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ABSTRACT 

Slip-corrected Reynolds equations have not been widely used in the data storage air 

bearing simulations since Fukui and Kaneko [1] published a more accurate generalized 

lubrication equation (FK model) based on the linearized Boltzmann equation for the 

molecular gas lubrication. Recently some new slip models and slip-corrected Reynolds 

equations have been proposed with certain improvements or a kinetic theory basis. This 

report reanalyzes those slip models and lubrication equations developed after the FK 

model was published. It is found that all of the slip-corrected Reynolds equations are of 

limited use in the simulation of molecular gas lubrication, and that these new 

slip-corrected Reynolds equations can not replace the FK model in the air bearing 

simulation. 
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1. Introduction 

Slip-corrected Reynolds lubrication equations are important in the modeling of the 

low subsonic air bearing film in the head disk interface of hard disk drives. The classical 

compressible Reynolds lubrication equation is derived from the Navier-Stokes equation 

with the continuum no-slip boundary condition. It is not accurate when the gas 

rarefaction comes into effect, as happens when the slider to disk spacing is substantially 

less than the mean free path of the ambient gas molecules. In the past as the slider-disk 

gap was reduced from microns to nanometers, the velocity slip was taken into 

consideration. However, slip-corrected Reynolds equations have not been widely used in 

the air bearing simulations since Fukui and Kaneko [1] derived a more accurate 

generalized lubrication equation (FK model) based on the linearized Boltzmann equation 

with the Bhatnager-Gross-Krook (BGK) model [2]. The slip-corrected Reynolds 

equations may not be valid for ultra-thin air bearing films with local transition flows or 

free molecular flows, due to the limitation of the slip flow models. Contrarily, the FK 

lubrication equation, which has a similar form to that of slip-corrected Reynolds 

lubrication equations, is valid for arbitrary Knudsen numbers. 

A slip-corrected Reynolds lubrication equation is based on a slip model of the 

velocity boundary condition. The first-order slip model, which was originally developed 

by Maxwell [3], was incorporated into the Reynolds equation by Burgdorfer [5]. Hsia and 

Domoto [6] derived a second-order slip model using a Taylor expansion of the bulk mean 

velocity and obtained a new Reynolds equation. Mitsuya [7] developed a kinetic-theory 
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based so-called “1.5-order” slip model and modified the Reynolds equation accordingly. 

Recently Wu and Bogy derived a pressure gradient model [8] and new first- and 

second-order slip models [9] from a more physical point of view. Hwang [10] and Ng et. 

al. [11 and 12] obtained different slip models using a mathematical interpolation of the 

numerical results of the linearized Boltzmann equation or the DSMC method, 

respectively. Shen and Chen [13] analyzed the linearized Boltzmann equation with the 

BGK model for Poiseuille flow and derived a “first-order” slip model. Peng et. al. [14] 

modified the gas molecule’s mean free path due to the existence of boundaries of the air 

bearing film and applied this modification to different slip models and the corresponding 

Reynolds equations. Bahukudumbi and Beskok [15] obtained a Reynolds equation valid 

in a wide range of Knudsen numbers, using a modified slip boundary condition for steady 

plane Couette flows [16] and a generalized higher-order slip model for pressure–driven 

flows [17]. 

All of these efforts on slip-corrected Reynolds equations uncover certain physical 

aspects of rarefaction effects on an air bearing; however, they do not show any important 

advantages over the generalized Reynolds equation derived by Fukui and Kaneko [1], 

except for Wu’s work [8] and Peng’s modification of the mean free path [14]. Wu showed 

that, unlike the FK model, the 1.5-and second-order slip-corrected Reynolds equations do 

not have the unbounded air pressure singularities when the air bearing is at or near 

contact. Peng et. al. [14] applied the gas molecule’s modified mean free path to the FK 

model and changed the Poiseuille flow rate coefficient in the molecular gas lubrication 
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equation. 

The question arises as to whether or not these improvements should be incorporated 

into the numerical simulation of the air bearing film in a head disk interface. This report 

reanalyzes these slip models and the corresponding slip-corrected Reynolds equations. It 

is found that the improvements of these slip models and the corresponding slip-corrected 

Reynolds equations are of limited use in the air bearing simulation of molecular gas 

lubrication. The problem of a contact pressure singularity inherent in the FK model needs 

to be further analyzed. 

Nomenclature 

a= surface accommodation factor ( 2a α
α
−

= ) 

D = inverse Knudsen number 

h = spacing between the slider and disk or air bearing film thickness 

h0 = characteristic spacing between the slider and the disk 

H = non-dimensional form of h (H=h/h0) 

k = Boltzmann constant 

Kn = Knudsen number (Kn=λ/h) 

L = characteristic length or the radius of the base of an asperity 

m = mass of a molecule 

N = molecular number density 

n = unit outer normal of a boundary 

p = air bearing pressure 
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pa = ambient air pressure 

P = non-dimensional air bearing pressure (P=p/pa) 

QP,con = non-dimensional flow rate or flow rate coefficient for continuum Poiseuille flow 

(QP,con =D/6) 

QP = non-dimensional flow rate or flow rate coefficient for Poiseuille flow 

QC,con = non-dimensional flow rate or flow rate coefficient for continuum Couette flow 

(QC,con=1) 

QC = non-dimensional flow rate or flow rate coefficient for Couette flow 

PQ = relative Poiseuille flow rate coefficient ( ,/P P P coQ Q Q= n ) 

CQ = relative Couette flow rate coefficient ( ,/C C C cQ Q Q= on ) 

R = gas constant for 1 g gas (R = universal gas constant / gas molecular weight) 

T = gas temperature 

u = gas flow velocity 

U = velocity of the bearing surface or the disk 

uslip = slip velocity of the rarefied gas on a stationary wall 

Uslip = non-dimensional form of uslip (Uslip = uslip/U) 

ν = average molecular speed ( 2 2RTν
π

= ) 

α = surface (momentum) accommodation coefficient 

λ = mean free path of gas molecules 

λa = mean free path of gas molecules at the ambient pressure 
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λm = modified mean free path 

µ = viscosity 

τ = shear stress 

ρ = gas density (ρ=mN) 

2. Slip models and slip corrected Reynolds equations 

Slip models are the bases of slip-corrected compressible Reynolds equations. A 

compressible Reynolds equation is derived from the Navier-Stokes equations with 

velocity boundary conditions, the conservation of the mass flow rates, the equation of 

state of the compressible flow and the velocity boundary condition. In hard disk drives 

the disk’s rotation velocity is low subsonic. Usually it is assumed that the flow is 

isothermal, the pressure field is uniform in the film thickness direction, the inertial effects 

are negligible and the viscosity change due to the position and velocity is also negligible. 

The slip model prescribes the velocity boundary condition due to rarefaction, which 

usually depends on the velocity profile near the wall, the Knudsen number, the surface 

accommodation coefficient, the flow velocity gradient or pressure gradient or shear stress 

at the wall. 

In general the obtained slip-corrected Reynolds equations have the form, 

3 ( )[( ) 6 ) 12P
phQ ph p U ph
t

μ μ ∂
∇ ⋅ ∇ − =

∂
,      (1) 

where PQ  is the relative Poiseuille flow rate coefficient. The deviation of its value from 

1 represents the effect of the velocity slip on the gas flow. Its expression in terms of the 

(inverse) Knudsen number depends on the slip model used in the derivation. 
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Usually a compressible slip-corrected Reynolds equation does not contain the relative 

Couette flow rate coefficient, provided that the surface accommodation coefficients on 

both boundaries are close to each other. The surface accommodation coefficient is 

defined for the tangential momentum exchange of gas molecules with surfaces and it 

determines the velocity slip property of the boundary for slip flows. Due to the skew 

symmetry of Couette flow with respect to its center plane, the Couette flow rate does not 

depend on the velocity slip at the boundaries, provided that the slip conditions at the 

upper and lower boundaries are the same. On the contrary, the symmetry of Poiseuille 

flow with respect to the center plane results in a strong dependence of the Poiseuille flow 

rate on the slip conditions at the boundaries. 

2.1 Classical first-order [5], second-order [6] and 1.5-order [7] models 

Usually the temperatures of the slider and the disk surfaces are close to the ambient 

temperature. The air bearing film can be assumed to be isothermal, which has been 

validated using the linearized Boltzmann equation with the BGK model [1], and the 

thermal creep effect can be neglected in the velocity slip at the boundaries. Hence the 

first-order slip model, which was originally proposed by Maxwell in 1879 and contains 

the velocity jump and thermal creep, can be reduced to [3], 

2
slip

duu
dn

α λ
α
−

= .        (2) 

Burgdorfer [5] used this velocity slip model from Schaaf and Sherman’s work on slip 

flow [4] and derived a first-order slip-corrected Reynolds equation. A second-order slip 

model, 
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2 2

2

2 (
2slip

du d uu
dn dn

α λλ
α
−

= − ) ,         (3) 

was derived by Hsia and Domoto [6] and a new slip-corrected Reynolds equation was 

obtained. Hsia and Domoto also compared this Reynolds equation to their experimental 

results. This slip model has more of a mathematical basis than a physical basis. 

Equating the kinetic-theory based momentum transfer rate on a stationary wall and 

the macroscopic shear stress, Mitsuya [7] derived a “1.5-order” slip model, 

2
2

2

2 1 2( )
2 3slip

du d uu
dn dn

α λλ
α
−

= − ) .          (4) 

Although it is referred to as a 1.5-order slip model, it is actually a second-order type 

model, since the slip velocity contains the second order effect of the mean free path (or 

Kn in a non-dimensional sense). 

2.2 Wu’s pressure gradient model [8] and new first- and second-order models [9] 

Equating the macroscopic shear stress at the wall and the shear stress obtained from 

kinetic theory, Wu and Bogy proposed a pressure gradient model [8] and new first- and 

second-order slip models [9]. In the first model, the macroscopic shear stress is obtained 

from the balance of forces on a control volume with its height equal to the mean free path, 

which is shown in Figure 1(a), and it is expressed in the form, 

0 0| |z z
u P
z x

τ μ λ 0|z= = =

∂ ∂
= −

∂ ∂
,       (5) 

which is different from the conventional formula u
z

τ μ ∂
=

∂
of fluid mechanics for slip 

and continuum flows. 

The kinetic theory based shear stress is the momentum transfer rate from the gas 
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molecules to the solid wall [3], which is expressed as 

 
2(2 )

slipv uρ α
τ

α
=

−
                      (6) 

The slip velocity, obtained by equating these two expressions, is then, 

2 2(slip
u Pu
z c x

)α λλ
α ρ
− ∂ ∂

= −
∂ ∂

.    (7) 

The existence of the pressure gradient in the model is consistent with the fact that it is 

essentially a second-order slip type model. Using one of the reduced Navier-Stokes 

equations of Wu [8], 

 
2

20 p u
x y

μ∂ ∂
= − +

∂ ∂
, (8) 

and the viscosity of the hard sphere model 1
2

mNμ νλ=  [3], the slip model in Equation (7) 

changes to a second-order form, 

2
2

2

2 (slip
u uu
z z

α λ λ
α

)− ∂ ∂
= −

∂ ∂
.       (9) 

In the derivation of the new first- and second-order slip models [9], the conventional 

formula u
z

τ μ ∂
=

∂
 is used for the macroscopic shear stress at the boundary. The kinetic 

analysis of the momentum transfer rate, which still uses integration based on the 

continuum media assumption, obtains an expression of viscosity, 

 1
3

mNμ νλ= . (10) 

This equation is slightly different from the conventionally used expression of viscosity 

for the hard elastic sphere gas molecule model [19], 
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2 1
2

RT mNμ ρλ νλ
π

≈ = ,       (11) 

which is also used in the derivation of the pressure gradient model [8]. 

2.3 Shen and Chen’s model [13] 

Shen and Chen [13] did not solve the Boltzmann equation for the air bearing film, 

although the derivation of their slip model started from the linearized Boltzmann equation. 

With the linearized Boltzmann equation and a restriction of the flow to Poiseuille type 

with u=u(y) and P=P(x), shown in Figure 1(b), Shen and Chen [13] obtained the shear 

stress in the flow in the form of, 

 du dun kT
dy dy

τ τ μ= = ,  (12) 

and the shear stress at the wall in the form of, 

 

 0 0
1| [ | |

2 2y y
kT duu mn n kT

m d
τ α ι

π= == + 0 ]yy = ,  (13) 

For the hard sphere ideal gas molecule model, we have P RTρ= and n kTμ τ= . Hence 

the above Equation (13) can be rewritten as, 

 0 0| [ | |
2 2y y

duu mn
dy 0 ]y

μ μτ α
λ= == + = .  (14) 

Instead of equating the internal shear stress at the flow boundary, shown by Equation (12) 

evaluated at the wall (y=0), and the shear stress at the wall, i.e. Equation (13), and then 

producing the classical first-order slip model, Shen and Chen [13] adopted the balance 

equation of forces on a control volume at the wall. The control volume has a height equal 
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to the so-called effective mean free path. The force balance equation produces an 

expression for the slip velocity, 

 2
0 0

2| ( ) |
2

m
slip y y

kT du m dpu u
m dy kT mn dx

λα π πι
α α= =
−

= = −
2 1 . (15) 

Using the hard sphere gas molecule model, this can be changed to 

2

0 0
2 2| ( |

2
m

slip y m y
du dpu u
dy dx

λα λ
α α= =

−
= = −

−
)

μ
.     (16) 

As in the derivation of the pressure gradient model [8], the force balance equation does 

not produce the final slip velocity expression in Equation (16) until the approximation 

 (or ) 0|
my

du du
dy dyλ λ= ≈ |y=  is used, which is not based on any kinetic theories. It is seen that 

this approximation is not valid for a transition flow, which has 0.1 < Kn < 10. The mean 

free path is comparable to the thickness of the gas film, so it can not be approximated as 

zero. 

It is interesting to note that this slip model is very similar to Wu’s pressure gradient 

model [8], except for the mean free path and the factor 2
2 α−

 in the second term. With 

Equation (15) and the conservation of linear moment for the Poiseuille flow, the slip 

velocity can be finally expressed as, 

2
2

0 0 2

2 2| ( |
2slip y m y m

du d uu u
dy dy

α λ λ
α α= =

−
= = −

−
)      (17) 

Essentially this is still a second-order slip type model, since its non-dimensional 

expression contains the square of the Knudsen number. 

2.4 Bahukudumbi and Beskok’s slip model [15] 
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Using a modified slip boundary condition for steady plane Couette flow [16], 

 1 0.586422 (1.2977 0.71851tan ( 1.17488 ))slip
duu K
dy

nα λ
α

−−
= + − ,  (18) 

and a generalized high-order slip boundary condition for the pressure-driven flow [17], 

2 ( )
1

n
slip

K duu
Kn dy

α λ
α
−

=
+

.       (19) 

Bahukudumbi and Beskok [15] derived a phenomenological Reynolds equation valid for 

a wide range of Knudsen numbers. An interesting point is that Equation (19) is only valid 

for the non-dimensional velocity profile of Poiseuille flow. The Poiseuille flow rate 

coefficient based on Equation (19) differs greatly from the DSMC results [17]. With a 

modification of dynamic viscosity, a modified Poiseuille flow rate coefficient is proposed 

[15 and 17], 

 6(1 )(1 )
1p

KnQ Kn
Kn

δ= + +
+

,  (20) 

where the rarefaction correction parameter δ (denoted by α in [15 and 17]) is obtained by 

matching the modified flow rate coefficient with the Poiseuille flow rate database via the 

solution of a two-dimensional linearized Boltzmann equation [20]. So it is not surprising 

that their analytical lubrication equation gives similar results to those of the FK 

lubrication equation with its numerically obtained look-up table [20]. A good point is that 

their model also gives the analytical expressions for the flow velocity profile and shear 

stress at the boundaries with good accuracy for flows with Kn < 12. This is an advantage 

over the FK lubrication equation, however, no improvement to the air bearing simulation. 

2.5 Other kinetic-theory based slip models 
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Although not integrated into the Reynolds lubrication equation, a series of 

second-order slip models have been proposed for shear or pressure driven flows, such as 

the models by Schamberg [21], Beskok and Karniadakis [17], Cercignani and Daneri [22], 

Deissler [23], Hadjiconstantinou [24]. Beskok and Karniadakis [17] also derived 

higher-order slip models.  

The slip velocity of all of the second-order slip models can be expressed in a general 

form, when the surface accommodation coefficient is 1, 

 
2

2
1 2 2( ) | ( ) |slip boundary boundary

U UU C Kn C Kn
n n

∂ ∂
= −

∂ ∂
  (21) 

These models are only valid in the slip flow regime and not for the entire Knudsen 

number regime. Table 1 lists the coefficients C1 and C2 for all of the second-order slip 

models referred to in this report. In this table the first- and 1.5- order slip models are 

viewed as second-order slip models with special coefficients C1 and C2. 

Corresponding to the general slip model in Equation (21), the Poiseuille flow rate 

coefficient is, 

1 26 2 2p
DQ C C

D
π π

= + + .        (22) 

Figure 2 shows plots of the Poiseuille flow rate of the FK model, the first-, 1.5- and 

second-order slip models, the pressure gradient model [8] and Shen and Chen’s model 

[13]. It is seen that in the transition flow and free molecular flow regions (D < 8.86) the 

slip models, which can be expressed by Equation (21), differ greatly from the FK model 

in predicting the Poiseuille flow rate. This is expected since the slip model is only valid 
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in the slip flow region. 

2.6 Mathematical-interpolation based slip models 

Based on an analogy to high-order slip models, Hwang’s modified Reynolds equation 

[10] assumes the slip velocity in the form of, 

 
2

2
2

1
2

C
slip

u uu A BD h
y y

λ ∂ ∂
= −

∂ ∂
  (23) 

The corresponding Poiseuille flow rate coefficient is expressed as, 

1

6 2
C

p
DQ A BDπ += + + .       (24) 

Parameters A, B and C are obtained by mathematically fitting the flow rate coefficient 

expression to the result of the linearized Boltzmann equation. 

Taking almost the same approach, Ng’s multi-coefficient slip-corrected Reynolds 

equation [11] has the slip velocity in the form, 

 
2

2
2

C
s

u uu A BKn
y y

λ λ∂ ∂
= −

∂ ∂
.  (25) 

The corresponding Poiseuille flow rate coefficient is, 

 (1 )2 ( )
6 2 4

C C
p

DQ A B Dπ π − += + + .  (26) 

However Equation (26) is incorrect. This can be seen if we take the Hsia and Domoto’s 

second order slip model as an example. Their second-order slip model has A = 1, B = 1/2 

and C = 0 while its 
6 2 4p
DQ

D
π π

= + +  does not agree with Equation (26). Ng’s 

parameters, A, B and C, are obtained by fitting Equation (26) to the numerical results of 
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the Boltzmann equation using a mathematics- based engineering quality control method. 

Ng’s stress-density ratio slip-corrected Reynolds equation [12] took a similar 

approach. To accommodate Maxwell’s first order slip model, the slip velocity is forced to 

take a form of, 

s su C τ
ρ

= ,          (27) 

where the parameter Cs is called the slip coefficient and for the Maxwell 1-order slip 

model, 

2 1( 1)
2 /sC

RTα π
= − .                     (28) 

The parameter Cs is calculated through fitting Equation (27) to the shear stress and slip 

velocity obtained using the DSMC method. With α = 1, pa= 1 atm and T = 273 K, the slip 

coefficient Cs, suitable especially to the transition flow regime, is calculated to 

universally be 0.047 s/m. Notice that Equation (28) obtains Cs = 0.026 s/m for the 

first-order slip flow, which is valid in the slip flow regime. The slip model shown by 

Equation (27) is not consistent in the regime between the slip flows and the transition 

flows, where Kn is around 0.1. This inconsistency makes this stress-density slip model 

[12] questionable. 

Obviously, these mathematically obtained slip models and slip-corrected Reynolds 

equations lack any physical basis. 

3. Modification of the mean free path 

The mean free path of gas molecules is the mean value of the free distances that gas 
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molecules can travel between two collisions in the equilibrium state. It depends on the 

molecule’s internal structure, gas pressure and temperature. Based on kinetic theory, 

different air molecule models give different expressions for the mean free path. 

3.1 Probabilistic mean 

It is obvious that the free distance that a gas molecule in an air bearing film can travel 

before a collision with another molecule or the boundary is reduced due to the existence 

of the boundaries. The second-order slip models [6, 8 and 13] either take the Taylor 

expansion of the bulk velocity with respect to the mean free path or employ a control 

volume with a height related to the mean free path. So it may be more accurate if the 

mean free path in the second-order slip models is replaced by a modified mean free path 

in considering the existence of boundaries. Peng et. al. [14] obtained the probabilistic 

mean of the mean free path considering the boundary effects, 

(1 ),                  
4

3( ln( )),    
4 2

m

h
h

h h h h

λλ λ
λ

λ λ
λ λ λ

⎧ − ≥⎪⎪= ⎨
⎪ − <
⎪⎩

       (29)  

Three assumptions are adopted in the derivation process. For the air flow, it is 

assumed that the air molecules are uniformly distributed in the air film and the velocity 

directions of air molecules are uniformly distributed in the 3-dimentional space. In their 

derivation it is also assumed that collision with another molecule is almost sure to happen 

when one molecule travels a distance of its mean free path. This inherent assumption can 

be seen from their result that the mean free path of molecules with a distance d > λ from 
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the boundary is not changed due to the boundary effects. Specifically, Figure 3 shows it is 

not possible for the molecule to travel more than λ in the direction to the boundary before 

collision, while the possibility is finite if there is no boundary. This boundary effect is 

neglected under that inherent assumption. 

With the mean free path modification, an agreement between high order 

slip-corrected Reynolds equations and the FK model is obtained. The mean free path in 

the slip models can be replaced by the modified mean free path in Equation (29), 

resulting in a more reasonable choice of the Taylor expansion variable and the control 

volume’s height. With this replacement, the 1.5- or second-order slip-corrected Reynolds 

equations predict a pressure distribution and a load capacity close to those of the FK 

model, although the first-order slip-corrected Reynolds equation does not change much; 

and the Poiseuille flow rates of the 1.5- and second-order slip model have a similar trend 

to that of the FK model in the entire Knudsen number regime. 

However, it appears that the approach of modifying the mean free path cannot replace 

the FK model. It is obvious that the three assumptions used in Peng’s derivation are not 

valid for a real air bearing flow. The distribution of molecular velocities is described by 

the Boltzmann equation. For an ideal gas, the number density of the air molecules, related 

to the density, is proportional to the gas pressure which is not necessarily uniform. The 

third assumption neglects the randomness of molecular collisions. Thus, it is supposed to 

be better if the true mean free path considering the boundary effects can be calculated 

directly from the velocity distribution function of gas molecules in the Boltzmann 
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equation for the air bearing film. On the other hand, after the solution of the Boltzmann 

equation for the air bearing film is obtained, the air bearing problem is solved and the air 

pressure, the macroscopic flow velocity, the shear stress and so on can be obtained in 

terms of integrals with the molecular velocity distribution. The slip-corrected Reynolds 

equation becomes unnecessary. In this sense, one should not expect to replace the FK 

model with a slip-corrected Reynolds equation that uses a modified mean free path. 

The mean free path modification is not necessary for the FK model. In that model the 

mean free path is a characteristic value of the BGK gas molecules in the equilibrium state. 

The boundary effect is considered by the boundary conditions for the linearized 

Boltzmann equation. So Peng’s further implementation of the modified mean free path 

into the FK model is not necessary. 

3.2 The Matthiessen rule 

The effective mean free path in Shen and Chen’s slip model [13] is calculated using 

the Matthiessen rule [25], 

 1 1 1
/ 2/ 3m hλ λ

= + .  (30) 

The Matthiessen rule is widely used in considering the boundary scattering effects for 

electron and phonon transport. However, it is seldom used for rarefied gas dynamics. This 

effective mean free path can not be taken as a modified mean path of air molecules. A 

discrepancy occurs when the air film thickness h becomes much larger than the mean free 

path. As h increases, the boundaries move away from most of the air molecules, the 
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boundary effect diminishes and the mean free path should approach the original mean 

free path λ  instead of / 3λ . Without this effective mean free path, Shen and Chen’s 

slip model is a second-order type, and the corresponding Poiseuille flow rate is no longer 

close to that predicted by the FK model. 

3.3 Air molecule models 

The hard sphere model is usually used to calculate the mean free path used in the slip 

models. Sun et. al. [18] took the results of a variable hard sphere (VHS) model [26] and 

variable soft sphere (VSS) model [27] and applied the modified mean free path to the 

classical second-order slip model. However, they compared their results to those of the 

slip-corrected Reynolds equations and the linearized Boltzmann equation with the BGK 

model. So this comparison may not validate the application of VHS and VSS models to 

an air bearing lubrication. 

4. Contact pressure singularity 

It was stated in Wu and Bogy [8] that their second-order slip-corrected Reynolds 

equation does not predict an unphysical unbounded pressure singularity in the limit of 

contact between the bearing surface and the moving surface. Following Wu’s analysis [8], 

we can change the form of the Reynolds equation (1), by using the second-order slip 

flow’s Poiseuille flow rate coefficient in Equation (22), to the following form for the 

steady state 1-dimensional air bearing, 

2 2
3 20 0[( ) ] ( )

6 6 6
a a a a ap h p h p H PPH H PH

X UL UL UL P X X
β λ γ λ

μ μ μ
∂ ∂

+ + =
∂ ∂

∂
∂

,      (31) 
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where β=6a and γ=6a (12a) for Hsia and Domoto’s second-order slip model [6] (Wu’s 

pressure gradient model [8]). In the near-contact regime, H approaches zero. Neglecting 

the high order terms of H in Equation (25), the Reynolds equation can be reduced to, 

[ ] (H P PH )
X P X X
∂ ∂ ∂

Γ =
∂ ∂ ∂

,       (32) 

where the dimensionless parameter 
2

6
a ap
UL

γ λ
μ

Γ = . Wu’s asymptotic solution of Equation 

(31) for an asperity with actual contact at X = 0, the profile of which is
2

2

0

1ALH X
h

= +  

and shown in Figure 4, is 

 
,  1 0

- (1 )

,  0 1
(1 )

L

L

R

R

P X
P X

P
P X

P X

Γ⎧ − ≤ <⎪Γ +⎪= ⎨ Γ⎪ < ≤
⎪Γ + −⎩

 , (33) 

where PL and PR are the non-dimensional air bearing pressures at the left and right side of 

the contact regime. As shown by Wu, this solution has a shock wave like discontinuity at 

the contact point. However, a special situation is not discussed by Wu. Provided that the 

same boundary condition is taken with PL = PR = 1, Equation (33) may produce an 

unbounded air pressure before the contact point X = 0 if Γ = 1. The parameter values 

used by Wu [8] for an asperity in near contact with the disk are pa = 0.101 mPa, λa = 65 

nm, U = 10 m/s, µ = 1.85×10-5 N•s/m2 and L = 0.5µm. It is obvious that if the 

accommodation coefficient is 1 and L = 2.284 µm for γ = 6 (L = 4.568 µm for γ = 12), 

which are still reasonable parameter values for the characteristic length of an asperity, 

unbounded pressure values can be obtained near the contact point. So it is possible that a 
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second-order slip-corrected Reynolds equation also predicts an unphysical unbounded 

pressure singularity in the limit of contact with a certain asperity profile, which 

contradicts Wu’s conclusion. 

Numerical simulations are carried out here to compare with this asymptotic analysis. 

A slider with a length of 0.04 mm and a width of 0.04 mm has an asperity at the center of 

the flat air bearing surface. The asperity has a parabolic shape of
2

2

0

1ALH r
h

= + , where r 

is the distance from the center. The slider has fixed zero pitch and roll angles on a disk 

with 10000 RPM. The CML air bearing program is used to calculate the air bearing 

pressure profile. The FK model, the pressure gradient model [8] and the classical 

second-order slip model [6] are used in the air bearing simulation, respectively. Three 

cases with different parameter values are analyzed – Case 1 with A = 104 /m and L = 0.5 

µm; Case 2 with A = 102 /m and L = 5 µm and Case 3 with A = 25 /m and L = 10 µm. 

These micron level values are reasonable for L, the radius of the base of a parabolic 

asperity. A is the shape parameter of the parabolic profile and here a value of A is chosen 

so that the asperity tip has a height of 2.5 nm above its base in each case, which is a 

reasonable height value. 

Simulation results of Case 1 are shown in Figure 5, including the ABS profile and air 

bearing pressure profile along the center line for a minimum flying height (min FH, i.e. 

the gap between the asperity tip and the disk) of 0.1 nm, 0.01 nm and 0.001 nm. They are 

similar to Wu’s simulation results. The air bearing pressure along the center line obtained 
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using the pressure gradient model has a shock wave like shape across the near-contact 

regime, while the air bearing pressure obtained using the FK model has a very large value 

in the near-contact regime. As the min FH decreases from 0.1 nm to 0.001 nm, the 

pressure profile obtained using the pressure gradient model converges to a bounded value, 

while the pressure profile obtained using the FK model has an increasing air pressure in 

the near-contact regime. These conclusions with Case 1 agree well with Wu’s 

conclusions. 

The ABS profiles and air bearing pressures along the slider’s center line of Cases 2 

and 3 are plotted in Figures 6 and 7, respectively. It is obvious in both of these cases that 

the air bearing pressures obtained using either the FK model or the pressure gradient 

model do not converge to a bounded value. The air bearing pressure at the near-contact 

regime increases beyond 100 atm or even 1000 atm, as the min FH decreases. Further, the 

results of the classical second-order slip-corrected Reynolds equation for Cases 1, 2 and 3 

are shown in Figure 8. The rapid increase of the air bearing pressure at the near-contact 

region as the gap decreasing does not change for Cases 2 and 3. A shock wave like profile 

of the air bearing pressure at the near-contact region is not a universal result of a 

second-order type slip-corrected Reynolds equation. 

As a conclusion, neither the pressure gradient model nor the classical second-order 

slip model always predicts a bounded air bearing pressure at the contact or near-contact 

region. This contact pressure singularity may be associated with the usage of the ideal gas 

law p=ρRT. As the film thickness approaches zero at the near-contact region, the gas 
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density there approaches infinity. As a result, the pressure also approaches infinity at the 

near-contact region. Therefore, the contact singularity of the Reynolds lubrication theory 

needs further analysis. 

5. Conclusions 

A valid slip model for Poiseuille flow is critical to obtaining a slip-corrected 

Reynolds equation, when the surface accommodation coefficients at the slider surface 

and bearing surface are the same or close to each other. Different slip models predict 

different slip conditions at the slider and the disk surfaces, and then lead to different 

Poiseuille flow rate coefficients, i.e. the non-dimensional Poiseuille flow rates, which are 

the only varying part in the different slip-corrected Reynolds equations. 

Through modifying the mean free path or mathematically matching the Poiseuille 

flow rate to the kinetic simulation results, some slip-corrected Reynolds equations can 

give close results to that of the FK model based on the linearized Boltzmann equation [1]. 

However, it is not expected that these can replace the FK model and give more acute 

results. The contact pressure singularity is a common problem of the second-order type 

slip-corrected Reynolds equation as well as the FK lubrication equation. It may be related 

to the application of the ideal gas law, and it needs further consideration. 
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Table 1 Coefficients for second-order slip models expressed in a general form 

 

Model developers C1 C2

Maxwell [3] (1938) 1 0 

Schamberg [21] (1947) 1 5π/12 

Cercignani and Daneri [22] (1963) 1.1466 0.9756 

Deissler [23] (1964) 1 9/8 

Hsia and Domoto [6] (1983) 1 0.5 

Mitsuya [7] (1993) 1 2/9 

Beskok and Karniadakis [17] (1999) 1 -0.5 

Wu and Bogy [8] (2001) 1 1 

Wu and Bogy [9] (2003) 2/3 1/4 

Hadjiconstantinou [24] (2003) 1.1466 0.647 

Shen and Chen [13] (2007) 1 2 
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(a) Control volume used by Wu and Bogy [8] 

 

 
(b) Control volume used by Shen and Chen [13] 

 
Fig. 1 Control volume with different heights used to derive the force balance equation. 

 

 
Fig. 2 The relation between the Poiseuille flow rate coefficient (non-dimensional 

Poiseuille flow rate) and the inverse Knudsen number in the FK model, the first- and 
second-order models, the pressure gradient model [8] and Shen and Chen’s model [13]. 
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d > λ 

 
 

Fig. 3 One molecule and one boundary. 
 

 
Fig. 4 Parabolic profile of an asperity in near-contact with the disk [8]. 
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(a) Air bearing surface profile 

 
(b) Air bearing pressure profile along the ABS’s center line using the FK model 

 
(c) Air bearing pressure profile along the ABS’s center line using the pressure gradient 

model 
 

Fig. 5 ABS profile and air bearing pressure profile along the center line from the leading 
edge to the trailing edge in Case 1 (A = 104 /m and L = 0.5 µm). 
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(a) Air bearing surface profile. 

 
(b) Air bearing pressure profile along the ABS’s center line using the FK model. 

 
(c) Air bearing pressure profile along the ABS’s center line using the pressure gradient 

model. 
 

Fig. 6 ABS profile and air bearing pressure profile along the center line from the leading 
edge to the trailing edge in Case 2 (A = 102 /m and L = 5 µm). 
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(a) Air bearing surface profile 

 
(b) Air bearing pressure profile along the ABS’s center line using the FK model 

 
(c) Air bearing pressure profile along the ABS’s center line using the pressure gradient 

model 
 

Fig. 7 ABS profile and air bearing pressure profile along the center line from the leading 
edge to the trailing edge in Case 3 (A = 25 /m and L = 10 µm). 
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(a) Case 1 (A = 104 /m and L = 0.5 µm). 

 
(b) Case 2 (A = 102 /m and L = 5 µm). 

 
(c) Case 3 (A = 25 /m and L = 10 µm). 

Fig. 8 Air bearing pressure profile along the center line from the leading edge to the 
trailing edge obtained using the classical second-order model. 
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