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Abstract 

A reliable model of the heat transfer at the air bearing surface of the flying head slider 

is important for treating thermomechanical aspects of the molecular gas lubrication 

system in hard disk drives. This paper proposes a new model for heat transfer in the head 

disk interface, which considers both the heat conduction and viscous dissipation. The 

conduction heat flux based on this model shows better agreement with numerical results 

of the linearized Boltzmann equation than existing models derived from the temperature 

jump theory. The viscous dissipation of plane Couette flow as well as that of plane 

Poiseuille flow in the gas film is analyzed using the energy conservation equation instead 

of the linearized Boltzmann equation, which is incapable of calculating the viscous 

dissipation at the boundaries. The new model gives simple analytical expressions for the 

heat flux contributed by heat conduction and viscous dissipation, and it can be easily 

applied to numerical thermomechanical simulations of the slider’s performance.



I. INTRODUCTION 

Heat transfer and thermomechanical issues become more important to the molecular 

gas lubrication system in hard disk drives as the flying heights of air bearing sliders 

reduce to one or two nanometers in order to achieve higher magnetic recording densities. 

In the read/write head of a slider, the write current not only induces thermal disturbances 

to the read-back signal, due to the temperature-dependence of the read head’s 

magnetoresistance1, but also causes a thermal deformation of the slider’s air bearing 

surface (ABS), resulting in a greater possibility of slider-disk impact. Recently a thermal 

actuation technology2, known as thermal flying height control (TFC) or dynamic fly 

height (DFH), has been developed to make use of the thermal protrusion of the head pole 

tip to achieve a lower flying height and a higher recording density of hard disk drives. In 

this technology, a micro heating element embedded in the slider body controls the 

protrusion and slider-disk gap through its input Joule heating current. The heat transfer 

between the slider and the disk affects the temperature distribution inside the slider and 

the deformation of the slider at the trailing edge. Thus, an accurate description of the heat 

transfer on the ABS is important to numerical analyses of the slider’s performance.3 

Several models for the heat transfer in the head disk interface (HDI) have been 

proposed to calculate the heat flux on the slider’s air bearing surface for the simulation of 

either the read head temperature or the flying attitude of a thermally actuated slider. 

Zhang and Bogy4 solved the reduced Navier-Stokes equation with velocity slip and 

temperature jump boundary conditions and obtained an analytical formula for the heat 
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transfer in the HDI. Chen et al.5 extended Zhang and Bogy’s work by including the work 

done by the pressure gradient. Simulations based on their new formula compare well with 

experimental results.5 Since both of these approaches are based on the slip flow theory, it 

is not guaranteed that these formulae are applicable for transition flows or free molecular 

flows. Ju6 used the direct simulation Monte Carlo (DSMC) method to numerically 

analyze the heat conduction and viscous dissipation induced by plane Couette flow. His 

results showed that the heat conduction model based on the temperature jump theory 

holds even for a highly rarefied gas. For the viscous dissipation contributed by Couette 

flow, he proposed an empirical formula that fits well with his DSMC results. Since the 

heat transfer in the HDI is also contributed by other mechanisms than those discussed by 

Ju, Shen and Chen7 started with a linearized BGK-Boltzmann equation to analyze this 

problem. They showed that the heat transfer can be essentially divided into two parts: 

heat conduction and viscous dissipation due to the Couette and Poiseuille flows. Their 

results are, however, not fully consistent with the results based on the linearized 

Boltzmann equation, which shows that viscous dissipation vanishes in the flow. 

In this paper, we separately analyze the heat conduction and viscous dissipation using 

different approaches. For the heat conduction, we modify the mean free path by including 

the effects of the boundaries, i.e., the slider and the disk. Our results agree better with the 

numerical calculations based on the linearized Boltzmann equation. For the viscous 

dissipation, we adopt an approach that is different from that used by previous researchers. 

Here, we instead work with the conservation equations and intrinsic symmetry of plane 
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Couette and Poiseuille flows and obtain analytical formulae for viscous dissipation at the 

boundaries in both flows. 

II. CONDUCTION HEAT FLUX MODEL 

The first attempt to model the heat conduction in the gas lubrication film between a 

slider and a disk, as shown by Fig. 1, used the temperature jump boundary condition in 

solving the energy equation.4, 5, 6 This boundary condition states that the temperature 

jump between a boundary plate and the gas at the boundary is proportional to the local 

temperature gradient, 
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where Tw, σT and n are the temperature, the thermal accommodation coefficient and the 

unit outer normal of the boundary plate, respectively; Pr is the Prandtl number, γ is the 

specific ratio and T is the temperature of the gas at the boundary; Kn is the Knudsen 

number, which is defined as the ratio of the mean free path of gas molecules λ to the gas 

film thickness h, i.e. Kn=λ/h. Through this approach, Zhang and Bogy4, among others, 

showed that the conduction heat flux at the bearing surface is, 
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where k is the gas thermal conductivity, and Ts and Td are the temperatures of the upper 

and lower boundary plates, i.e. the slider and disk. When the boundary plates are fully 

diffused, i.e. σT = 1, the non-dimensional heat conduction flux can be written as7, 
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where ρ0 is the temperature, T0 is the ambient gas density, R is the specific gas constant 

and /(2 ) /(2 )D Kn hπ π λ= =  is referred to as the inverse Knudsen number. For a 

general σT less than 1, the non-dimensional heat conduction flux is, 
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It is seen that the mean free path λ is an important parameter in the temperature jump 

boundary condition and the conduction heat flux. In kinetic theory, the mean free path is 

defined as the average distance traveled by gas molecules between two collisions at the 

equilibrium state, where there is no presence of boundary plates. It is a function of the gas 

temperature and pressure. It can be seen that the free distance traveled by a gas molecule 

is reduced if that molecule is close to a boundary plate. The effect of the boundary plate(s) 

on the free path of gas molecules needs to be considered. Such a modified mean free path 

appears to be more applicable to the temperature jump theory. 

The modified mean free path of gas molecules due to two parallel boundary plates is 

calculated in two steps. First, the free path distance of one molecule affected by one or 

two plates is calculated, respectively. Figure 2(a) shows the case of one molecule close to 

one plate. Here it is assumed that the molecule’s collision with another molecule is 

almost sure to happen when it travels a distance λ. This means that only when the 

distance d between the molecule and the boundary is less than λ will its mean free path be 
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affected by the presence of the plate. A second assumption is that the velocity directions 

of molecules are uniformly distributed in the 3-D space. For the molecule in Fig. 2(a) 

with a distance d < λ from the boundary, when the angle θ between the molecular velocity 

and the normal of the boundary is larger than arccos(d/λ), the molecule’s free path 

distance is still λ. When the angle θ is less than arccos(d/λ), the molecule’s free path 

distance becomes d/cos(θ). The corresponding possibility of the molecule’s collision with 

the boundary at an angle θ and in a solid angle dω, where dω=sin(θ)dθdφ with φ 

denoting the azimuthal angle, is sin(θ) dθ/2. Then the mean value of the free path of that 

molecule is, 
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Similarly, the mean free path λ2 of one molecular affected by two boundaries in Fig. 2(b), 

can be obtained as, 
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Second, the modified mean free path of the gas film is taken as the average value of the 

mean free paths of all molecules in the gas film. Among all of the gas molecules between 

two boundary plates, some of them are affected by one boundary if their positions satisfy 

(d-λ)(h-d-λ) < 0, some of them are affected by two boundaries if their positions satisfy d 

< λ and h-d < λ and the others, which satisfy d > λ and h-d > λ, are not affected by any 
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boundary. Here we assume that the gas molecules are uniformly distributed between the 

two boundaries. After some algebra in the mean calculation, the modified mean free path 

of the gas molecules between two boundary plates can be written as, 
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Although this result is similar to that obtained by Peng et al.8, the main difference lies in 

that we consider the effect of the two boundaries at the same time while Peng et al. only 

considered one of them. 

With this modified mean free path, we can define a modified Knudsen number and a 

modified inverse Knudsen number as, 
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A new heat conduction model is now proposed with the consideration of the effect of 

two parallel boundary plates on the gas mean free path. When the modified mean free 

path takes the place of the original mean free path in the temperature jump boundary 

condition, the temperature jump and non-dimensional conduction heat flux keep their 

original forms in Eqs. (1) and (4) with Kn and D replaced by Knm and Dm, respectively. It 
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is important to emphasize that the modified mean free path is unnecessary for a gas film 

heat conduction model based on the Boltzmann equation since the mean free path in the 

Boltzmann equation with the BGK model or any other model is a characteristic value of 

the gas molecule model and the boundary effects are included there as the boundary 

conditions. 

The new gas film heat conduction model still relies on the temperature jump theory, 

and it is not directly proved from kinetic theory. However, it is in good agreement with 

the model based on the linearized Boltzmann equation by Bassanini et al.9. Figure 3 

shows the dependence of the non-dimensional heat conduction flux on the inverse 

Knudsen number D in Colors blue, red and green for the thermal accommodation 

coefficients of the boundary plates having the values 1, 0.826 and 0.759, respectively. For 

different thermal accommodation coefficients, results based on the new model (solid lines) 

agree well with Bassanini’s results obtained through a variational approach for the 

linearized Boltzmann equation with the BGK model9 (triangles). As shown by Fig. 3, the 

results based on the original definition of the mean free path4 overpredict the heat flux, 

especially for inverse Knudsen numbers D < 1. 

One important point to be noted is that this new model, which is based on the 

temperature jump theory and the modified mean free path, is very simple and easy to 

implement in any practical simulation of thermomechanical issues of the gas lubrication 

system in thermally actuated sliders. 

The temperature dependence of the mean free path was taken into consideration by 
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Zhou et al.10 Their approach can be viewed as another way of modifying the mean free 

path. In their approach the variable soft sphere model11 is used to calculate the mean free 

path for the heat conduction model base on the temperature jump theory. Their modified 

mean free path is expressed as, 

0
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T
T

ωλ ξ λ+= ,        (10) 

where the parameters ξ and ω are recommend to be in the range 0.80-0.85 and 

approximately 0.75 for the air film, respectively, and
0 ,T HSλ  is the mean free path of 

hard-sphere molecules at the reference temperature T0. 

Figure 4 shows a comparison of the conduction heat flux based on the modified mean 

free path model developed here with the heat flux based on the mean free path in Eq. (10). 

Here T0 = 288 K and σT = 1. The non-dimensional heat flux based on Zhang and Bogy’s 

model, Eq. (3)4 (dashed line), is close to that based on Zhou’s model10 for T = T0 

(dash-dot line) and T = T0 + 80 K (dotted line). Compared with the new model presented 

here (solid line), both Zhang and Bogy’s and Zhou’s model overestimate the heat flux, 

especially when D is less than 1. Thus we can conclude that the temperature effect on the 

non-dimensional heat flux is much smaller than the effect caused by the modification of 

the mean free path in Eq. (7). 

III. VISCOUS DISSIPATION 

The preferred way to address the viscous dissipation in a rarefied gas is to use the full 

Boltzmann equation, but it is complex and makes analysis formidable. Since the gas 
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velocity in our case is much smaller than the molecular thermal velocity, the Boltzmann 

equation can be linearized. This is essentially the approach adopted by Shen and Chen7. 

In view of the discussion of the similarity solution by Sone12, the gas flow with heat 

transfer in the HDI, when analyzed in the framework of the linearized Boltzmann 

equation, can be divided into two separate problems: heat conduction between two 

boundary plates at different temperatures and viscous flow between two plates at the 

same temperature. The first problem has been studied in section 2. We now turn our 

attention to the second one and discuss the application of the linearized Boltzmann 

equation to this problem. 

The relation between a general gas molecular velocity distribution f and the Maxwell 

distribution f0 of its equilibrium state at rest is written as13, 

f=f0(1+φ),         (11) 

whereφis viewed as a non-dimensional velocity distribution function, i.e.φ= f/f0 -1. As 

an approach to the analysis of gases that deviate slightly from the equilibrium state at rest, 

the linearized Boltzmann equation neglects all of the nonlinear terms of φ13. Following 

this linearization, the nonlinear terms in φ are also neglected in all of the expressions of 

macroscopic physical variables in terms of the velocity distribution function13. Then, the 

non-dimensional heat transfer flux Qy is reduced to, 

2 2 2 3/ 2 2 2 2 5( ) exp( )
2y y x y z x y z x y z yQ d d d Uξ ξ ξ ξ φπ ξ ξ ξ ξ ξ ξ−= + + − − − −∫∫∫ ,   (12) 

where ξi is the non-dimensional molecular velocity and Uy is the non-dimensional 

macroscopic velocity. In kinetic analyses of a molecular gas lubrication film, it is always 
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assumed that the flow velocity in the film thickness direction is negligibly small7,14, 

resulting in an approximation Uy = 0. Using the linearized Boltzmann solution ofφ with 

the BGK model for the molecular gas lubrication7, 14, it can be shown that the first term in 

Eq. (12) vanishes as well. Hence, the heat flux Qy = 0 for the molecular gas lubrication 

film between two boundary plates at the same temperature. This means that the 

BGK-linearized Boltzmann equation gives a zero heat flux perpendicular to the boundary 

when viscous dissipation is considered in the gas lubrication film. The same conclusion is 

arrived at when the linearized Boltzmann equation with the hard-sphere molecular model 

is solved12. 

Therefore, in order to analyze the heat transfer in the head disk interface, we need to 

go beyond the linearized Boltzmann equation and work with the full Boltzmann equation 

instead. Even with the BGK model, the full Boltzmann equation is formidable to analyze. 

Here, we propose to use instead the conservation equations, which are satisfied by the full 

Boltzmann equation, together with some intrinsic properties of plane Couette and 

Poiseuille flows to address the viscous dissipation problem. A treatment from another 

point of view will be presented in a separate paper. 

i) Viscous dissipation due to Couette flow 

Here we analyze the viscous dissipation in a Couette flow between two boundary 

plates at the same temperature. We again make the assumptions that the flow velocity in 

the thickness direction of the gas film is negligible and that the film thickness is much 

smaller than its length. So the gas flow and heat transfer are expected to have no change 
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with respect to the x-direction. 

Figure 5 shows a plane Couette flow, two parallel boundary plates and the coordinate 

system. In this coordinate system, the upper boundary is moving to the left with a speed 

u0/2 and the lower boundary is moving to the right with the same speed. Here u0 is 

assumed to be much smaller than the molecular thermal speed, which is the case in the 

head disk interface. The plane Couette flow is skew-symmetric with respect to its center 

line in the x-direction of this coordinate system. The choice of this particular coordinate 

system has no effect on the calculation of heat flux, since the flow is subsonic. 

Due to the slip at the boundary when the gas is rarefied, the gas next to the boundary 

moves relative to it and thus the friction force does work and induces energy dissipation 

as well. Thus, we here distinguish two cases, as shown by Figs. 5(b) and 5(c). In the first 

one, we focus on the viscous dissipation in the Couette flow with no boundary plates. In 

the second one, we include the boundary plates and discuss the total viscous dissipation. 

Let us consider the first case with no boundary plates. A control volume across the 

flow boundaries with length dx is set up, as shown by Fig. 5(b). According to kinetic 

theory, the integral form of the steady state energy conservation equation for this control 

volume is, 
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where η is the gas enthalpy per unit mass, ρ is the gas density, qi is the heat flux, ui is the 
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flow velocity (i = x, y or z) and τxy is the shear stress in the gas. Notice that uy = 0 under 

our assumption. The plane Couette flow does not change in the x-direction, so all of the 

derivatives with respect to x are zero. Then, both of the terms on the left hand side and 

the first term on the right hand side of Eq. (13) vanish. Due to the skew-symmetry of the 

Couette flow with respect to its center line, the heat flux qy, the flow velocity ux and the 

shear stress τxy have the same magnitude at the upper and lower flow boundaries. In the 

coordinate system as shown by Fig. 5(a), we have qy|y=0 = -qy|y=h, ux|y0 = -ux|y=h and τxy|y=0 

= τxy|y=h. Using these relationship in Eq. (13), we arrive at, 

| | |  y y h xy y h x y hq uτ= = == .                          (14) 

As a check of Eq. (14), we consider two limit cases: slip flows and free molecular 

flows. For slip flows, 0
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α denotes the surface momentum accommodation coefficient of the boundary plate. The 

heat flux given by Eq. (14) is then written as 
2

0
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u h
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μ
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α
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+
 and it is exactly the 

result obtained by Zhang and Bogy4. 

For free molecular flows, ux = 0, and Eq. (14) gives a zero heat flux at the gas 

boundaries. In kinetic theory, the velocity distribution function of gas molecules for 

free-molecular Couette flow is15, 
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where ci is the molecular velocity in the i-direction with i = x, y or z. The macroscopic 

heat flux qi is 
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Using Eq. (15) in Eq. (16), we get  
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which is the same as that obtained from Eq. (14).  

In the second case where the dissipation due to the relative motion of gas on the 

boundaries is included, we change to another control volume that includes the upper and 

lower plates as shown by Fig. 5(c). The plates are assumed to be thin and have a constant 

temperature. Under the approximation uy = 0, the integral form of the energy conservation 

equation can be written as, 
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where τ|upper and τ|lower are the external shear stresses acting on the upper and lower thin 

plates to balance the flow friction, and qy|upper and qy|lower are the y-components of the heat 
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flux vector on the upper and lower plates, respectively. The left hand side of Eq. (18) 

represents the net flux of the thermal and kinetic energy. The first bracket on the right 

hand side of Eq. (18) represents the heat flowing into the control volume and the second 

represents the work done by external forces. Due to the skew-symmetry of the 

boundary-plate-and-Couette-flow system with respect to the center line, it is still valid 

that qy|upper = -qy|lower. Similar to the first case, all the derivatives with respect to x vanish. 

We note that the external shear stresses satisfy τ|upper = τxy|y=h and τ|lower = τxy|y=0. Using all 

these in Eq. (18), we get 

0( )
2y xyupper y h

uq τ
=

= − .       (19) 

This is the heat flux at the upper boundary plate. 

Based on the method of moments, Liu and Lees16 obtained the shear stress on the 

upper boundary in a Couette flow between two diffusely reflected boundary plates as, 

0
0

2
2xy y h

RTu
d
λτ ρ
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Then Eq. (19) becomes 

21 8 1
8 / 2 1y upper

RTq U
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ρ
π λ
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                     (21) 

This is essentially the empirical viscous dissipation model proposed by Ju for Couette 

flow6, which gives results that agree well with his DSMC results. Ju explained the 

difference between Eqs. (14) and (19) as a result of the less frequent intermolecular 

collisions than collisions between fluid molecules and the plates. As shown in our 

derivation, Eqs. (14) and (19), however, correspond to the heat transfer in different cases, 
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and their difference is caused by the flow velocity slip at the boundary plates. Thus, 

Zhang and Bogy’s slip-flow-based result4 and Ju’s semi-analytical result6 for the 

Couette-flow caused viscous dissipation refer to different heat fluxes. 

Using a more accurate expression of the shear stress in Couette flow, valid for the 

entire Knudsen number regime17, we get the following analytical formula for the viscous 

dissipation due to the Couette flow at the upper boundary plate, i.e. the bearing surface, 

as, 

2 2
0

2

2 0.5296Kn 1.2058Kn
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+
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+ +
      (22) 

ii) Viscous dissipation due to the Poiseuille flow 

Viscous dissipation in plane Poiseuille flow, as shown by Fig. 6(a), is analyzed in a 

similar manner as for the Couette flow. We assume that the gas pressure p satisfies 

h(∂p/∂x)/p0 << 1, where p0 is the ambient gas pressure, and the pressure-driven flow is 

subsonic. Since the gas film thickness is small, the velocity uy is also negligible. Here, we 

again consider two cases. We first take a control volume of the flow without boundary 

plates, as shown by Fig. 6(b). The steady state linear momentum conservation of the flow 

in the control volume is, 

0
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p RT

ρ
= << . Hence x xu u pρ − can be 

approximated by – p. The symmetry of Poiseuille flow with respect to the center line 
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produces τxy|y=0= – τxy|y=h. Finally Eq. (23) gives, 

2xy
h p

x
τ ∂

=
∂

.         (24) 

This agrees with the result obtained by Bahukudumbi and Beskok18, but here fewer 

assumptions are needed. 

The integral form of the steady state energy conservation at the control volume in Fig. 

6(b) is, 
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Notice that η=e+p/ρ, where e is the gas internal energy per unit mass, and that 

ρuxux/p<<1. The left hand side of Eq. (25) can be approximated by
0
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= ux|y=h. So finally Eq. (25) can be transformed to, 
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This is the heat flux in the gas flow at y = h contributed from viscous dissipation. 

Now we consider the second case and take a control volume that includes the thin 

boundary plates, as shown by Fig. 6(c). The total heat flux in this case is 

0

1 ( )
2

h

y x xupper
q u q dy

x
ρ η∂

= − +
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since the boundary plates remain stationary. 

This heat flux contributed by viscous dissipation reduces to zero if two assumptions 

of the flow are imposed. If the flow is still assumed to be near isothermal and the gas 

enthalpy is η = CpRT, where Cp denotes the gas specific heat at constant pressure and is 
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constant, we can show that ∂(ρuxη)/∂x=CpRT∂(ρux)/∂x=0, since the steady state mass 

conservation equation gives the relation ∂(ρux)/∂x=0. If it is also assumed that the 

derivative ∂(qx)/∂x vanishes, finally we have 0y upper
q = . Under the above two 

assumptions, Eq. (26) reduces to ( / 2)( / )y x y hy h
q h p x u

==
= ∂ ∂ , which is what Shen and 

Chen obtained. In a slip flow, (1/ 2 )( / ) (2 ) /x y h
u p x hμ λ α α

=
= − ∂ ∂ − , and Eq. (26) in the 

flow at y = h is written as 2( / 4 )( / )(2 ) /y y h
q h p xλ μ α α

=
= − ∂ ∂ − . This is the same as the 

expression obtained by Chen et al. for slip flows5. Following our derivation, Eq. (26), 

however, only accounts for the part of the total viscous dissipation corresponding to the 

Poiseuille flow. It should be emphasized that the total heat flux at the upper boundary 

plate is 0y upper
q = , if the flow is still isothermal and the heat flux in x-direction does not 

change. 

IV. CONCLUSIONS 

A phenomenological heat transfer model for the molecular gas lubrication system in 

hard disk drives is proposed. The conduction heat flux due to the temperature difference 

of the slider and disk is obtained using the temperature jump theory and the modified 

mean free path where the effects of the presence of the two boundaries are included. The 

obtained conduction heat flux agrees better with the results from the linearized 

Boltzmann equation than previous models based on the classical mean free path. The 

linearized Boltzmann equation has been shown to be incapable of calculating the heat 

flux contributed by the viscous dissipation in Couette and Poiseuille flows. Instead, here 

the viscous dissipation in the gas lubrication film is analyzed through the energy 
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conservation equation. The viscous heat flux at the gas film boundary is different from 

that at the corresponding boundary plate in either Couette flow or Poiseuille flow, due to 

the gas slip at the boundary. Expressions for the heat flux contributed from viscous 

dissipation in Couette flow and Poiseuille flow are obtained separately. 
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FIG. 1. Gas lubrication film in the head disk interface between the slider and the disk 

 

 

(a) One gas molecule and one boundary plate 

 

 

(b) One gas molecule between two boundary plates 

 

FIG. 2. One gas molecule moves close to a plate (a) or between two plates (b) 
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FIG. 3. Comparison of the non-dimensional heat conduction flux (Qcon) between two 

parallel plates obtained from the new model with the original temperature jump theory 

model4 and the linearized Boltzmann equation9. 

 

 

 

FIG. 4. Comparison of the non-dimensional heat conduction flux (Qcon) between two 

parallel plates obtained from the new model with the original temperature jump theory 

model4 and Zhou’s model10. 



 

(a) Plane Couette flow 

 

 

(b) Control volume of gas flow 

 

 

(c) Control volume including the upper and lower boundary plates 

 

FIG. 5. Couette flow between two plates of the same temperature (a), a control volume 

of gas flow (b) and a control volume of gas flow with upper and lower boundaries (c) 
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(a) Plane Poiseuille flow 

 

(b) Control volume of gas flow 

 

(c) Control volume including the upper and lower boundary plates 

 

FIG. 6. Poiseuille flow between two plates of the same temperature (a), a control 

volume of gas flow (b) and a control volume of gas flow with upper and lower 

boundaries (c) 

 

h 
y 

∂p/∂x < 0 

h 

dx

h 

dx

x 


