
Forces on a rotating particle in a shear flow of

a highly rarefied gas

Nan Liu and David B. Bogy

Computer Mechanics Laboratory, 5146 Etcheverry Hall

Department of Mechanical Engineering, University of California

Berkeley CA 94706

May 7, 2008

ABSTRACT

The determination of the forces on a particle is required for the simulation of the particle’s

motion, which in turn is necessary for the simulation of particle contamination in a hard disk

drive. In this paper, the forces on a rotating sphere in a shear flow of a highly rarefied gas

are investigated analytically. The Chapman-Enskog distribution function is used to describe

the molecules in the shear flow and a Maxwell-type boundary condition is assumed on the

surface of the sphere. Expressions are obtained for the drag force as well as lift forces for

the special case where the gradient of the shear flow is along the same direction as the axis

of the particle’s rotation. The effects of particle’s rotation and the shear flow are shown

to be decoupled. These lift forces also turn out to be in the opposite directions from their

corresponding forces when the fluid is modeled as a continuum.
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1 INTRODUCTION

Particle contamination is an important issue for the performance of a slider flying over a

moving disk in a hard disk drive(HDD), the geometry of which is shown in Fig. 1. To

understand this phenomenon, we need to know the particle’s motion inside the gap between

the slider and the disk, which is called the ”head disk interface”, or HDI. Due to the low

volume density of particles in the HDI, the interaction between particles can be neglected.

The essential part of this calculation is the force on a particle, from which the particle’s

trajectory can be calculated based on Newton’s second law [1]. In our case, the particle’s

size is comparable to the mean free path of air, which is around 65nm, about 10 times the

minimum spacing in the HDI of current HDDs. Thus, gas rarefaction effects need to be

considered in the calculation of the forces.

In continuum theory, forces on a particle moving in an infinite fluid medium are well

documented. Stokes first calculated the drag force on a spherical particle moving at low

Reynolds number, i.e. Rep =
Uf0R0ρ

µ
¿ 1, where ρ is the density of the fluid, µ is viscosity

of the fluid, Uf0 is the velocity of the sphere relative to the fluid and R0 is the radius of the

sphere. Stokes’ drag force is

FDrag = −6πµR0Uf0 (1)

Oseen later extended Stokes’ formula to higher Reynolds numbers by partially considering the

inertial effect. His results were finally validated by Proudman and Pearson using perturbation

methods [2] [3]. The lift force on a rotating particle in an infinite medium, known as Magnus

force, at low Reynolds number was investigated by Rubinow and Keller [4], whose result

shows that the force, under the condition ReΩ =
ΩR2

0ρ

µ
¿ 1, is

FMagnus = πR3
0ρΩ×Uf0 (2)
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where Ω is the angular velocity of the particle. Saffmann [5] pioneered the work on lift

forces on a particle moving in a strong linear shear flow at low Reynolds number, i.e. ReG =

|G|R2
0ρ

µ
¿ 1 and Rep ¿

√
ReG, where G is the gradient of the shear flow. By using a matched

asymptotic expansion, he showed that the lift force is

FSaffman = 6.46µuR2

√
|G|ρ
µ

(3)

The restriction of strong shear flow was later removed by McLaughlin [6], whose results

are also subject to the restriction Rep ¿ 1 and ReG ¿ 1. Since the particle size we are

considering is on the order of 100nm and the fluid velocity is about 10m/s, the Reynolds

number here is also very small. On the other hand, the gradient of the shear flow set up by

the moving disk is quite large due to the small gap in the HDI, which is on average less than

1µm. Thus Saffman’s assumption is valid here, and Eq. (3) would be applicable if the gas

could be regarded as a continuum. In [7], Loth reviewed some recent progress in this field

and also provided comparisons between experimental and analytical results.

Basset first considered the gas rarefaction effect on the drag force on a particle by using

Stokes’ approach but with the Maxwell slip boundary condition on the surface of the parti-

cle. However, his result is only applicable for a slightly rarefied gas. Cercignani generalized

Basset’s result by solving the linearized BGK-Boltzmann equation using a variational ap-

proach. His result is applicable for a sphere moving in an arbitrarily rarefied gas and agrees

with experiments [8] [9]. A simple empirical formula was also provided by Sherman based

on an interpolation of experimental results [10].

Despite the fact that much work has been done on the drag force on a particle moving in a

rarefied gas, the lift force has received little attention, primarily due to the difficulty involved

in solving the full Boltzmann equation. Most, if not all, available results are obtained for a

highly rarefied gas. Wang [11] first calculated the lift force on a rotating sphere in a highly
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rarefied gas. He showed that the direction of the lift force is opposite to what it would be

when the rarefaction effect is absent. Ivanov and Yanshin [12] extended Wang’s work to a

symmetric body, which includes a sphere as a special case. These results were rediscovered

recently by Borg et al. [13] and Weidmann and Herczynski [14]. Using the same approach

as Wang, Söderholm [15] and Borg et al. [16] calculated the lift force on a particle moving

in a shear flow of a highly rarefied gas. They concluded that the lift force vanishes when the

particle is a sphere. However, Kröger and Hütter’s result showed that the lift force in this

case is not zero and is in the opposite direction of the Saffmann force Eq. (3), although they

did not give an explicit formula for the lift force [17].

In this paper, we model the particle as a sphere and consider a more general case than a

fixed particle lying in a linear shear flow. We allow for the particle’s rotation but assume that

the axis of rotation is the same as the gradient of the shear flow. The main goal here is to get

force formulae on a rotating particle in a shear flow of a highly rarefied gas. These formulae

will enable us to calculate the particle’s trajectory in the HDI. The paper is organized as

follows. In section 2, the problem is formulated and all of the assumptions are stated. In

section 3, the force on a unit area at some location on the surface of a spherical particle is

calculated, which is then used to get the total force in section 4. A conclusion is given in

section 5.

2 STATEMENT OF THE PROBLEM

Although the particles of interest may be of different shapes, we model them here as spheres.

We also assume that the gas is highly rarefied, or is a free molecular gas. Under this

assumption, the interaction between the incoming molecules and those reflected by a sphere

is neglected. Thus we can get the velocity distribution function of the molecules neglecting

the presence of the sphere. For a shear flow, the above velocity distribution function can be
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obtained from the Chapman-Enskog theory [18]:

f = f0

[
1−B(C ′

iC
′
j −

1

3
C ′2δij)

∂C0i

∂xj

]
(4)

where f0 is the equilibrium Maxwellian distribution function, C is the total molecular veloc-

ity, C0 is the mass average velocity, C ′ is the thermal velocity and B is a function of C ′ and

the temperature T .

The present problem is defined as shown in Fig. 2. Here a sphere is rotating at the

angular velocity Ω and lying in a shear flow with gradient G. A global coordinate system

{XY Z} fixed to the sphere is established with X pointing in the direction of the incoming

shear flow, and Y is the axis of rotation. We assume the gradient of the shear flow is along

the Y direction as well. U, V, W are used to denote the velocity components along the X,Y

and Z directions, respectively. The velocity of the shear flow is Uf = Uf0 + GZ, where Uf0

is the velocity of the center of the sphere relative to the fluid flow and G is the gradient of

the shear flow.

Since the gradient of the flow field is along the Y direction, the general Chapman-Enskog

distribution, Eq. (4), in the present case, becomes

f = f0 (1 + DU ′V ′) (5)

where f0 =
(

β√
π

)3

exp {−β2[U ′2 + V ′2 + W ′2]}, D = −5
4

√
πβ3Gλ, β = 1√

2RT
, λ is the mean

free path of air, U0, V0,W0 are mass average velocity components, and U ′ = U − U0, V
′ =

V − V0,W
′ = W − W0 are the thermal velocity components. Note that the mass average

velocity is different from the velocity of the shear flow since the coordinate system is fixed

to the sphere, which is itself rotating with an angular velocity Ω.
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3 FORCES ON A UNIT AREA ON THE SURFACE

OF THE SPHERE

To calculate the forces on a unit area at a specific location on the surface of the sphere, we

set up a local coordinate system {xyz}, as shown in Fig. 2. The y direction points to the

center of the sphere while the x and z directions are tangential to the parallel and meridian,

respectively. Let u, v, w denote the velocity components in this local coordinate system.

Then the Chapmann-Enskog distribution, when expressed in terms of u, v, w is of the same

form as Eq. (5), but now

U ′V ′ = u′w′ sin θ sin φ− u′v′ cos θ sin φ +
1

2
(w′2 − v′2) sin 2θ cos φ− v′w′ cos 2θ cos φ (6)

and

f0 =

(
β√
π

)3

exp
{−β2[(u− u0)

2 + (w − v0)
2 + (w − w0)

2]
}

(7)

where u0 = Uf0 sin φ− ΩR0 sin θ, v0 = Uf0 sin θ cos φ and w0 = Uf0 cos θ cos φ.

According to the kinetic theory [18] [19], the normal force along the y direction is

p = pi + pr = (2− σp)pi + σppw (8)

and the shear forces along the x and z directions are

τx = τxi − τxr = σττxi (9)

τz = τzi − τzr = σττzi (10)

In the above expressions, pi, τxi, τzi are due to the incoming molecules while pr, τxr, τzr are

contributed by the molecules reflected by the sphere. pw is the pressure due to the outgoing
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molecules when they all obey the equilibrium Maxwellian distribution function f0 at the

wall temperature. Here we assume the sphere is thermally highly conductive and of uniform

temperature Tw, which is assumed to be the same as the temperature T∞ at infinity. σp =

pi−pr

pi−pw
and στ = τi−τr

τi
are accommodation coefficients, which represent the percent of incoming

molecules that are diffusely reflected, or accommodated to a Maxwellian distribution at the

wall temperature. Here we allow for different accommodation coefficients for normal and

shear forces.

Based on the assumption of a highly rarefied gas [19],

pi = ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
v2fdudvdw

τxi = ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
uvfdudvdw

τzi = ρ

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
wvfdudvdw

(11)

where the lower limit for v is 0 since we are considering only the incoming molecules.

Using the Chapman-Enskog distribution function expressed in the local coordinate sys-

tem, we can integrate the above equations to get the normal and shear forces. The integration

is actually performed with u′, v′, w′ and the results are

pi =
ρ

2
√

πβ2

{
βv0exp(−β2v2

0) +
√

π(
1

2
+ β2v2

0)[1 + erf(βv0)]

}

− ρD

4β4
[1 + erf(βv0)] sin θ cos θ cos φ

(12)

τxi =
ρUf0

2
√

πβ

(
sin φ− ΩR0

Uf0

sin θ

) {
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0)]
}

− ρD

8β4
[1 + erf(βv0)] sin φ cos θ − ρD

4
√

πβ3
u0exp(−β2v2

0) sin θ cos θ cos φ

(13)
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τzi =
ρw0

2
√

πβ

{
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0)]
}

+
ρD

8β4
[1 + erf(βv0)](sin

2 θ − cos2 θ) cos φ− ρD

4
√

πβ3
u0exp(−β2v2

0) sin θ cos θ cos φ

(14)

where erf(z) = 2√
π

∫ z

0
e−t2dt is the error function.

Based on the previous discussion, pw denotes the pressure due to the outgoing molecules

as if they all obey the Maxwellian velocity distribution function at the wall temperature.

The contribution from every molecule of this kind is

pw

Nw

=

∫ +∞
−∞

∫ 0

−∞
∫ +∞
−∞ v2f0dudvdw

∫ +∞
−∞

∫ 0

−∞
∫ +∞
−∞ f0dudvdw

(15)

where Nw is the number of molecules. From the conservation of the number of molecules,

Nw is equal to the total number of incoming molecules:

Nw = n

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
vfdudvdw (16)

where n is the volume density of molecules. Thus

pw = Nw
m
√

π

2β

=
ρ

4β2

{
exp(−β2v2

0) +
√

πβv0[1 + erf(βv0]
}− ρD

8β4
e−β2v2

0 sin θ cos θ cos φ

(17)

4 RESULTS AND DISCUSSION

Based on the above results, the total force can be obtained by performing integration of the

force components over the surface of a sphere. To do this, we need to transform all of the

above formulae back to the global coordinate system. According to the the geometry shown
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in Fig. 2,

FX =

∫ 2π

0

∫ π

0

{p sin θ cos φ + τx sin φ + τz cos θ cos φ}R2
0 sin θdθdφ (18)

Using the results for p, τx, τz obtained above in Eq. (18), we, after lengthy integration,

obtain the drag force in the X direction as

FX =
1

2
πR2

0ρU2
f0

{
2− σp + στ

2S3

[
4S4 − 4S2 − 1

2S
erf(S) +

2S2 + 1√
π

e−S2

]
+

2σp

3S

√
π

}
(19)

where S = Uf0/
√

2RT . In this and the following integrations,we make wide use of the

relation ∫ 2π

0

erf(b cos φ) cos φdφ =
2b√
π

∫ 2π

0

e−b2 cos2 φ sin2 φdφ (20)

where b is any function independent of φ.

The parameters of rotation and shear flow, i.e. Ω and G do not appear in Eq. (19), thus

the drag force is not affected by the rotation of the sphere or the gradient of the shear flow.

Equation (19) is actually the same as what would be obtained if the sphere were fixed in a

uniform flow of a highly rarefied gas at the speed Uf0.

Similarly, we can calculate the lift force along the Y and Z directions and the results are

FZ = −2

3
στπρΩR3

0Uf0 (21)

FY = −1

6
(2 + στ − σp)πρGR2

0λUf0 (22)

In Eq.(22), we only retain the term linear in Uf0 since higher order terms involve βUf0 which

is much smaller than 1 in our case.

The lift force in the Z direction involves only the rotation parameter Ω while that in the

Y direction involves only G. Thus the rotation effect and shear flow effect are decoupled.
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They do not produce any coupled effects. Equation (21) is the same as that derived by

Wang [11] for the case when the fluid flow is uniform.

Equation (22) gives the lift force in the Y direction. This force is in the opposite direction

from the Saffman force, Eq. (3), for the case when the fluid is continuum. Comparison of

Eq. (22) and Eq. (3) shows that they have the same dependence on the velocity of the

center of the sphere relative to the fluid flow and the radius of the sphere. However, the

dependence on the gradient of the shear flow is different. The force is proportional to
√

G

when the rarefaction effect is absent but becomes linear in G when the fluid is highly rarefied.

At first sight, Eq. (22) appears to be independent of viscosity. But according to the kinetic

theory, the viscosity is proportional to ρλ. Thus FY is linearly proportional to the viscosity

µ in contrast to the Saffman force where the force is proportional to
√

µ. The Saffman force

also depends on
√

ρ which is absent in Eq. (22).

Since the particle’s size R0 is usually quite small, FZ , which depends on R3
0, becomes less

important then FY , which is proportional to R2
0. This is the same as in the continuum case

where the Saffman force is usually much more important than the Magnus force when the

Reynolds number of the flow is low [1].

5 CONCLUSION

In this paper we derived the expression for the forces on a rotating spherical particle moving

in a shear flow of a highly rarefied gas. Since the gas is highly rarefied, the molecules observe

the Chapman-Enskog distribution function, which is used to calculate the total force on the

particle based on the kinetic theory. Analytic expressions are obtained for the force on a

spherical particle for the special case where the gradient of the shear flow is along the same

direction as the axis of the particle’s rotation. The drag force turns out to be the same

as if the particle were fixed and the flow were uniform. The lift forces in the Y and Z
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directions are in directions opposite to their counter parts in the continuum case. These

results are consistent with previous studies [11] [17] and are considered appropriate to be

used to calculate the particle motion in a highly rarefied gas.
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Figure 1: A particle moves into the head disk interface. The figure is not to scale
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Figure 2: The global and local coordinate systems
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