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Abstract

Prediction of the steady state flying height and attitude of air bearing sliders in

hard disk drives via simulations is the basis of their design process. Over the past

few years air bearing surfaces have become increasingly complex incorporating deep

etches and steep wall profiles. In this paper we present a novel method of solving the

inverse problem for air-bearing sliders in hard disk drives that works well for such new

designs. We also present a new method for calculating the static air-bearing stiffness by

solving three linear systems. The formulation is implemented and convergence studies

are carried out for the method. Mesh refinements based on flux jumps and pressure

gradients are found to work better than those based on other criteria.

1 Introduction

The hard disk drive industry continually faces a demand for higher data areal densities and

access speeds. This in turn translates into a need for lower fly heights for the read/write

heads. The lower fly heights and the demand for increased reliability requires extremely

complex slider geometries with steep etches that define the air bearing surface shapes. In

order to evaluate such designs, there is a need for fast, reliable simulations of their flying

characteristics. Thus there is a need for a simulation program that can solve for the flying

height and attitude of complicated slider designs as quickly as possible.

The most important criteria in evaluating the design of an air bearing slider is the attitude

of the slider in the steady state and the stiffness of the air bearing. The solution of the steady

state problem is also often used as an initial condition to many dynamic problems such as

shock and slider unloading. Hence the solution to the steady state problem is important. It

can be obtained by directly solving a time-independent system. The alternative of performing

a transient analysis until steady state is reached is much more expensive.
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2 Previous Work

The problem of obtaining the static flying height and attitude of hard disk drive air-bearing

sliders has previously been solved by various researchers in academia and industry. An

excellent survey of these works was presented by Holani and Müftü (2005). These studies

have used various approaches, such as the finite difference (White and Nigam, 1980; Castelli

and Pirvics, 1968), finite volume (Hu and Bogy, 1995; Wu and Bogy, 2000; Cha and Bogy,

1995) and finite element (Smith, Wahl, and Talke, 1995; Garcia-Suarez, Bogy, and Talke,

1984; Hendricks, 1988; Kubo, Ohtsubo, Kawashima, and Marumo, 1988; Peng and Hardie,

1995) methods for solving this problem. The equilibrium attitude of the slider depends

on the suspension forces and the air pressure acting on the slider. Various methods have

been proposed to accomplish the coupling between the two sets of equations (structural

and air-bearing). One approach includes the dynamic effects of the air bearing (i.e. the

squeeze term for the Reynolds equation and inertial effects for the slider) (Tang, 1972;

Ono, 1972; White and Nigam, 1980; Miu and Bogy, 1986; Ruiz and Bogy, 1990; Cha and

Bogy, 1995). The steady state flying attitude is found by computing the transient solution

until a steady state condition has been achieved. Another completely different approach

obtains the coupled solution by formulating the problem for the steady state by neglecting

the time-dependent terms (Yamaura and Ono, 1990; Choi and Yoon, 1994; Smith et al.,

1995). As stated by Holani and Müftü (2005), probably the most challenging problem

with numerical methods is the need to discretize a continuous domain into one with finite

discrete parameters. The finite difference method typically requires a structured mesh and

is thus limited in its mesh refinement capabilities. Wu and Bogy (2000) presented a finite

volume method with unstructured triangular meshing to solve the Generalized Reynolds

Equation. Also, finite element methods do not require a structured mesh. This offers a major

advantage in that it renders the method highly suitable for local adaptive mesh refinement
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using geometry and pressure gradients.

In this paper we present a new formulation for dealing with the inverse problem wherein

the nonlinear structural-fluid coupling is linearized along with the Reynolds equation to

solve just one set of iterations, instead of two (solving for the slider attitude in one, and

solving the nonlinear Reynolds equation in the other). We also present a new method of

obtaining air bearing stiffness wherein the exact stiffness matrix is obtained by solving a

set of 3 linear problems, as opposed to the conventional perturbation method where three

nonlinear systems are required to solve for the directional stiffness and 6 nonlinear systems

are needed to solve for centered stiffness matrices. We also present a new hybrid strategy

for mesh refinement that uses pressure gradient and flux jumps across elements to give rapid

spatial grid convergence.

3 Methodology

When the slider (assumed to be rigid) flies on the disk, it’s motion is governed by the

following equation:

M ẍ + C ẋ + K x + Fsusp = Fabs(x, ẋ) + Fcon(x) (1)

where x is the vector of the 6 degrees of freedom of the slider, namely displacements and

rotations in the x, y and z directions (see Fig. 1). To calculate the steady state (static)

flying attitude, we neglect the time dependent terms, to get:

K x + Fsusp = Fabs(x) + Fcon(x) (2)

The air-bearing force is calculated by integrating the air-pressure and the shear stress

under the slider. The Generalized Reynolds Equation is solved to get the pressure field.
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However the spacing between the slider and the disk is extremely small (of the order of a

few nanometers, which is much less than the mean free path of air). Under these conditions,

the continuum assumption for the air and the no-slip boundary conditions are no longer

valid. Hence the Reynolds equation is modified to include rarefaction and slip effects. The

modified Generalized Reynolds Equation can be written in the following form in terms of

dimensionless variables, P = p/p0 (pressure normalized with respect to the ambient pressure

p0), H = h/hm (slider-disk clearance normalized with respect to a nominal spacing hm) and

T = ω · t (time non-dimensionalized with respect to the angular velocity of the disk ω):

∇ · (Q PH3 ∇P ) = Λ · ∇(PH) + τ
∂

∂T
(PH) (3)

where∇ = ∂
∂X

EX+ ∂
∂Y

EY is the gradient operator with respect to the normalized coordinates

X = x/L and Y = y/L where L is a characteristic length scale for the slider. The non-

dimensional vector Λ is the bearing number defined as Λ = 6µUL
p0h2

m
, where µ is the dynamic

viscosity of air and U is the local velocity vector of the disk. The squeeze number τ is

defined as τ = 12µωL2

p0h2
m

. It represents the ratio of transient effects to the diffusion effects

in the problem. The factor Q incorporates the modification to the continuum Reynolds

Equation for slip and rarefaction effects. A good discussion of the various models for Q has

been given by Wu (2001). Values of the parameter Q for different models are briefly listed

in Table 1, where, a = 2−α
α

, α is the accommodation factor, and Kn = λ
hm

is the Knudsen

number, λ being the mean free path of air. The function f
(
Kn

PH

)
is given by Fukui and

Kaneko (1990).

To calculate the steady state pressure distribution over the slider we neglect the time

dependent terms to get the steady state generalized Reynolds equation:

∇ · (Q PH3 ∇P ) = Λ · ∇(PH) (4)
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The above equation is solved over the domain of the slider (denoted by S) with the

boundary conditions of ambient pressure (P = 1) at the edges of the slider to get the

pressure distribution over the slider.

To derive the weak form of Eqn. 4, we multiply the equation by a test function v, and

integrate over the domain S to finally get:

∫
S

∇v · (Q PH3 ∇P ) dA +

∫
S

v Λ · ∇(PH) dA−
∫
∂S

v (Q PH3 ∇P ) · n dS = 0 (5)

The above equation along with the boundary condition P = 1 over ∂S is the weak form

of Eqn. 4, and it can be solved to give the pressure field over the slider S. We decompose

the domain of the slider S into the sum of elements, such that:

S =
Ne⋃
i=1

Ti || Ti ∩ Tj = ∅ for i 6= j (6)

Writing the weak form Eqn. 5 over each element Ti, and applying the essential boundary

conditions we obtain:

∫
Ti

∇v · (Q PH3 ∇P ) dA +

∫
Ti

v Λ · ∇(PH) dA−
∫

∂T i\∂S

v (Q PH3 ∇P ) · n dS = 0 (7)

Table 1: Rarefaction and slip models

Model Flow Factor Q

Continuum model 1
First order slip model 1 + 6aKn

PH

Second order slip model 1 + 6Kn

PH
+ 6

(
Kn

PH

)2
Fukui-Kaneko model f

(
Kn

PH

)
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4 The Forward Problem

In the forward problem the objective is to find the pressure distribution given the attitude

of the slider. Since the attitude is specified and the slider profile is known, the clearance H

over the slider S is known, thus the only unknown in the problem is P over the slider S.

To solve the nonlinear forward problem by the Newton Raphson method, Eqn. 7 needs

to be linearized with respect to the pressure P. Writing P = P0 + ∂P and retaining only the

linear terms in ∂P we get:

∫
Ti

∇v · (Q P0H
3 ∇P0 +Q P0H

3 ∇∂P +Q ∂PH3 ∇P0) dA

+

∫
Ti

v Λ · (H ∇P0 + P0 ∇H +H ∇∂P + ∂P ∇H) dA

−
∫

∂T i\∂S

v (Q P0H
3 ∇P0 +Q P0H

3 ∇∂P +Q ∂PH3 ∇P0) · n dS = 0 (8)

For finite element discretization, we use the Streamline Upwind Petrov Galerkin formula-

tion proposed by Brooks and Hughes (1982). Using linear triangular elements with elemental

basis functions denoted by φe for the pressure field and φ̃
e

for the test functions we can write:

P = φeTPe (9)

∇P = BeTPe where Be =

{
∂φei
∂X

∂φei
∂Y

}
(10)

v = φ̃
eT

ve (11)

∇v = B
eT

ve where B
e

=

{
∂φ̃i

e

∂X

∂φ̃ei
∂Y

}
(12)
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Substituting these into Eqn. 8 and rearranging we reduce it to:

Ke ∂Pe−Re−
∫

∂T i\∂S

φ̃
e

(Q P0H
3 ∇P0 +Q P0H

3 BeT∂Pe+Q φeT∂PeH3 ∇P0) ·n dS = 0 (13)

where Ke and Re are the element stiffness matrix and element flux vector defined as:

Ke =

∫
Ti

(QP0H
3 B

e
BeT +QH3 B

e∇P0 φ
eT +H φ̃

e
ΛTBeT + φ̃

e
ΛT∇H φeT ) dA (14)

Re = −
∫
Ti

(QP0H
3 B

e∇P0 +H φ̃
e
ΛT∇P0 + P0φ̃

e
ΛT∇H) dA (15)

Assembling the elemental equations we obtain the global system of equations:

K ∂P = R (16)

where, K =
Ne

A
i=1

Ke , ∂P =
Ne

A
i=1

∂Pe and R =
Ne

A
i=1

Re, and A is the assembly operator.

The above method is implemented as an iterative Newton scheme with line search to

ensure rapid convergence. The resulting system of equations obtained at each iteration is

sparse, but not ordered and has a large bandwidth (see Fig. 2(a)). In a previous study Dutto

(1993) found that the Reverse Cuthill McKee algorithm gives good orderings and results in

rapid convergence using the ILU(0) (Incomplete LU with no fill-in) preconditioned GMRES

(Generalized Minimum Residual) methods for solving the compressible Navier Stokes equa-

tions. Hence we use the Reverse Cuthill McKee algorithm (see Quarteroni, Sacco, and Saleri,

2000) for bandwidth reduction to obtain a banded matrix (as in Fig. 2(b)). The system is

then solved using the ILU(0) preconditioned GMRES Method (see Saad, 2003) with adaptive

subspace selection.

Once the pressure field over the slider has been determined, the forces and moments about
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the pivot location can be calculated by simply integrating the pressures over the elements

using the following relations:

Fz = CT
Fz

P where CFz = p0L
2
Ne

A
i=1

∫
Ti

φe dA (17)

Mpitch = CT
Mpitch

P where CMpitch
= p0L

3
Ne

A
i=1

∫
Ti

Xφe dA (18)

Mroll = CT
Mroll

P where CMroll
= p0L

3
Ne

A
i=1

∫
Ti

Y φe dA (19)

5 Inverse problem

In the inverse problem the net forces and moments on the slider are known and the pressure

distribution and the flying attitude of the slider are to be determined. The inverse problem

can be solved in either of two ways, 1) by linearizing Eqn. 2 and solving a series of forward

problems, or, 2) by linearizing Eqn. 7 along with Eqn. 2 and solving the resulting system.

The first method requires two levels of iterations, the first one to solve the linearized version

of Eqn. 2 and the second level to solve the forward problem at each of iteration. The second

method, on the other hand, requires just one level of iteration, which however is more difficult

to solve and takes longer to converge.

The first method solves a series of forward problems. Linearizing the governing equation

Eqn. 2 about x0, we get the following equation:

K ∂x−Kabs ∂x + Kcon ∂x = Fabs(x0) + Fcon(x0)−K x− Fsusp (20)

where Kabs and Kcon are the air-bearing and contact stiffnesses of the slider-disk interface.

Equation 20 can be formulated in an iterative form, and the solution of the resulting problem
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involves solving the forward problem (at x0) along with the calculation of the air-bearing

stiffness matrix. Solution of the forward problem has already been discussed in the previous

section.

To perform the air bearing stiffness calculation we observe that the clearance H depends

on the attitude of the slider as:

H =
1

hm
(detch + zpivot +XL · θpitch + Y L · θroll) (21)

where detch is the etch depth, zpivot is the z-height of the pivot location, θpitch is the pitch

angle and θroll is the roll angle, and X and Y are the coordinates of the point measured from

the pivot location (see Fig. 1). Writing the weak form of the time-independent Generalized

Reynolds equation, Eqn. 5 as:

ϑ(P,H) = 0 (22)

then differentiating with respect to zpivot and rearranging, we get:

dP

dzpivot
=

[
∂ϑ(P,H)

∂P

]−1{
∂ϑ(P,H)

∂H
· ∂H

∂zpivot

}
(23)

Similarly, differentiating with respect to θpitch and θroll, we obtain:

dP

dθpitch
=

[
∂ϑ(P,H)

∂P

]−1{
∂ϑ(P,H)

∂H
· ∂H

∂θpitch

}
(24)

dP

dθroll
=

[
∂ϑ(P,H)

∂P

]−1{
∂ϑ(P,H)

∂H
· ∂H
∂θroll

}
(25)
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Substituting the finite element interpolations and evaluating the expressions above, we get:

{
dP

dzpivot

}
=
[

K
]−1

{
∂R

∂zpivot

}
(26){

dP

dθpitch

}
=
[

K
]−1

{
∂R

∂θpitch

}
(27){

dP

dθroll

}
=
[

K
]−1

{
∂R

∂θroll

}
(28)

where K is the global stiffness matrix and the righthand side vectors are defined as:

{
∂R

∂zpivot

}
= − 1

hm

Ne

A
i=1

∫
Ti

(3 QP0H
2 B

e∇P0 + φ̃
e
ΛT∇P0) dA (29)

{
∂R

∂θpitch

}
= − L

hm

Ne

A
i=1

∫
Ti

(3 QP0H
2 B

e∇P0 + φ̃
e
ΛT∇P0) ·X dA (30)

{
∂R

∂θroll

}
= − L

hm

Ne

A
i=1

∫
Ti

(3 QP0H
2 B

e∇P0 + φ̃
e
ΛT∇P0) · Y dA (31)

The terms of the 3× 3 stiffness matrix can then be evaluated as:

Kabs =


CT
Fz

{
∂R

∂zpivot

}
CT
Mpitch

{
∂R

∂zpivot

}
CT
Mroll

{
∂R

∂zpivot

}
CT
Fz

{
∂R

∂θpitch

}
CT
Mpitch

{
∂R

∂θpitch

}
CT
Mpitch

{
∂R

∂θpitch

}
CT
Fz

{
∂R
∂θroll

}
CT
Mpitch

{
∂R
∂θroll

}
CT
Mroll

{
∂R
∂θroll

}
 (32)

Thus the stiffness is obtained by the solution of three extra linear systems. However this

is not computationally very expensive even with iterative methods (where the system matrix

K has not been factorized) since preconditioners for K will already have been evaluated.

The equation of motion is now solved using the Newton Raphson method by repeatedly

solving the linearized equation, Eqn. 37. The forward problem is solved at each iteration.

Again we use line search to speed up convergence of the iterations. Stiffness calculations
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for the air bearing are made after every few iterations (and when line-search fails) with

symmetric Broyden updates of rank-2 after each iteration. This avoids wasting too much

time on calculating the stiffness matrix at each iteration, while still maintaining a good

approximation of the stiffness matrix at each iteration.

The second method for solving the inverse problem is to linearize the governing equation,

Eqn. 2, and the Reynolds equation together, and then solve only one level of iterations.

Consider again the elemental weak form of the Generalized Reynolds equation, Eqn. 7.

Linearizing with respect to {P,H} about {P0, H0}, we get:

∫
Ti

∇v · (Q P0H
3
0 ∇P0 +Q P0H

3
0 ∇∂P +Q ∂PH3

0 ∇P0 + 3Q P0H
2
0 ∂H ∇P0) dA

+

∫
Ti

v Λ · (H0 ∇P0 + P0 ∇H0 +H0 ∇∂P + ∂P ∇H0 + ∂H ∇P0 + P0 ∇∂H) dA

−
∫

∂T i\∂S

v (Q P0H
3
0 ∇P0 +Q P0H

3
0 ∇∂P +Q ∂PH3

0 ∇P0 + 3Q P0H
2
0 ∂H ∇P0) · n dS = 0

(33)

which is referred to as the ‘fully linearized’ form of the elemental weak form.

Substituting the discrete forms of the pressure and the test functions, we obtain:

∫
Ti

(
B
eT

ve
)T

(Q P0H
3
0 ∇P0+Q P0H

3
0 BeT∂Pe+Q φeT∂PeH3

0 ∇P0+3Q P0H
2
0 ∂H ∇P0) dA

+

∫
Ti

φ̃
eT

ve Λ · (H0 ∇P0 + P0 ∇H0 +H0 BeT∂Pe +φeT∂Pe ∇H + ∂H ∇P0 + P0 ∇∂H0) dA

−
∫

∂T i\∂S

φ̃
eT

ve (Q P0H
3
0 ∇P0+Q P0H

3
0 BeT∂Pe+Q φeT∂PeH3

0 ∇P0+3Q P0H
2
0 ∂H0 ∇P0)·n dS = 0

(34)

11



Now using the definition of H in Eqn. 21, we can rewrite ∂H and ∇∂H as:

∂H = CT
H∂x where CH =

1

hm

{
1 X · L Y · L

}T
(35)

∇∂H = CT
∇H∂x where C∇H =

L

hm

 0 1 0

0 0 1


T

(36)

Substituting this into Eqn. 34, we obtain:

Ke
full

{
∂PeT ∂xT

}T
−Re

full−∫
∂T i\∂S

φ̃
e

(Q P0H
3
0 ∇P0+Q P0H

3
0 BeT∂Pe+Q φeT∂PeH3

0 ∇P0+3Q P0H
2
0 ∂H ∇P0)·n dS = 0

(37)

where Ke
full and Re

full are the element stiffness matrix and element flux vector defined as:

Ke
full =

[
Ke
P Ke

H

]
(38)

Ke
P =

∫
Ti

(Q P0H
3
0 B

e
BeT +Q H3

0 B
e∇P0 φ

eT +H0 φ̃
e
ΛTBeT + φ̃

e
ΛT∇H φeT ) dA

Ke
H =

∫
Ti

(3Q P0H
2
0 B

e
BeT∇P0 CH + φ̃

e
ΛT∇P0 CH + P0 φ̃

e
ΛT C∇H) dA

Re
full = −

∫
Ti

(QP0H
3
0 B

e∇P0 +H0 φ̃
e
ΛT∇P0 + P0φ̃

e
ΛT∇H0) dA (39)

After assembling the set of equations in Eqn. 37, we get a system of Nn equations in

Nn+3 unknowns. We need 3 more equations to determine the solution of the system. These

three equations are the linearized governing equations (Eqn. 20) in the zpivot, θpitch and θroll
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directions. Thus we end up with the following system of equations:

 KP KH

Cabs Keff


 ∂P

∂x

 =

 Rfull

RH

 (40)

where KH =
Ne

A
i=1

Ke
H , Rfull =

Ne

A
i=1

Re
full, Cabs =

{
CFz CMpitch

CMroll

}
, Keff = Ksusp +

Kabs + Kcon and RH = CT
absP0 + Fcon(x0)−Ksuspx0 − Fsusp.

The formulation described above is again implemented using a Newton Raphson iter-

ative scheme. The resulting system of equations at each iteration is also sparse, however

the equations corresponding to the balance of forces/moments are full and the coefficients

corresponding to the slider attitude are nonzero for all of the equations. Hence after the ap-

plication of the Reverse Cuthill McKee algorithm, we end up with an ‘arrowhead’ matrix (see

Fig. 2(c)). For simplicity, the arrowhead matrix is also solved using the preconditioned GM-

RES algorithm used for the forward problem and the inverse problem solved using method 1.

The method is found to be slower than method 1 using this algorithm, however it is expected

to be faster using either a direct method or a preconditioner that exploits the structure of

the matrix.

For the analysis to be carried out in the subsequent sections, we define a new norm: the

force norm. The force norm is a weighted norm that can be directly used to correlate fields

(pressures etc.) to their integrals over the domain S (forces etc.). The force norm is defined

as:

|ζ|F = p0L
2

Ne∑
j=1

∫
Tj

|ζi| φei dA ≈ CT
Fz
|ζ| (41)
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6 Numerical Simulations

Meshes for the sliders are generated using TRIANGLE, a robust 2D triangular mesh genera-

tor developed by Shewchuk (1996). In order to ensure that errors in the solutions are small,

the mesh is automatically refined based on certain criteria. Refinement and regeneration

of the meshes is also done using TRIANGLE. The coarsest level meshes are generated such

that the element edges conform to the slider’s rail and wall geometries. Coarse level meshes

for two slider designs are shown in Fig. 3. Various criteria for refinement are investigated

later in this section. Refined meshes are nested within the coarse mesh, hence they conform

to the slider geometry as well.

The formulations described above were implemented in C++ and studies were carried

out to investigate grid convergence.

6.1 Forward problem

The slider 1 design is simulated to study convergence for increasing grid sizes. The oper-

ational parameters are fixed at a nominal fly-height of 20 nm, pitch of 200 µrad, roll of 1

µrad and flying over a disk spinning at an RPM of 10K at a radius of 32 mm with 0◦ skew.

The grid used for each of the meshes is a uniform triangular grid.

Figure 4 shows plots of the resultant pressure force and pitch-moment for slider 1. In

Fig. 5, we plot the error at each level. The error is computed by calculating the pressure

profile at a very fine grid and treating it as the exact solution. Data points for fine meshes

are neglected since they appear to be too close to the mesh used for calculating the error. We

see that the order of accuracy is close to 1.1 for both the force and the pitch-moment. The

pressure profile for slider 1 can be seen in Fig. 6. No large pressure gradients are observed

and hence an order of convergence of 1.5 is observed numerically.

By considering other designs we find that the order of convergence of the solution for our
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problem is strongly dependent on the slider geometry and the operating parameters of the

slider. However the grid convergence discussed in this section is for a uniform mesh. We can

artificially enhance grid convergence by using selective mesh refinement to refine only areas

of the slider where the error is high.

Next we will study various refinement strategies for the mesh so as to obtain the most

accurate solution with the fewest number of nodes.

Pressure based refinement

The value of the steady state pressure can be used as a refinement criterion to refine the

coarse level mesh. This leads to the mesh being refined in areas with higher pressures. The

rationale behind using this refinement scheme is that areas with higher pressures contribute

more to the forces and moments and hence need to be resolved more accurately than regions

with lower pressures.

θpres =

∫
Ti

|P | dA (42)

Clearance based refinement

The clearance under the slider at the steady state can be used as a refinement criterion to

refine the coarse level mesh. Thus areas which are closer to the disk (rails and areas closer

to the trailing edge) will have a finer mesh than other areas. The rationale here is that areas

closer to the disk typically have high pressure and may have higher errors.

θspacing =
1∫

Ti
H dA

(43)

Pressure gradient based refinement

The pressure gradient under the slider at the steady state can be used as a refinement

criterion to refine the coarse level mesh. Thus areas which have large pressure gradients

15



(typically near the trailing edge pads on the slider) will have a finer mesh than other areas.

θ∇P =

∫
Ti

|∇P | dA (44)

Flux jump based refinement

The pressure flux jumps under the slider at the steady state can also be used as a refinement

criterion to refine the coarse level mesh. In some sense this measure is representative of the

interpolation error of the solution. Thus areas which have large pressure flux discontinuities

will have a finer mesh than other areas. We observe that the flux jump terms across the

elements were neglected during the assembly of the system equations and hence a larger flux

jump term may be an indicator of larger error.

θ[|∇P |] =
∣∣hi (∇P+ −∇P−

)
· n
∣∣ (45)

Streamwise clearance gradient based refinement

Next we can also use the streamwise clearance gradient of the slider at the steady state as a

refinement criterion to refine the coarse level mesh. Thus areas which have steep clearance

gradients (such as on the walls) will have a finer mesh than other areas.

θ∇H·λ =

∫
Ti

|Λ · ∇H|
|Λ|

dA (46)

Residual based refinement

Finally we explore the strategy wherein the residual of the nonlinear Reynolds equation

is used as a refinement criterion to refine the coarse level mesh. Thus areas with higher
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residuals are used as an indication of higher error and to generate refined meshes.

θRe =

∫
Ti

|Re
n+1| dA (47)

In Figs. 7 and 8, we plot the grid convergence for slider 1 (shown in Fig. 3(a)) and

slider 2 (shown in Fig. 3(b)), respectively. We see that convergence is most rapid when the

pressure gradient and the flux jumps are used as refinement criteria. Convergence is slower

when the residual and streamwise clearance gradient are used as criteria. Convergence is

slowest when pressure is used as a refinement criterion. However when the clearance is used

as a refinement criterion, the solution does not converge to the correct value for the grid

sizes simulated. This is because errors towards the leading edge of the slider do not get

reduced quickly enough. We observed that most of the error is concentrated in regions of

high pressure gradients, which is often found in areas with steep clearance gradients, such

as along walls of rails, and more so towards the trailing edge. With further investigation

we find that convergence can be enhanced by generating an initial mesh that has smaller

elements near the walls as compared to on top of the rails. This concept will be further

investigated next.

6.2 Inverse problem

Three slider designs are simulated for the inverse problem. These are Slider 1, shown in

Fig. 3(a), Slider 2 is shown in Fig. 3(b) and Slider 3 which is shown in Fig. 3(c). The

operating parameters of the three designs are listed in Table 2. The initial grid used for

each of the designs is obtained by the dense-edge strategy described above to ensure rapid

convergence, wherein the refinement after each level is uniform. The flying attitude, i.e. the

nominal fly-height, the pitch and the roll are plotted for each case.
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Figure. 9 shows plots of the convergence for slider 1 of the fly height, pitch and the roll

with reducing grid sizes. We see that the result obtained from the coarsest mesh is within

half a nanometer of the final converged value. Similarly the pitch is found to be within 2

µrad and roll within 0.2 µrad. In Fig. 10 we show plots of the three mesh levels used for the

convergence study.

Similarly, attitude convergence plots for the inverse problem shown in Fig. 11 and Fig. 12

for sliders 2 and 3 in Figs. 3(b) and 3(c), respectively. For slider 2, the nominal FH is within

0.2 nm and the pitch and roll are within 2 µrad and 0.2 µrad of the final converged values,

respectively. For slider 3, the nominal FH is within 0.2 nm and the pitch and roll are within

3 µrad and 0.3 µrad of the final converged values, respectively.

Table 2: Slider operation parameters for grid convergence studies

Slider 1 Slider 2 Slider 3

Gram load (g) 1.5 2.0 3.0
PSA (rad) 0.1 0.0 0.0
RSA (rad) 0.0 0.0 0.0

Radius (mm) 32 32 27
Skew (◦) 0.0 3.2 -17.5

RPM 10K 7.2K 7.2K

7 Summary and Conclusions

In this paper, we presented a novel method of solving the inverse problem for air-bearing

sliders in hard disk drives. We started from basic principles and derived the weak form for

the Reynolds equation. The linearization scheme for the governing equations was presented

next. First the traditional method was presented wherein the equation of motion is linearized

first with respect to the slider attitude and the Reynolds equation is linearized with respect

to the pressure. This leads to two levels of iterations for the solution of steady state fly
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height of the slider. We also presented the new method where the equation of motion and

the Reynolds equation are linearized together with respect to both slider attitude and the

pressure. This leads to a single level of iteration.

The formulation is implemented and convergence studies are carried out for the method.

The order of convergence is found to depend on the geometry of the slider and the resulting

pressure profile that develops under it. Finally we explore various strategies for mesh refine-

ment so as to obtain converged results with a minimum number of nodes. Three different

slider designs are investigated and refinements based on flux jumps and pressure gradients

are found to work better than other strategies. We also find that the number of levels re-

quired for convergence can be reduced if the initial mesh is generated so as to have a fine

mesh along rail walls.
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Figure 1: System Coordinate System
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(a) Before node reordering for forward prob-
lem

(b) After RCM ordering for forward problem

(c) After RCM ordering for Method 2 (Note:
the last 3 rows and columns are full)

Figure 2: Coarse level system matrix fill pattern
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(a) Slider 1

(b) Slider 2

(c) Slider 3

Figure 3: Slider designs and coarse level meshes used for simulations
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Figure 4: Grid convergence for slider 1 forward problem
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Figure 5: Force error for slider 1 forward problem
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Figure 6: Converged pressure profile for slider 1
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Figure 7: Grid convergence for slider 1 using various refinement strategies
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Figure 8: Grid convergence for slider 2 using various refinement strategies
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Figure 9: Grid convergence for slider 1 inverse problem
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Figure 10: Mesh levels for slider 1 inverse problem
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Figure 11: Grid convergence for slider 2 inverse problem
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Figure 12: Grid convergence for slider 3 inverse problem
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