derive analytical formulae for the force and the

torque, which include as special cases Wang’s formula [8] for the force on a sphere rotating
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in a uniform flow of a highly rarefied gas and Liu and Bogy’s formula [11] for the force on

a sphere rotating around an axis restricted to be along the same direction as the gradient

of the flow in a linear shear flow of a highly rarefied gas. The present formulae show that

the coupling effect of the shear and rotation does not appear in the force but it is present

in the torque. When the characteristic length scale of a general flow is much larger than

the size of the particle, the flow can be locally approximated as a linear shear flow and the

present formulae can then be used to calculate the force and torque on the sphere in this

case as well. This knowledge of the force and torque on the sphere lays a foundation for the

analysis of the motion of particles in the above mentioned cases.
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