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ABSTRACT

Analytical formulae for drag and lift forces serve as a basis of simulating the motion of

particles in a flow, which is required for the understanding and prediction of particle con-

tamination, dispersion and deposition. In this paper, we use a perturbation method to solve

the Navier-Stokes equation with the Maxwell slip boundary condition and obtain these for-

mulae for spherical particles with slip boundary conditions, which act as a model for particles

moving in a slightly rarefied gas as well as particles with hydrophobic and porous surfaces

moving in a liquid. These formulae will facilitate our simulation of the motion of particles

moving in a rarefied gas.
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1 INTRODUCTION

Lift forces play an important role in understanding and numerically simulating the motion

of particles in a non-uniform flow field, such as Poiseuille and Couette flows. These forces

cause small particles to drift, i.e., move perpendicular to the streamline, which serves as

a mechanism for a variety of phenomena involving the motion of particles, such as particle

contamination on a slider flying over a moving disk in a hard disk drive [1], particle dispersion

in a turbulent stream and deposition of particles–such as drugs–in the human respiratory

tract, among others [2].

Two ways to simulate the motion of particles are Lagrange’s and Euler’s approaches,

in which the particle’s trajectory and the particle’s density as a function of location are

calculated, respectively [2]. Both approaches depend on analytical formulae for lift forces,

which are currently only available for solid spheres with non-slip surfaces. This restriction

does not hold when small particles are moving in a slightly rarefied gas, for which the mean

free path, denoted by λ, is comparable to the characteristic size of the particle L. The

Knudsen number, defined as Kn = λ/L, in this case is not much less than 1. To capture

this phenomenon, allowance should be made for velocity slip on the surface of the sphere,

i.e. a velocity jump in the tangential direction between the velocity of the sphere and that

of the flow field on the surface of the sphere. Velocity slip also appears on hydrophobic and

porous surfaces [3]. Although the slip effects on drag force have been widely studied [4],

little is known about their influence on lift forces [5]. Thus in the simulation of the motion

of particles where velocity slip appears, the formula for the lift force without any slip effects

is used together with the formula for the drag force with slip effects included. [1] [2]. This

paper serves to remove this inconsistency by providing analytical formula for the lift forces

also, which will facilitate the simulation of particles in the above mentioned cases.

In a non-uniform flow, lift forces on a solid particle are mainly induced by two mech-
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anisms [5]. The first is related to the gradient of the flow. Saffman [6] investigated this

mechanism in a weak shear flow by using a matched asymptotic expansion to include the

inertial effects, which are neglected in creeping flow. His result shows that this lift force,

also known as the Saffman force, is

FSaffman = 6.46µUR2

√
|k|ρ
µ

sgn(k) (1)

where µ is the viscosity of the fluid, U is the velocity of the sphere relative to that of the

fluid at the center of the sphere, R is the radius of the sphere, k is the gradient of the shear

flow, ρ is the density of the fluid and sgn(·) is the sign function. Saffman’s result holds under

the assumptions that Rek = |k|R2ρ
µ

¿ 1, Rep = URρ
µ
¿ 1 and Rep ¿

√
Rek. McLaughlin [7]

removed the last restriction by including the convection due to the fluid flow. He showed

that the Saffman force in this case becomes

FSaffman =
9

π
µUR2

√
|k|ρ
µ

Jsgn(k) (2)

Here J is a complicated integral, which has been numerically integrated by McLaugh-

lin [7], and it approaches 2.255 when Saffman’s restrictions are satisfied. Legendre and

Magnaudel [8] extended Saffman’s and Mclaughlin’s results to the case of a spherical bubble

or droplet. They showed that Eq. (2) applies if a correction factor is added to it.

The second mechanism is related to the rotation of particles, and it was first investigated

by Rubinow and Keller [9]. Their results can also be obtained in the framework of Saffman’s

approach [6]. This lift force is, however, one order smaller than the Saffman force for small

particles with moderate angular velocities and, thus, is not considered here. In this paper,

we follow Saffman’s approach as well as later extensions of it to obtain formulae for the drag

and lift forces as well as the torque on the sphere.
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2 STATEMENT OF THE PROBLEM

We consider here a rotating sphere with angular velocity Ω in a weak shear flow, for which

the velocity field, u, satisfies

−∇p + µ∇2u = ρu · ∇u (3)

A coordinate system is set up with its origin lying at the center of the sphere. Its x axis

x


y


z


Ω


Figure 1: The coordinate system

points to the flow direction while the z axis coincides with the gradient of the flow field, as

shown in Fig. 1.

The boundary condition remote from the sphere is that the influence of the presence of the

sphere vanishes, i.e. the velocity u approaches (U +kz)ex as r goes to infinity. On the surface

of the sphere, the Maxwell slip boundary condition allowing for velocity slip is enforced. It

requires that the velocity jump in the tangential direction be linearly proportional to the

shear stress on the surface of the sphere [3] [10] [11], or

β(u− (u · n)n) = τ · n− (n · τ · n)n at r = R (4)
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where, in a slightly rarefied gas, β is inversely proportional to the mean free path of the air

λ. The classical Maxwell slip boundary condition states that β = σ
2−σ

µ
λ

where σ is a constant

related to the material property of the sphere, and it needs to be determined experimentally.

For a hydrophobic or porous surface β is related to the slip length λs. The last boundary

condition is the continuity of the normal velocity on the surface of the sphere:

u · n = 0 at r = R (5)

As shown by Saffman [6], the force on the sphere can be expressed as

F = −
∫

p
r

r
dS −

∫
u

r
dS − r

d

dr

∫
u

r
dS − ρ

∫
u
u · r

r
dS (6)

where the integrals are performed on any spherical surface concentric to the sphere and with

r ≥ R. When the integrals are calculated on the surface of the sphere, i.e. with r = R, the

last term vanishes due to the boundary condition Eq. (5).

Since the Reynolds number of interest here is quite small, the right hand side of Eq. (3),

due to the inertial effect, is also very small. Thus the inertia will only introduce a small

correction to the solution of corresponding creeping flow, which satisfies Eq. (3) with a zero

right hand side. Therefore the solution can be expand in the order of Reynolds number, or,

correspondingly, the inverse of the viscosity. Since the lift force is actually a first order effect,

terms of an order higher than 1 are neglected in the expansion. We use superscripts (0) and

(1) to denote zeroth and first order solutions. For example, the velocity is u = u(0) + u(1).

Substituting the expansion of each quantity into Eq. (3), we find the zeroth order solution

satisfies the equation of creeping flow and is subject to the above three boundary conditions.

The solution is obtained here by using Lamb’s general solution [10]. Following Lamb’s
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original notation, the general solution of the creeping flow is

u(0) = (U + kz)ex

+
1

µ

∑{
r2

2(2n + 1)
∇pn +

nr2n+3

(n + 1)(2n + 1)(2n + 3)
∇ pn

r2n+1

}
+

∑
{∇φn +∇χn × r} (7)

and

p(0) =
∑ pn

rn
(8)

Here pn, φn and χn are solid spherical harmonics and satisfy

xu + yv + zw =
1

µ

∑ nr2pn

2(2n + 3)
+

∑
nφn (9)

xξ + yη + zζ =
∑

n(n + 1)χn (10)

where {u, v, w} and {ξ, η, ζ} are the velocity and vorticity of the flow, respectively. When

the velocity remote from the sphere is used in Eq. (9)-(10), we find that only p0, p−2, p−3,

φ−2, φ−3 and χ−2 need to be considered. The determination of these nonzero terms involves

the application of the boundary conditions and is quite cumbersome. The final results are

p−2 = −3

2
µUR

2µ + βR

3µ + βR

x

r
p−3 = −36µ2R3 + 11µβR4 + 11β2R5

µ− 5
2
βR− β2

2µ
R2

kxz

r

φ−2 = −1

4
UR3 βR

3µ + βR

x

r
φ−3 = −

12µR5 + 6βR6 + 5β2

µ
R5

20µ− 50βR− 5β2

µ
R2

kxz

r

χ−2 =
βR4

3µ + βR
(Ω− 1

2
k)

y

r3

The term p0 is shown to be an undetermined constant, whose value is not of concern since

we will only encounter its gradient in the following derivation.

6



Making use of Eq. (6), we find the drag force is

F(0) =
2µ + βR

3µ + βR
6πµURex (11)

and the torque is

T(0) =
βR

3µ + βR
8πR3(

1

2
k − Ω)ey (12)

Due to the linearity of the equation of creeping flow, no lift forces can exist at this order.

Thus, we need to solve the first order system, which satisfies Eq. (3) with its right hand side

replaced by Q = ρu(0) · ∇u(0). As shown by Saffman [6], the non-zero integrals involved in

Eq. (6) are related to Q by

∫
p(1) r

r
dS =

∑ bnr
n+1

(n + 1)(n− 2)
+ A + Br3 (13)

∫
u(1)

r
dS =

∑ anrn+1

n(n + 1)
+

∑ bnr
n+1

n(n + 1)(n− 2)
+ Cr + D +

1

2
Br3 (14)

Here the terms containing an and bn correspond to a particular solution of Eq. (3) with a

non-zero right hand side Q, and an and bn are obtained from

∫
QdS =

∑
anrn (15)

∫
r∇ ·QdS =

∑
bnrn (16)

The other terms in Eqs. (13)– (14) are general solutions of Eq. (3) with a zero right hand

side and A, B, C and D are unknown constants to be determined by boundary conditions.

These terms dominate the lift force due to a non-uniform flow field [6].
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3 LIFT FORCE DUE TO A NONUNIFORM FLOW

FIELD

Legendre and Magnaudet’s solution, based on an order analysis, shows that the terms con-

taining an, bn and B are at least one order smaller than the others [8]. Thus, the two

integrals, after terms of smaller orders are neglected, become

∫
p(1) r

r
dS = A (17)

∫
u(1)

r
dS = Cr + D (18)

To get the lift force, we need to solve for the velocity field near the sphere and match it

with the far field solution to determine A, C and D. This process is actually not necessary

due to an observation first presented by Lengendre and Magnaudet [8]. The basic idea is

that only a relation between A, C and D is needed since C can be determined from the

far field solution, which itself is obtained from McLaughlin’s results, as shown below. Since

the particular solution containing A, C and D satisfies the same equation and boundary

conditions on the sphere as the zeroth order solution, the relationship between A, C and D

is obtained by a comparison with the zeroth order solution, for which,

∫
p(0) r

r
dS = −2πµUR

2µ + βR

3µ + βR
ex (19)

∫
u(0)

r
dS = 4πU(r − 2µ + βR

3µ + βR
R)ex (20)

Comparing Eqs. (17)– (20), we get

A = −2µ + βR

3µ + βR

µR

2
C D = −2µ + βR

3µ + βR
RC (21)
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Thus using Eq. (21) in Eq. (6), we get

Fz =
2µ + βR

3µ + βR

3µR

2
Cz (22)

The determination of Cz requires solving for the velocity field far from the sphere, which

satisfies

ρ(U + kz)
∂v

∂x
+ ρk(v · ez)ex = −∇p + µ∇2v − F0δ(r) (23)

where v = u− (U + kz)ex. The effect of the presence of the sphere on the far field solution

is included here as a point force opposite to the drag force on the sphere.

Due to the linearity of Eq. (23), Cz can be obtained from Eq. (23) based on McLaughlin’s

results and

Cz =
1

π2
|F(0)|

√
kρ

µ
Jsgn(k) (24)

where J is an integral which approaches 2.255 when Saffman’s restriction holds and has been

numerically evaluated by McLaughlin.

From Eqs. (11), (22) and (24), we obtain the Saffman force

Fslip
saffman =

9

π

(2µ + βR)2

(3µ + βR)2
µR2U

√
kρ

µ
Jsgn(k)ez (25)

4 DISCUSSION

For a sphere moving in a slightly rarefied gas, the continuum theory with a first order slip

boundary condition is only applicable for Knudsen numbers, corresponding to µ/βR here,

up to 0.1, beyond which the kinetic theory is needed. But as a check of our results, we

consider the case where the Knudsen number approaches infinity. In this case the problem is

the same as that for a spherical gas bubble moving in a weak shear flow, which has already

been studied by Lengendre and Magnaudet [8]. Our results show that the Saffman force is
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reduced to 4/9 of its value when no slip exists on the surface of the sphere, which agrees

with the results of Lengendre and Magnaudet.

For a sphere with hydrophobic or porous surfaces, it is more convenient to express all of

the results in terms of slip length λs = µ/β:

Fdrag = 6πµUR
2λs + R

3λs + R
ex (26)

Fslip
saffman =

9

π

(2λs + R)2

(3λs + R)2
µR2U

√
kρ

µ
Jsgn(k)ez (27)

T =
R

3λs + R
8πR3(

1

2
k − Ω)ey (28)
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Figure 2: The drag and lift forces as well as the torque on a sphere with slip flow. Each
quantity is nondimensionalized by its value with no slip. Kn = µ/βR for a sphere moving
in a rarefied gas and Kn = λs/R for a sphere with hydrophobic or porous surfaces.

Figure 2 shows how the forces and the torque change with µ/βR that corresponds to

the Knudsen number for a sphere moving in a rarefied gas and λs/R for a sphere with

hydrophobic or porous surfaces. Although the Knudsen number should be less than 0.1 for
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our formulae to apply, there is no limit on λs/R. Thus the abscissa in Fig. 2 goes from

0.01 to 10. Both the forces and the torque decrease with Knudsen number with the torque

decreasing fastest and the drag force slowest. The drag force is the same as that for a

stationary sphere lying in an otherwise uniform flow with velocity U.

5 CONCLUSION

The lift force on a sphere with slip at its surface in a weak shear flow is investigated in

this paper. The Maxwell slip boundary condition is used to model the velocity jump on the

surface of the sphere. By solving the Navier-Stokes equation with this boundary condition,

we obtain analytical formulae for the lift and drag forces as well as the torque. It is shown that

the formulae for a sphere with no-slip at its surface apply when different correction factors

are added for each formula. These obtained formulae serve as a basis for the calculation

of the motion of particles in a slightly rarefied gas as well as particles with hydrophobic or

porous surfaces in a liquid.
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