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Abstract 

When the spacing between the slider and the disk is less than 5 nm, the 

intermolecular forces between the two solid surfaces can no longer be assumed to be zero. 

The model proposed by Wu and Bogy can be viewed as a flat slider–disk intermolecular 

force model. The local distance between the slider and disk needs to be considered in this 

model when the slider-disk spacing is in the contact regime. To get more accurate 

intermolecular force effects on the head disk interface,  we need to consider the slider and 

disk surface roughnesses when the flying height is comparable to the surface RMS 

roughness value or when contact occurs. With the intermolecular force model and 

asperity roughness model implemented in the CML air bearing program, we analyze the 

effect of intermolecular adhesion stress on the slider at low flying height in a static flying 

simulation. It is found that the intermolecular adhesion stress between the slider and the 

disk has slight effect on the slider-disk interface for a flying slider. 
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1. Introduction 

The effect of intermolecular force on air bearing sliders in hard disk drives has been 

extensively investigated recently, starting with the paper by Wu and Bogy [1]. The 

intermolecular force between the slider and the disk is usually modeled based on the 

Leonard-Jones potential, which describes the potential energy between two atoms as a 

function of the distance between them. In the implementation of this potential in closely 

spaced air bearings the force is expressed as a function of the distance between the slider 

and the disk, i.e. the local flying height (FH). However, when the FH is less than 3nm, a 

contact distance ε  (0.3nm-0.5nm) needs to be considered and the intermolecular force 

then turns out to be a function of FH ε+ . Thus for very close spacing the intermolecular 

force is overestimated in Wu and Bogy [1], and others. After this correction is made 

there does not occur an unbounded repulsive intermolecular force when the FH is less 

than 0.5nm, or down to contact. 

The model resulting from this modification can be viewed as a flat slider-disk 

intermolecular force model. To get more accurate intermolecular force effects on the head 

disk interface the slider and disk surface roughnesses need to be considered when the 

flying height is comparable to the surface RMS roughness value or when contact occurs. 

The improved DMT (IDMT) models [2, 3 and 4], which are suitable for small, stiff 

spherical asperities, can be used to approximate the rough slider-disk intermolecular 

adhesion force. The intermolecular adhesion between measured rough slider and disk 

surfaces is calculated using the IDMT models, and the results are compared with the 

intermolecular force between the corresponding flat slider and disk surfaces. With this 

improvement implemented in the CML air bearing program, the effect of adhesion stress 

on the slider at low flying heights is analyzed in the static flying simulation. 
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2. Intermolecular force model 

As a special case of the Mie Potential, the Lennard-Jones potential is widely used to 

describe the interaction between two atoms or molecules. It is expressed as, 

6 12( ) - / /w r C r D r= + ,                                                            (1) 

where r is the center-to-center distance between the atoms and C and D are constants. For 

two atoms in vacuum the values C=10-77Jm6 and D=10-134Jm12 are usually used [1]. 

Differentiating the Lennard-Jones potential with respect to the distance r, we obtain the 

Lennard-Jones force as, 

7 13

6 12dw C Df
dr r r

= = − ,                                     (2) 

where the direction of adhesion is the positive direction of the force. 

If we ignore the anisotropy, non-additivity, and retardation effects of the Lennard-

Jones potential, and make the continuum assumption, we get through appropriate 

integration the potential between an infinite-half space and a unit area of a parallel 

infinite half space, as shown in Fig.1, 
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where 1ρ and 2ρ , respectively, are the number densities of atoms or molecules in these 

two infinite half spaces  and h is the distance between the two center planes of the surface 

atoms or molecules. If we differentiate this potential with respect to the distance h, we get 

the intermolecular adhesion stress between two half spaces, 
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= = − ,                                           (4) 

where the Hamaker constant 2

1 2
A= Cπ ρ ρ and another constant 2

1 2
B Dπ ρ ρ= . This result is 

similar to the intermolecular force expression in Wu and Bogy [1] except that here h is 
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the center-plane-to-center-plane distance instead of the flying height. We assume that the 

surfaces of the two half spaces are in contact when the total potential energy is a 

minimum [5]. If the minimum potential is at the distance h=ε, then the flying height is 

equal to h-ε. We see that P(h=ε)=0 when the potential takes the minimum. Then, using 

Equation (4) we find 

1/ 62( )
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A

ε = .                                                    (5) 

So Equation (4) can be written as, 

3 9
3

( ) [( ) ( ) ]
6

AP h
h h
ε ε

πε
= − .                                                            (6) 

If we take the difference in surface energy before and after contact as the required energy 

to separate the two contacting surfaces against the intermolecular adhesion, then we have 

1 2 12 2
( )
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ε
γ γ γ γ

πε
∞

Δ = + − = =∫ ,                                       (7) 

where 1γ and 2γ  are the surface energies of  the two surfaces before contact, and 12γ is the 

surface energy of their interface. 

The contact distance ε between two half-spaces was suggested to be 0.3-0.5 nm [2, 3, 

and 4]. Recently Yu and Polycarpou [6] calculated ε based on the relationship between 

the ground-state property of a crystal and its interatomic potential, which is dominated by 

the nearest neighbors. This approach is valid for molecular crystals, in which the total 

energy is primarily the sum of all interaction potentials between the molecules, and this 

weak intermolecular interaction can be approximated by the Lennard-Jones potential. 

However, for covalent crystals, such as diamond, or metals, the interatomic bonds are 

covalent bonds or metallic bonds, which cannot be described by the Lennard-Jones 

potential [7]. Another issue is the incompatibility between the continuum approach and 
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the molecular approach with the nearest neighbor assumption. The continuum approach 

considers the interaction between one atom or molecule and those non-nearest neighbors. 

So if we assume that the nearest neighbors contribute most of the interaction energy in 

the molecular approach, the obtained results can not be applied to the continuum 

approach. 

Notice that 1 2 12 2γ γ γ γ γΔ = + − ≈  for two surfaces composed of the same material, 

where γ  is their surface energy. Thus for two diamond-like carbon (DLC) surfaces, we 

know the surface energy 20.04 /J mγ ≈ [8] and the Hamaker constant 

191.80 10A J−= × [9], then we can estimate the contact distance ε for DLC surfaces 

through Equation (7). This estimation gives 0.22nmε = . So it is a good approximation if 

we take 0.3nmε = . 

If we take 0.3nmε = , then the flying height can not be approximated by h when the flying 

height is comparable to ε. Fig.2 shows the adhesion stresses with FH=h and FH=h-ε. 

When FH=0, i.e. h=ε, the two surfaces are in contact, and the contact force can be 

obtained through contact mechanics. So if the contact distance ε is considered, we will 

not have the result that an infinite repulsion will occur between the slider and disk when 

the flying height approaches zero. This is reasonable since the slider may contact the disk 

and even crash on the disk. 

3. Improved DMT model 

If we also consider the surface roughness we cannot use the above simple integration 

method to calculate the total potential and adhesion pressure of two half spaces. We need 

to turn to other asperity-based adhesion models. For a single asperity contact, Derjaguin 

et al. [5] proposed the DMT model, which assumes that the adhesion is the sum of all the 

intermolecular interactions outside the contact zone, and there is no contribution from the 
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contact area. Another, somewhat opposite model, called the JKR model [10], assumes 

that the adhesion is confined to the contact region. As pointed out by Tabor [11], these 

two models work under different conditions, which are determined by the adhesion 

parameter λ, 

2
1/3

2 3( )R
E
γλ
ε
Δ

= ,                                                                               (8) 

where E is the equivalent Young’s modulus and R is the radius of curvature of the 

asperity. It was shown that low values of λ (λ<1) correspond to a regime where the DMT 

model applies and high values of λ correspond to the JKR regime. The Maugis model 

[12], which used the Dugdale approximation [13] to the Lennard-Jones force, can be 

viewed as a bridge between the DMT and JKR models, and it applies to a wide range of 

adhesion parameters. 

For a slider-disk interface, R is on the order of 101μm, E is on the order of 101 GPa 

and γΔ  is around 10-2J/m2, then though Equation (8) we determine that λ is around 0.15, 

which is much less than 1. So we can use the DMT model for the adhesion problem in the 

slider-disk interface. Of course here we have made the assumption that the adhesion 

between the slider and disk is quasi-static. 

The contact between two rough surfaces can be modeled by an equivalent single rough 

surface contacting a flat rigid plane. Some of the asperities on the equivalent rough 

surface are in contact with the flat surface, while others are not in contact. So we need to 

use the improved DMT model [4] to consider the adhesion between those non-contacting 

asperities and the flat surface as well as the adhesion due to contacting asperities. Since 

the DMT model only uses the Hertz profile of an elastically deformed asperity for all 

contacting asperities, Chang, et al [2] proposed a CEB-IDMT model with the profile 

obtained through the volume conservation theory for plastic contact; Kogut and Etsion [3] 
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developed the KE-IDMT model with the asperity profile from their FEM solution. The 

difference between the CEB-IDMT model and KE-IDMT model, numerically shown in 

[3], partially comes from the inaccuracy of Equation (19a) in [3], which occurs when the 

dimensionless interference is less than 0.1. Here we directly use Equation (15) in [3] for 

the KE-IDMT model. 

We use the equivalent slider and disk surface parameters as given in [14], shown in 

Table I, and calculate the adhesion stresses based on these three adhesion models, i.e. 

IDMT, CEB-IDMT and KE-IDMT. The results are shown in Fig.3. Here the FH is a 

function of position and is defined as the distance between the mean asperity surfaces of 

the slider and the disk, while the FH between an ideally flat slider and disk is just the 

distance between the slider and the disk. It is found that the difference predicted by these 

various adhesion models is very small for low values of the plasticity index, which 

characterizes the elastic-plastic deformation of asperities. Asperities are mostly elastically 

deformed in the contact interfaces with the smaller plasticity index. If we compare the 

adhesion stress obtained using the IDMT model with that obtained using the 

intermolecular force model, i.e. the results shown in Fig.2 with those in Fig.3, we find 

that the IDMT models give much smaller adhesion stress than the intermolecular force 

model. 

4. Net adhesion stress 

Asperity contacts occur when the distance between the slider and the disk is below 

the glide height. In the simulations we can take three times the standard deviation of the 

surface height as the glide height. The asperity contact pressure increases as the distance 

between the slider and disk surfaces decreases towards zero. Then the net adhesion stress 

on the slider is the asperity adhesion stress minus the asperity contact pressure. 
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To model the slider disk asperity contact we assume that all of the contacts are 

quasi-static. For the multi-asperity static contact between two parallel surfaces, the GW 

model [15], CEB model [16] and KE model [17] give different relationships between the 

contact pressure and the distance between two parallel surfaces. The GW model assumes 

that all of the contacting asperities are elastically deformed. The CEB model assumes that 

the contacting asperities are either elastically deformed when the interference is less than 

a critical value, or directly become fully plastically deformed when the interference is 

greater than the critical interference. In the KE model the elastic-plastic deformation of a 

single contacting asperity is analyzed using the finite element method. Although the 

results of these three models are different, the difference is negligible when the plasticity 

index of the contact interface is small and only a few of the contacting asperities are fully 

plastically deformed. Fig.4 shows the contact pressures versus flying height between the 

slider and the disk, using the surface parameters in Table I. The results of these three 

models are close to each other for these three contact interfaces, except that the CEB 

model gives slightly larger contact pressure than the others when the plasticity index is 

0.836. The reason is that the total contact force of a fully plastically deformed asperity is 

much larger than for an elastically or elastic-plastically deformed asperity. So the 

assumption of the CEB model is expected to give a larger contact pressure. 

Fig.5 shows the net adhesion stress for these three slider-disk interfaces for the three 

models versus the flying height. The net adhesion stress in Fig.5 is much smaller than the 

intermolecular adhesion stress shown in Fig.2. Also, for the rougher slider-disk interface 

the net adhesion stress can become negative at low flying height, which means a 

repulsion effect instead of adhesion effect on the slider. 
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5. Static simulation of an air bearing slider 

Next the adhesion stress calculation needs to be implemented in the air bearing 

simulation for the flying slider in order to analyze the effect of the intermolecular 

adhesion. We can not make a simple assumption that the effect of adhesion is negligible 

when the FH is above 3nm simply because in Fig.2 or Fig.5 the adhesion stress is close to 

zero when the flying height is above 3nm. The reason is that the adhesion stress may still 

be comparable to the air bearing pressure although it looks very small in Fig.2 or Fig.3 

for a FH greater than 3nm. In addition, different places on the slider have different flying 

heights, due to the pitch, roll and the air bearing surface (ABS) design features of the 

slider, and hence they have different adhesion pressures. The correct way to analyze the 

effect of adhesion stress is to consider the adhesion stress in slider flying simulations. As 

shown above, the choices among these asperity contact and adhesion models do not make 

much difference for the flying slider/disk interface. So we picked the KE-IDMT adhesion 

and KE contact models in the following slider static simulation. 

The CML air bearing static simulation program is used to analyze the effect of 

intermolecular adhesion. In this program the generalized Reynolds equation is modified 

by the Fukui-Kaneko slip correction to account for the rarefaction of the air at the 

slider/disk spacing down to asperity contact. The modified Reynolds equation is then 

discretized using Patankar’s control volume method, and the final discretization equations 

are solved using the alternating direction line sweep method combined with the full 

multi-grid algorithm. The ABS is discretized to small grids, which are approximately 

parallel to the disk surface with various flying heights. Then the intermolecular force 

model or asperity adhesion/contact models are applied to each grid. Air bearing shear 

stress on the ABS is also considered in the simulation program and its effects on the pitch 
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and roll of the slider have been analyzed previously [19]. The effect of the slider-disk 

asperity contact on the air bearing pressure is not considered due to the negligible real 

contact area as compared with the air bearing surface. In addition, the surface roughness 

effects are not included in the air bearing model. For a given ABS design the static 

simulation program uses the quasi-Newton method to calculate the slider’s static flying 

altitude, i.e., the equilibrium state. 

In the simulation we use a CML designed femto slider with the ABS shown in Fig.6 

and two types of slider-disk surface roughness parameters, case 2 and case 3 in Table I, 

and also a flat slider/disk interface. The asperity adhesion/contact models are applied to 

the first two cases and the last one uses the intermolecular force model. Fig.7 shows the 

relationship between the disk RPM and the slider’s minimum flying height for the 

various cases. As the disk RPM decreases, the slider’s minimum flying height also 

decreases. Both the original and modified intermolecular force models show significant 

flying height decreases due to the intermolecular adhesion stress. At the same disk RPM 

the minimum flying height obtained with the modified intermolecular force model is 

higher than that obtained with the original intermolecular force model. This can be 

explained by the smaller adhesion stress that occurs with the consideration of the contact 

distance in the modified intermolecular force model. However, the rougher and smoother 

slider disk interfaces using the asperity adhesion/contact model show less effect of 

adhesion stress, and the minimum flying height is close to that obtained without 

considering the slider disk adhesion, when the minimum flying heights are above the 

glide height, i.e., 3 times the standard deviation of the surface height. When the minimum 

flying height is below the glide height, the rougher slider/disk interface, i.e. case 2 in 

Table I, has a higher minimum flying height than in the case without considering 
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slider/disk adhesion or contact, while the smoother slider/disk interface, i.e., case 3 in 

Table I, shows the opposite trend. This indicates that the net adhesion stress takes effect 

only when the minimum flying height is less than the glide height. For the rougher 

slider/disk interfaces, the net adhesion stress becomes negative at a flying height below 

the glide height. Hence the slider has a higher minimum flying height. On the other hand, 

for the smoother slider/disk interface the net adhesion stress is positive, and it increases 

as the flying height deceases, so the slider has a lower flying height. 

In Fig.7 we also see that the modified intermolecular force model produces two 

minimum flying heights for one low value of disk RPM as does the original 

intermolecular force model. The smaller of the two flying heights corresponds to an 

unstable equilibrium [18]. However, this unstable equilibrium has not been found in 

experiments. The asperity contact/adhesion models do not produce such an unstable 

flying height, and therefore they agree better with experimental results, which is 

understandable, since practical slider and disk surfaces always have certain roughnesses. 

6. Conclusion 

This paper investigates the intermolecular force model and asperity adhesion/contact 

models for ultra-low flying height sliders. A contact distance is introduced and included 

in the original intermolecular force model, after which it is found that no infinite 

repulsive force occurs as the flying height approaches zero. The IDMT model and GW 

models are recommended for multi-asperity adhesion and contact simulations, 

respectively. Other improved models have negligible difference for the slider/disk 

interface, which has a low plasticity index and high hardness and Young’s modulus. 

Asperity adhesion/contact models are implemented in the CML static air bearing 

simulation program and the following conclusions may be drawn from the simulations,  
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1. The intermolecular force model overestimates the slider disk adhesion due to the 

neglect of the roughness of the slider and disk surfaces. 

2. For practical slider and disk surfaces with certain roughnesses, the effect of asperity 

adhesion/contact is negligible when the minimal flying height is above the glide height. 

3. The modified intermolecular force model that incorporates the contact distance 

predicts a smaller reduction in FH than the original intermolecular force model. The 

effect is further reduced when surface roughness is included. 

4. When the slider/disk roughness is considered, the slider static simulation does not 

obtain an unstable equilibrium at low disk RPM. 

5. When the slider’s minimum flying height is less than the glide height, the minimum 

flying height is higher on rougher slider/disk interfaces since the net adhesion stress is 

smaller and may even become negative for rougher interfaces. 
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Table І Slider/disk equivalent roughness parameters 

 

Equivalent roughness 

parameter 

Case 1 

(slider/disk 1)

Case 2 

(slider/disk 2)

Case 3 

(slider/disk 3) 

Standard deviation of surface 

height (nm) 
1.619 1.245 0.654 

Asperity radius (μm) 3.331 5.452 6.384 

Asperity density (μm-2) 7.393 7.177 9.871 

Standard deviation of asperity 

height (nm) 
1.417 1.143 0.578 

Plasticity index Ψ 0.836 0.587 0.386 

Glide height (nm) 4.857 3.735 1.962 
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Fig. 1. An infinite half space and a unit surface area of a parallel infinite half space. 

 

 

 

 

Fig. 2. Adhesion stress obtained through intermolecular force model with and without 

considering the contact distance ε. 
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Fig. 3. Adhesion stresses obtained thorough the IDMT, CEB-IDMT and KE-IDMT 

model. 

 

 

 

 

Fig. 4. Contact pressure obtained thorough the GW, CEB and KE model. 

 

 



 18

 

 

Fig. 5. Net adhesion pressure obtained thorough the GW, CEB and KE contact and 

adhesion models. 

 

 

 

 

Fig. 6. Air bearing surface of CML femto slider. 
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Fig. 7. Minimum flying height versus disk RPM for the rougher slider/disk surfaces (case 

2 in Table 1), smoother slider/disk surfaces (case 3 in Table 2), flat slider/disk interfaces 

and the case without considering the slider/disk adhesion or contact (the solid lines 

represent stable equilibria and the dotted lines represent unstable equilibria). 


