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Abstract 

The bouncing vibration of an air bearing slider in near or partial contact with the disk 

is numerically analyzed using three different nonlinear slider dynamic models. The near 

or partial contact slider is designed for the future areal recording density in hard disk 

drives of 1 Tbit/in2 or even higher. In these three slider dynamic models, the air bearing 

with contact is modeled either using the generalized Reynolds equation modified with the 

Fukui-Kaneko slip correction and a new second order slip correction for the contact 

situation, or using nonlinear springs to represent the air bearing. The contact and 

adhesion between the slider and the disk are considered either through an elastic contact 

model and an improved intermolecular adhesion model, respectively, or using an Ono-

Yamane [1] multi-asperity contact and adhesion model. The contact friction is calculated 

through Coulomb’s law. The simulation results from all models show that the slider’s 

bouncing vibration occurs as a forced vibration caused by the micro-waviness and 



roughness. The disk surface micro-waviness and roughness, which move into the head 

disk interface (HDI) as the disk rotates, excite the bouncing vibration of the partial 

contact slider. The contact, adhesion and friction between the slider and the disk do not 

directly cause a bouncing vibration in the absence of disk micro-waviness or roughness. 

1. Introduction 

Reducing the flying height (FH) of sliders is a requirement for achieving higher 

recording densities in hard disk drives. The Wallace spacing loss equation indicates that 

the magnetic signal decreases exponentially as the distance increases between the 

magnetic layer and the read/write transducer. The maximum magnetic signal can be 

obtained at a spacing of zero, but this would require direct contact with the magnetic 

layer and is therefore impractical with current magnetic media. 

There are several contact HDI interface designs under consideration for the planned 

magnetic recording density of 1 Tbit/in2 or even higher in Hard Disk Drives (HDD): 

“wear in”, “proximity”, and “full contact”. It is expected that all of these technologies, 

except possibly the last one, will rely on an air bearing to support most of the suspension 

load, while the trailing pad of the slider is in contact with the disk at the beginning, 

frequently or continuously. In this sense the HDI has at least partial contact. 

In this paper three different nonlinear slider dynamic models are used to numerically 

analyze the vertical bouncing vibration of an air bearing slider in the near or partial 

contact region. Numerical simulations of the slider’s dynamics show that the slider’s 

bouncing vibration is a forced vibration caused by the micro-waviness and roughness. 

The disk surface micro-waviness and roughness, which move into the head disk interface 

(HDI) as the disk rotates, excite the bouncing vibration of the partial contact slider. The 
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contact, adhesion and friction between the slider and the disk do not directly cause a 

bouncing vibration in the absence of disk micro-waviness or roughness. 

2. Dynamics, ahesion and contact models 

The generalized time-dependent Reynolds equation is used to model the air bearing 

between the partial contact slider and the disk. The Reynolds equation is modified using 

the Fukui-Kaneko (FK) slip correction [2] to account for the rarefaction of the ultra thin 

air film within the slider-disk spacing. As indicated by Wu and Bogy [3], the FK 

correction produces an unbounded contact pressure singularity at contact. They proposed 

a new second order slip model that avoids the pressure singularity, which predicts results 

not far from the FK correction when the modified inverse Knudsen number is not too 

large. For the contact region in an air bearing, Huang and Bogy [4] adopted in their 

Monte Carlo method a no-fly-zone condition, which assumes that air molecules can not 

enter a gap smaller than themselves. Here we combine the FK model and the new second 

order slip model. When the air film thickness is larger than 0.3 nm, which is 

approximately the diameter of an oxygen or nitrogen atom, the FK model is used; when it 

is less than 0.3 nm, the new second order slip model is used to avoid the pressure 

singularity. 

A simple alternative air bearing model uses non-linear springs to represent the air 

bearing [1]. The air bearing of the entire air bearing surface is modeled with a front 

lumped nonlinear spring, a front linear dashpot, a rear lumped nonlinear spring and a rear 

linear dashpot. The springs and dashpots are located at the front or rear air bearing 

pressure center. The spring stiffness values are chosen to match otherwise calculated or 
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experimentally measured air bearing frequencies. And the damping coefficients are 

determined by preset damping ratios. 

The impact between the partial contact slider and the disk is quasi-static and therefore 

can be modeled using an elastic contact model based on the static influence coefficient 

matrix, as described in [5]. We use this model instead of asperity contact models, such as 

the CEB model [6], because those models assume that the bulk deformation and 

interactions between asperities are negligible. For a partial contact HDI, the flying height 

at some parts of the air bearing surface (ABS) might be negative, which means that the 

distance between those parts of the slider and the undeformed disk surface is less than 

zero. Under this condition, the bulk deformation and interactions between asperities may 

not be negligible. However, one simplification in those models is retained here. The 

contact between two rough surfaces can be approximated as the contact between a rigid 

smooth surface and an equivalent elastic rough surface [7]. So in the simulations we 

consider the equivalent contact between smooth slider pads and a rough disk surface. 

Because of the bulk deformation, asperity adhesion models and asperity-based 

friction models are also not suitable for the dynamic simulation of the partial contact 

HDI. Here adhesion is calculated through the improved intermolecular force model [8], 

which does not predict an infinite repulsion when the slider and disk are in contact. The 

effect of the lubricant is modeled through the value of the surface energy difference 

before and after contact. Coulomb’s law is used for the friction between the slider and 

disk. 

Another slider-disk contact and adhesion model, developed by Ono and Yamane [1], 

is also used here for comparison. It is a complicated multi-asperity contact and adhesion 
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model, which considers the bulk deformation of the contact interface and assumes that 

the lubricant meniscus is the only source of adhesion between the slider and disk. This 

model gives a stochastically averaged contact and adhesion force and the effect of 

asperities, which model the equivalent rough disk surface, on the air bearing is not 

considered. In this model the contact and adhesion forces between a slider and a disk are 

functions of the spacing between the contact pad and the disk, given the statistical 

characteristics of the roughness on the disk surface (including the radius of curvature of 

asperities, the asperity density and the standard deviation of asperity heights), the contact 

pad area and the surface energy of the lubricant. With the assumption that the contact 

area does not change at any interference depth, the slider-disk contact characteristics can 

be simply described using the maximum value of adhesion force, the bulk contact 

stiffness, the initial real contact force at the beginning of contact and the touch-down and 

take-off flying heights [1]. 

3. Three slider dynamic models 

Two slider dynamic models are obtained by implementing the two sets of contact and 

adhesion models discussed above into the CML slider dynamic air bearing program. The 

ABS is discretized into small grids, which are approximately parallel to the disk surface 

with various flying heights. The modified Reynolds equation is then discretized using 

Patankar’s control volume method, and the final discretization equations are solved using 

the alternating direction line sweep method combined with the full multi-grid algorithm. 

The dynamic program uses the Newmark Beta method to solve the slider dynamics 

equations. 
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The third slider dynamic model analyzed in this report is the two-degree-of-freedom 

(2-DOF) slider model developed by Ono and Yamane [1]. It includes the nonlinear air 

bearing spring model and the simplified multi-asperity contact and adhesion model. The 

4th order Runger-Kutta method is used to solve the slider’s equations of motion, as was 

done in [1]. 

4. Slider Dynamic Simulation and results 

Dynamic simulations using the CML air bearing model, the elastic contact model 

and the modified intermolecular force model 

Using the first model described above we analyze the vertical bouncing vibration of a 

partial contact HDI. We employ micro-trailing pad sliders in the simulations. As was 

found in [9], a slider in the contact regime with a smaller trailing pad may incur smaller 

short range attractive forces between the slider and disk as well as a reduced contact 

force. This helps to decrease the slider’s tendency to crash in the partial contact process. 

The ABS design of the slider is shown in Fig. 1. 

Here three different disk surfaces are used in the simulation. The first is an ideally flat 

disk surface, i.e. the RMS of the surface roughness is zero; the second is a “rough” disk 

surface with RMS roughness equal to 0.2 nm; the third is the same rough disk surface, 

but the disk micro-waviness and roughness within the HDI remains stationary. The third 

case is not practical, since the disk surface profile within the HDI keeps changing with 

the disk rotation. But we use this case to analyze the effect of dynamic roughness on the 

partial contact HDI. 

Fig. 2 shows the time histories of the minimum spacing between the slider and the 

mean plane of the disk surface, the pitch, the roll, and the corresponding power spectra of 
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the minimum spacing for these three cases. We can see that in case I and case III the 

initial response of the slider to the loading process is quickly damped out and the slider 

achieves a continuous contact steady state. However, in case II the slider keeps bouncing 

on the disk surface and the bouncing vibrations can not be damped. The frequency 

spectra of the minimum spacing in case I and case III are similar, while the frequency 

spectrum in case II is different and it has a series of peaks around 800 kHz. These higher 

frequency components are evidently associated with the slider-disk contact. The micro-

waviness and roughness on the disk surface, which move into the HDI as the disk rotates, 

excite these high frequency components, and they cause the slider’s continuous vertical 

bouncing vibration. 

Dynamic simulations using the CML air bearing model and the multi-asperity 

contact and meniscus adhesion model of Ono and Yamane 

Ono and Yamane [1] successfully implemented their multi-asperity contact and 

adhesion model in their 2-DOF slider dynamic model to study the unsteady bouncing 

vibration of low flying height sliders on a disk surface without micro-waviness or 

roughness. They reached a conclusion that the bouncing vibration can also be a self-

excited vibration caused by the adhesion and friction forces in the absence of moving 

disk micro-waviness or roughness. This is different from the conclusion presented above. 

To analyze this self-excited vibration, Ono and Yamane’s contact and adhesion model 

[1] is incorporated in the CML slider dynamic model in place of the elastic contact and 

improved intermolecular force models used above. First, in order to avoid the difficulties 

in applying this contact and adhesion model to the 3-DOF slider model in the CML air 

bearing program, we reduce the CML slider model to a 2-DOF one by inputting a huge 
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suspension roll stiffness so that the motion in the roll direction is negligible. Second, the 

simplified contact characteristic model is used instead of the full multi-asperity contact 

and adhesion model. The contact area is assumed to be constant and the statistical 

characteristics of the equivalent disk surface are the same as those used by Ono and 

Yamane. The separation between the contact pad and the mean disk surface is assumed to 

be equal to the minimum spacing between the slider and the mean disk surface. Here we 

fix the bulk contact stiffness to be 5.0×106 N/m, the initial contact force to be 5.0 mN and 

the touch-down FH to be 3.0 nm. Values of the minimum adhesion force, the bulk contact 

stiffness and the takeoff flying height are shown in Table I, where those with an upper 

asterisk are the default values used in the simulations. 

The force hysteresis needs to be considered in implementing Ono and Yamane’s 

model. Fig. 3 shows the relations of the real contact force Fcr, adhesion force Fm, contact 

force Fc (the sum of real contact and adhesion force) versus the separation d between the 

contact pad and the disk in the simplified model. The arrows on the lines denote the 

touch-down and take-off processes. In the simulation it is assumed that the slider’s initial 

state is touch-down if the initial separation is less than the take-off FH de. Then, the 

slider’s current separation d determines the slider’s state at the next time step, if the time 

step size used in the simulation is small enough. When the separation d is larger than de, 

the slider’s state at the next time step is touch-down. When the separation d is less than 

ds, the slider’s state at the next time step is take-off or touch-down, but it can be set to 

take-off since the touch-down line and take-off line coincide when d is less than ds. Then 

the slider’s state at the next time step remains the same as the current state when the 

separation is between ds and de. 
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A CML slider design is used in the simulation. The air bearing surface is shown in 

Fig. 4. It is a pico size slider (1.25 mm× 1.00 mm). The suspension preload is 1.5 gram 

and the disk RPM is 5400. Its static minimum flying height is approximately 3.2 nm and 

its pitch angle is approximately 176 μrad on a flat disk surface. This means that the disk 

may contact the slider if the take-off FH is above 3.2 nm. Figs. 5-8 show the time 

histories of the slider dynamics with different maximum meniscus force, take-off FH, 

friction coefficient and initial FH, respectively. 

The negative contact force in Fig. 5 shows that the flying slider contacts the disk 

when the maximum meniscus force is increased to 15 mN. However, the slider’s 

bouncing vibration is damped out even when the slider contacts the disk with a negative 

total contact force. 

Figs. 6-8 indicate the existence of two different steady states. Fig. 6 shows that when 

the take-off FH is 4 nm, the slider does not contact the disk in the steady state; when the 

take-off FH is 5.5 nm or 8 nm, the slider contacts the disk in the steady state. Fig. 7 

shows that the slider contacts the disk in the steady state when the friction coefficient is 

increased to 2.0. Fig. 8 shows that different initial FHs may also produce different final 

steady states. With an initial FH of 3.5 or 10 nm the slider does not contact the disk in the 

steady state; with an initial FH of 5 nm or 20 nm, the slider contacts the disk in the steady 

state. All of these indicate that the slider may have two different final steady states. One 

state is a flying state, i.e. the slider does not contact the disk. The other is a contact state 

with lower spacing, in which the slider contacts the disk with a negative total contact 

force. This negative total contact force is compensated by the increased air bearing force 

due to the lower spacing. The final state is determined by the take-off FH, the friction 
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coefficient or the initial FH. However, the existence of these two steady states does not 

mean that the slider will vibrate between two states. Instead the slider’s bouncing 

vibration is damped out quickly. In addition, the effect of the friction coefficient and the 

take-off FH can be seen from the simulation results. The contact steady state in Fig. 7 has 

a smaller pitch angle than the contact steady state in Fig. 8. This shows that a large 

friction coefficient may cause a low pitch angle when the slider contacts the disk. In Fig. 

6, the slider doesn’t contact the disk until the take-off FH is increased beyond 5.5 nm. It 

corresponds to an experimental observation that higher take-off FH causes a greater 

likelihood of slider disk contact. 

In conclusion, the simulation results of the CML 2-DOF slider dynamic model, which 

incorporates Ono and Yamane’s simple contact characteristic model for the slider disk 

contact and adhesion, show that the slider-disk contact, adhesion and friction are not the 

direct cause of the slider’s bouncing vibrations. So this implies that the near or partial 

contact slider-disk interface is not an adhesion and friction caused self-excited system as 

shown in [1]. The destabilizing mechanism of friction force shown in [1] might not 

provide a strong proof. On one hand, the work done by the friction to the air bearing-

slider-suspension system is not guaranteed to be always positive. On the other hand, not 

only the friction force between the slider and the disk but also the contact force does 

work on the slider. The moment arm of the contact force is much larger than that of the 

friction force, given that the pitch angle is on the order of μrad. From these two points of 

view, the friction appears not to be the main cause of the slider’s vibration. With the 

statistically averaged contact and adhesion model, it is even found that the adhesion force 

actually helps to reduce the bouncing vibrations [10]. 
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Analysis using Ono and Yamane’s 2-DOF dynamic model 

The 2-DOF slider dynamic model of Ono and Yamane [1], with the simple nonlinear 

air bearing model and the multi-asperity contact and adhesion model, is re-analyzed here 

in an attempt to obtain a non-decayed bouncing vibration of a slider in the near or partial 

contact regime on a disk without micro-waviness, which is shown in Section 3.3 of [1]. 

Fig. 9 shows this 2-DOF system model. The air bearing is simply represented by two 

lumped nonlinear springs (stiffness coefficients kf and kr) and two linear dashpots 

(damping coefficients cf and cr) located at the front and rear bearing pressure centers, 

respectively. With zf and zg denoting the spacing at the front and rear air bearing pressure 

center, respectively, the air bearing stiffnesses used in the model are expressed as, 
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where the subscript 0 denotes the parameters in the static state and d1 is a preset 

parameter. And the corresponding damping coefficients are 02f f fc Mξ= k  and 

02 rc Mr rξ= k . The suspension is represented by a normal linear spring (k) and dashpot 

( 2c Mξ= k ), an angular spring (kθ) and dashpot ( 2c Jkθ θξ= θ ), static load (F0) and 

static moment (M0). The simplified contact characteristic model shown in Fig. 3 is used 

to model the slider-disk adhesion and contact. 

For a slider with a static flying height FH at the transducer and a static pitch angle 

θ0, the equation of motion of the slider is derived in [1] as, 
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where zg denotes the vertical displacement of the center of mass from the mean roughness 

plane of the disk and θ denotes the angular displacement in the counter clockwise 

direction from the horizontal line. 

Notice that for the static state, 
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Then if we define '
0g g gz z z= −  and '

0θ θ θ= − , we can re-write the equations of motion 

as, 
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The total energy of the air bearing, slider and suspension system, without 

considering the elastic contact energy, can be expressed as, 
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(5) 
The same parameter values as used in section 3.3 of [1], which are shown in Table 

II, are used in the simulation here. The parameter d1 used in the air bearing model is not 

discussed in [1]. With the no-fly-zone condition, d1 can be set to 0.3 nm; or d1 is set to be 

equal to ds [11], which means that the air bearing is lost when the separation is less than 

the touch-down flying height. We use both of these values in the following simulations. 
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The 4th order Runger-Kutta method is used to solve the equations of motion as in 

[1]. If d1 = 0.3 nm is set, the time history of the slider dynamics of a 7 nm slider with an 

initial condition of FH = 250 nm and θ = 0 μrad is shown in Fig. 10 (a). It is obvious that 

the slider’s vibration is damped quickly and the slider achieves a steady state, which is 

the same as its static state. If d1 = ds, the time history of the slider’s dynamics with the 

same initial conditions is shown in Fig. 10 (b). It is seen that the slider’s dynamics 

doesn’t change with d1. The slider’s vibration is still damped out and the slider achieves 

its steady state quickly. The straight black line in the FH plot is the d1 line. In both cases 

the spacing at the rear air bearing center is always above d1. 

Fig. 11 shows the simulation results with the parameter values in Table II except 

that the friction coefficient μ is changed to 2.0. It is seen that the slider’s vibration is 

again damped out quickly. The increase in friction force has no effect on this 7-nm flying 

slider. 

Fig. 12 shows the simulation results with the parameter values in Table II except 

that the maximum meniscus force fm is changed to 50 mN. When d1=0.3 nm, the slider’s 

vibration is damped out quickly and the slider attains a contact steady state. The FH of 

the steady state is 1.6 nm and the pitch angle is 94.2 μrad. The slider has a lower FH and 

higher pitch angle than previously due to the large adhesion force of 50 mN. But the 

slider doesn’t bounce continuously on the disk. When d1 = ds, the numerical calculation 

doesn’t converge even with the time step as small as 10-9 s. The spacing at the rear air 

bearing center is sometimes less than ds at the beginning of the vertical bouncing. This 

causes a corresponding sharp change of the rear air bearing stiffness from a positive value 

to zero. This abrupt change in the rear air bearing stiffness causes the divergence of the 
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calculation and produces some complex values. These complex values in the simulation 

result in negative values of system energy, which is shown in Fig. 12 (b). 

Fig. 13 shows the simulation results with the parameter values in Table II except 

that the take-off FH is set to 8 nm, which means that the static flying without considering 

contact and adhesion is below the take-off FH. In the steady state the slider contacts the 

disk, which is shown from the non-zero contact force and non-zero system energy. In 

both cases of d1=0.3 nm and d1=ds, the FH of the steady state is 3.8 nm and the pitch 

angle is 94.2 μrad. 

Fig. 14 shows the simulation results with the parameter values in Table II except 

that the air bearing damping ratios are changed from 0.01 to 0.002. If d1=0.3 nm, the 

slider eventually obtains a steady state. If d1 is set to be ds, initially the spacing at the rear 

air bearing center becomes less than d1, the system energy becomes negative, but the 

slider goes to its steady state. The steady states in both cases are the same as the slider’s 

static state. The low air bearing damping ratios only cause a slow decay of the bouncing 

vibration. 

No continuous bouncing vibrations are observed in the simulations with a 7 nm 

slider. Now we turn to sliders with even lower FHs – a 4 nm FH slider and a 3 nm FH 

slider. Here d1 is set to be ds, the air bearing damping ratios are kept to be 0.002, but the 

initial FH is varied. The simulation results are listed in Table III. In some cases the 

numerical solution does not converge, i.e. the numerical scheme does not produce the 

same result as the time step size is reduced from 10-8 s to 10-9 s. However, it is seen that 

none of them show a slider with a continuous bouncing vibration. If the air bearing 

damping ratios are changed back to the default value 0.01, all of the numerical 
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calculations converge and the slider achieves a steady state in all of the cases with 

different initial FH. 

As a summary of the above simulations with a simplified air bearing model and a 

simplified contact and adhesion model, no continuous bouncing vibration of the type 

shown in Section 3.3 of [1] is obtained. The bouncing vibration can always be damped 

out and the slider achieves a steady state on a flat disk without micro-waviness. This is in 

agreement with the results we obtained using the CML air bearing contact model with a 

smooth disk. 

5. Conclusion 

Three different nonlinear slider dynamic models are used for the numerical analysis 

of the bouncing vibration of an air bearing slider in near or partial contact with the disk. 

In these three slider dynamic models, the air bearing with contact is modeled either using 

the generalized Reynolds equation modified with the Fukui-Kaneko slip correction and a 

new second order slip correction for the contact situation, or using nonlinear air bearing 

springs. The contact and adhesion between the slider and the disk are considered either 

using an elastic contact model and an improved intermolecular adhesion model, 

respectively, or using the Ono-Yamane [1] multi-asperity contact and adhesion model. 

The contact friction is calculated through Coulomb’s law. All of the simulation results 

show that the slider’s bouncing vibration is a forced vibration caused by the micro-

waviness and roughness. The disk surface micro-waviness and roughness, which move 

into the head disk interface (HDI) as the disk rotates, excite the bouncing vibration of the 

partial contact slider. The contact, adhesion and friction between the slider and the disk 

are not the direct causes of the slider’s bouncing vibration, since none of the simulations 
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predict bouncing in the absence of moving rough disk surface. However, the contact and 

adhesion affect the bouncing amplitude of a partial contact slider, as analyzed in [12]. So 

in order to design a partial contact slider with small bouncing, the disk surface, slider-

disk contact and adhesion need to be systematically modeled in the simulation process. 
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Table I Parameter values used in the multi-asperity contact and adhesion model for the 

slider-disk contact (upper asterisks denote the default values used in the simulations) 

Maximum meniscus force (fm) 5.0 mN, 10.0 mN*, 20.0 mN 

Take-off FH (de) 4.0 nm*, 5.5 nm, 8.0 nm 

Friction coefficient (μ) 0.5, 1*, 2 

 

 

Table II Parameter values used for 2-DOF slider dynamic simulations 

slider width (b) 0.3 mm 
slider mass (M) 1.59 mg 
slider’s moment of inertia (J) 2.19×10-13 kg•m2

Distance between the mass center and the contact pad (dh) -0.550 nm 
Distance between the mass center and the front air bearing 
center (df) 

0.250 nm 

Distance between the mass center and the rear air bearing center 
(dr) 

-0.525 nm 

Suspension normal stiffness (k) 4.9 N/m 
Suspension angular stiffness (kθ) 1.6×10-4 N•m/rad
Suspension normal damping ratio (ζ) 0.002 
Suspension angular damping ratio (ζθ) 0.002 
Static front air bearing stiffness (kf0) 5.0×105 N•m 
Static rear air bearing stiffness (kr0) 1.3×106 N•m 
Front air bearing damping ratio (ζf) 0.01 
Rear air bearing damping ratio (ζr) 0.01 
Friction coefficient (μ) 1.0 
Contact stiffness (kc) 5.0×106 N•m 
Real contact force at the beginning of contact (fc0) 5.0 mN 
Maximum meniscus force (fm) 10.0 mN 
Touch-down FH (ds) 3.0 nm 
Take-off FH (de) 4.0 nm 
Static pitch angle (θ0) 90 μrad 
Static FH 7.0 nm 
Initial excitation 250 nm FH and 0 

μrad pitch angle  
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Table III simulation results of a 4 nm slider and a 3 nm slider with ζf = ζr = 0.002 

and d1 = ds

 Initial FH and pitch 
angle 

Does the numerical 
calculation converge? 

Does the slider 
achieve a steady state 
finally?   

100 nm and 0 μrad Yes Yes 
50 nm and 0 μrad Yes Yes 

4 nm slider 

10 nm and 0 μrad No The FH becomes 
several microns. 

100 nm and 0 μrad Yes Yes 
50 nm and 0 μrad Yes Yes 

3 nm slider 

10 nm and 0 μrad No Yes 
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Fig. 1 Air bearing surface design of a micro-trailing pad slider 

 

 

Case I 

 

 
 

Case II 

 

 
 

Case III 
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Fig. 2 Time histories of the minimum spacing, the pitch, the roll and the power 

spectra of the minimum spacing of case I (the micro trailing pad slider on the ideally flat 

disk surface), case II (the micro trailing pad slider on a rough disk surface with moving 

roughness within the HDI) and case III (the micro trailing pad slider on a rough disk 

surface with stationary roughness within the HDI) 

 

 

 

Fig. 3 Simplified characteristic model of real contact force, adhesion force and 

contact force as functions of separation [1] 
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Fig. 4 Air bearing surface design of the CML slider used in the CML 2-DOF slider 

dynamic simulation 

 

 

 

Fig. 5 Time history of the slider dynamics with different maximum meniscus force fm

 

 

 

Fig. 6 Time history of the slider dynamics with different take-off FH de
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Fig. 7 Time history of the slider dynamics with the different friction coefficient  μ

 

 

 

Fig. 8 Time history of the slider dynamics with different initial FH 

 

 

 

Fig. 9 2-DOF slider model by Ono and Ya ane [1] 

 

m
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 (a) d1 = 0.3 nm 

 

 

 

 (b) d1 = ds

 

 

Fig. 10 Time history of the 2-DOF slider model with the parameter values shown in 

 

Table II 
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 (a) d1 =0.3 nm 

 

 

 

(b) d1 = ds

 

 

Fig. 11 Time history of the 2-DOF slider model with the parameter values shown in 

 

Table II except that μ = 2.0 
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 (a) d1 = 0.3 nm 

 

 

 

(b) d1 = ds

 

 

Fig. 12 Time history of the 2-DOF slider model with the parameter values shown in 

 

Table II except that fm = 50 mN. 
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 (a) d1 =0.3 nm 

 

 

 

(b) d1 = ds

 

 

Fig. 13 Time history of the 2-DOF slider model with the parameter values shown in 

 

Table II except that de = 8 nm 
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 (a) d1 = 0.3 nm 

 

 

 

(b) d1 = ds

 

 

Fig. 14 Time history of the 2-DOF slider model with the parameter values shown in 

Table II except that ζf = ζr = 0.002 
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