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ABSTRACT

In this report, new methods to estimate repeatable runout (RRO) in hard disk drives are

described. The techniques are based on adaptive feedforward cancellation (AFC). To enhance

the performance, the modified Filtered-X LMS (MFX-LMS) adaptive algorithm is combined with

a Kalman filter. The estimation of RRO in this report is to be performed at the manufacturing

stage. The estimated data are used in real-time control to generate the compensation signal which

cancels RRO disturbances. The proposed method is compared with other common methods for

handling RRO by simulations. In addition, an frequency selective estimation is proposed to

exclude the high frequency components of RRO in the estimation process. Simulation results

show the effectiveness of the proposed schemes and the resulting reduction of position errors in

the track following mode.

I. I NTRODUCTION

With the continuously increasing storage capacity of hard disk drives (HDDs), the track density

on the disk becomes higher and higher. This makes it a challenge to accurately position the disk

drive’s read/write head (R/W head) in the presence of severaldisturbances. In the sector servo
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system for HDDs, a circular disk is divided into equally sized angular pieces (called sectors)

whose boundaries are servo fields. A set of servo fields definesa servo-written track center. The

position error signal (PES) indicating the deviation of theR/W head from the servo-written track

center is obtained from each servo field as the R/W head passes through.

The top view of a disk is shown in Fig. 1. In track following operations, the R/W head normally

follows a data track with reference to a servo-written trackcenter. The servo-written track center

is typically not a perfect centric circle, since the servo fields may be placed on either side of

the ideal track center due to disturbances in the servo-writing process. The difference between a

servo-written track center and an ideal circular track center introduces written-in errors, which

are often referred to as repeatable runout (RRO) errors or written-in repeatable runout (WI-RRO)

errors since they cause the same errors each time the head follows the track. RRO is periodic

and synchronized with disk rotation. The other type of disturbances called non-repeatable runout

(NRRO) is caused by disk vibrations, windage, noise and so on.

A great deal of research effort has been focused on the RRO compensation. In [1]–[4], the

controllers make the R/W head follow the servo-written trackcenter. This might cause problems

Fig. 1. Servo-written track center v.s. ideal circular track center
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when the RRO disturbance is not coherent at different tracks.In particular, with two adjacent

tracks, when written-in error of the inner track and that of the outer track point outwards and

inwards, respectively, the two track paths could interferewith each other, which may result

in data corruption. To prevent this from happening, anothertype of control scheme has been

considered [5], [6]. During manufacture of a disk drive, after servo-writing process, a table

which includes a series of compensation values for RRO with respect to the positions of servo

fields is calculated and stored. Then, during normal operations of the disk drive by the user,

the compensation table is utilized to construct an additional input into the servo control loop

to correct the servo-written track centers so that they are closer the ideal circular track centers.

Improvement achieved by this scheme depends on the accuracyof RRO estimation. Estimating

the RRO disturbance for every track of the disk requires a significant amount of manufacturing

time. Therefore, the motivation for this research is to develop a technique which can achieve

rapid and accurate estimation of RRO disturbance in disk drives.

Adaptive feedforward cancellation (AFC) has been widely applied in HDD industry to reduce

periodic disturbances [2]–[4]. In these methods, the periodic disturbance is modeled as a sum of

several sinusoids of known frequencies and the unknown amplitudes and phases are estimated

by an adaptive algorithm. The method is effective when dealing with a few selected harmonics.

However, it is impractical to compensate for a large number of harmonics due to the constraint

of computation power. In [7] and [8], the authors proposed advanced methods to estimate all

harmonics in RRO disturbance. The methods are based on AFC butdo not require intensive

computations. In this report, modifications of the previousschemes are proposed to enhance

the estimation performance. The remainder of this report isorganized as follows. In Section II,

the design schemes from the previous report [8] are briefly reviewed. Then a modified scheme
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is proposed to improve the estimation performance. SectionIII describes an HDD application

of the modified scheme for RRO estimation. The AFC and modified methods are compared

with other common methods for handling RRO: the inverse sensitivity method and the repetitive

control method. In Section IV, a frequency selective estimation scheme is proposed to exclude

the high frequency components of RRO in the estimation process. Finally, conclusions are given

in Section V.

II. GENERAL PROBLEM FORMULATION AND AFC CONFIGURATION

A block diagram of a general single-input-single-output (SISO) linear time invariant (LTI)

discrete-time feedback control system with periodic disturbances is shown in Fig. 2. In the

figure, P (z) denotes the plant andC(z) the feedback controller. The referencer(k) and the

disturbanced(k) are periodic with periodN . Without loss of generality,r(k) is assumed to

be zero. The periodic disturbanced(k) is compensated by injecting an additional compensation

signal d̂(k), which is an estimation ofd(k), at the reference to minimize its effect on the

error signale(k). Performance of the disturbance cancellation depends on the accuracy of its

estimation. The disturbance can be estimated or learned from the error signale(k) on which the

Fig. 2. Block diagram of feedback control system with periodic measurement disturbanced(k)
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effects ofd(k) and d̂(k) are given by

e(k) = S(z)
[
d(k) − d̂(k)

]
, S(z) =

1

1 + P (z)C(z)
. (1)

whereS(z) is the sensitivity function of the closed-loop system.

A. Standard AFC

A block diagram description for an AFC scheme to estimate theperiodic disturbanced(k)

is presented in Fig. 3. The AFC scheme shown inside the dashedlines is an add-on structure

to the feedback system in Fig. 2. Therefore, it does not require to alter the original feedback

configuration.

The AFC scheme consists of two major elements: a digital filter, W (z), and an adaptive

algorithm, LMS (Least-Mean-Square) block. It aims to generate and̂(k) to follow the periodic

disturbanced(k). The adaptive algorithm adjusts the coefficients of the filter to minimize the

mean-square value of the error signale(k). The input signalx(k) is an excitation to the adaptive

Fig. 3. Block diagram of FXLMS
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filter and is chosen to be highly correlated tod(k). v(k) represents uncorrelated noise components

which appear ine(k). Notice thate(k) is not the true error betweend(k) and d̂(k), but only the

filtered version of it, as shown in Eq. (1). For this kind of system,x(k) must also be filtered by

S(z), before it is utilized by the LMS algorithm, to ensure convergence. Because of the filtering

notion, the adaptive algorithm is called the Filtered-X LMS(FX-LMS) algorithm. In practical

applications,S(z) is unknown and an approximation̂S(z) is utilized, with impulse response

ŝ(k). A popular choice for the adaptive filter is a finite impulse response (FIR) digital filter,

since FIR filters are always stable.

Let the FIR filterW (z) has lengthN , which is the period ofd(k), i.e.

W (z) = w0 + w1z
−1 + · · · + wN−1z

−N+1.

Then, the adaptive feedforward compensation with FX-LMS algorithm can be described by the

following equations:

z(k) = xT (k)w(k), (2)

x′(k) = ŝ(k) ∗ x(k), (3)

w(k + 1) = w(k) + µx′(k)e(k), (4)

where

x(k) =

[
x(k) x(k − 1) · · · x(k − N + 1)

]T

(5)

x′(k) =

[
x′(k) x′(k − 1) · · · x′(k − N + 1)

]T

(6)

w(k) =

[
w0(k) w1(k) · · · wN−1(k)

]T

(7)
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From Fig. 3,z(k) = d̂(k) is the output of the adaptive filter,x(k) is the input signal vector,

x′(k) is the filtered input signal vector,w(k) is the filter coefficients at timek in vector form,

µ is the step size, and∗ denotes the convolution sum. Define the fundamental and harmonic

frequenciesfk ∈ Ω where

Ω =

{
fk | fk =

k

TsN
, k = 1, · · · ,

⌊
N

2

⌋}
(8)

In frequency domain,d(k) contains frequency components only at frequenciesfk ∈ Ω. Therefore,

the input signalx(k) is chosen as an impulse train with periodN , i.e.

x(k) =





1, if mod(k,N) = 0

0, otherwise.
(9)

Notice thatx(k) contains the required frequency components for the adaptive filter W (z) to

generate the corresponding estimate components ofd(k). Because of the sparse natural of the

signal x(k), the computation of the FX-LMS algorithm is simplified.x(k) is like a circular

pointer which points to each coefficient ofW (z) sequentially to be the outputz(k). Hence,

no computation is required in Eq. (2). Equation (3) can be pre-calculated, sincês(k) andx(k)

are known beforehand. Assumês(k) has lengthL. Then,x′(k) containsL non-zero elements.

Therefore, from Eq. (4), onlyL coefficients inW (z) need to be updated at every sampling time.

With a small length of̂s(k), the computational load is practical for implementation.

Ideally, when there is no uncorrelated noise,v(k) = 0, perfect estimation can be achieved

by producingz(k) = d(k) such thate(k) = 0. The filter coefficient vectorw(k) will converge

to an optimal solutionwo. However, in most practical applications,v(k) 6= 0. By defining a
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coefficient error vector as

ed(k) , w(k) − wo, (10)

and using Eq. (4), it is shown that

ed(k + 1) = ed(k) + µx′(k)e(k),

= ed(k) + µx′(k)[s(k) ∗ [d(k) − z(k)] + v(k)],

= ed(k) + µx′(k)[s(k) ∗ [d(k) − z(k)]]

+ µx′(k)v(k) (11)

The last termµx′(k)v(k) introduces a perturbation to the error equation. This undesirable

interference would cause serious degradation in both estimation speed and accuracy when the

noise level ofv(k) is high. The effect ofv(k) is reflected in the adaptive filter outputz(k). In

other words, the estimation results from the FX-LMS algorithm are buried in the noise. Therefore,

it makes sense to apply Kalman filtering to estimated(k) from the noise contaminated signal

z(k).

B. AFC combined with Kalman filter

The structure of AFC with Kalman filtering is in Fig. 4. The periodic disturbanced(k) can

be considered as the states of a stochastic process

d(l) = d(l − 1)

z(l) = d(l) + u(l), (12)
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where

d(l) = [d0(lN) d1(lN) · · · dN−1(lN)]T

z(l) = [z(lN) z(lN + 1) · · · z((l + 1)N − 1)]T

u(l) = [u(lN) u(lN + 1) · · · u((l + 1)N − 1)]T .

The time indexl represents the number of revolutions. Notice that the adaptive filter output

d̂(k) in Fig. 3 is now interpreted as the actual disturbanced(k) plus the excess noiseu(k). By

applying standard Kalman filter formula,

K(l) = P (l − 1) [P (l − 1) + R]−1

d̂(l) = [1 − K(l)] d̂(l − 1) + K(l)y(l) (13)

P (l) = [1 − K(l)] P (l − 1).

Fig. 4. Block diagram of AFC system with FX-LMS algorithm and Kalman filter
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Time-varying Kalman filter gain is utilized to speed up convergence. Sinceu(k) is introduced

by v(k), the noise covarianceR can be selected according to the statistical property ofv(k) to

achieve better estimation results. AssumeR = rI, thenK(l) andP (l) are simplified to scalars,

which can be calculated beforehand. Notice that the Kalman filter is operated at a sampling rate

N times slower than the system sampling rate.d̂(k) is obtained from the output of the Kalman

filter.

In the LMS algorithm, a larger step sizeµ results in faster convergence. However, there

is an upper bound onµ to maintain stability of the algorithm. It is known that the FX-LMS

algorithm suffers from a reduction in maximum step size due to the delay caused by the dynamics

systemS(z) [9]. The effect ofS(z) leads to slower convergence and therefore overall limited

performance. As an simplified example, assumeS(z) is modeled as a pure delay∆ without

modeling error, i.e.

S(z) = Ŝ(z) = z−∆, (14)

and no Kalman filter is added in the AFC scheme. Using Eq. (2), the error signal is written as

e(k) = d(k − ∆) − z(k − ∆) (15)

= d(k − ∆) − xT (k − ∆)w(k − ∆). (16)

Notice that the error signal is computed using the past coefficient vectorw(k − ∆). Then, Eq.
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(4) becomes

w(k + 1) = w(k) + µx(k − ∆)e(k) (17)

= w(k) + µx(k − ∆)
[
d(k − ∆) − xT (k − ∆)w(k − ∆)

]
. (18)

The delayed coefficient vectorw(k − ∆) in the coefficient update equation results in slow

convergence rate. To remove the delay in the coefficient updates, a new error signal is defined

ε(k) , e(k) + ŝ(k) ∗ z(k) − x′T (k)w(k) (19)

(20)

From Eq. (15),ε(k) is expressed as

ε(k) = e(k) + z(k − ∆) − xT (k − ∆)w(k) (21)

= d(k − ∆) − xT (k − ∆)w(k). (22)

The new error signal is computed usingw(k) without delay. The FX-LMS algorithm utilize

the error signalε(k) is called the Modified Filtered-X LMS (MFX-LMS) algorithm [10]. The

MFX-LMS algorithm is able to eliminate the effect ofS(z) in the case of no modeling errors,

such that the behavior of the system is similar to that of a standard LMS adaptive filter. In this

report, an AFC scheme combining MFX-LMS algorithm and Kalman filtering is proposed. Since

the MFX-LMS algorithm does not suffer from maximum step sizereduction, a larger step size

can be selected to increase the convergence speed.
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Fig. 5. Block diagram of AFC system with MFX-LMS algorithm and Kalman filter

C. AFC utilize Modified Filtered-X LMS algorithm

The proposed AFC scheme is presented in Fig. 5. It consists ofthe MFX-LMS algorithm as

shown inside the dashed lines and a Kalman filter. The MFX-LMSalgorithm can be described

by the following equations:

z(k) = xT (k)w(k), (23)

z′(k) = ŝ(k) ∗ z(k), (24)

x′(k) = ŝ(k) ∗ x(k), (25)

ε(k) = e(k) + z′(k) − x′T (k)w(k) (26)

w(k + 1) = w(k) + µx′(k)ε(k). (27)
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The MFX-LMS algorithm removes the effect of the dynamic system S(z) with the expense of

additional computations in Eqs. (24) and (26). Since an approximate modelŜ(z) is used, the

algorithm have to be robust to model uncertainties. It is shown [11] that the MFX-LMS algorithm

is stable as long as it satisfies

Re

[
Ŝ(ejωTs)/S(ejωTs)

]
>

1

2
, for 0 ≤ ω ≤

π

Ts

. (28)

In other words, for the case of no phase errors the estimated amplitude should be greater than

half of the real one, and for the case of no amplitude errors the phase errors should be less than

60◦.

III. A PPLICATION TO RRO COMPENSATION IN HDDS

In the track following mode of HDDs, the closed-loop controloperates by the feedback of the

position error signal (PES) with perturbations from RRO and NRRO disturbances. The objective

is to estimate the periodic disturbance RRO, and construct ancompensation signal to correct the

servo-written track center such that it is closer to an idealcircular track center.

A. Performance comparisons

The track following servo system of HDDs can be represented by the block diagram described

in Fig. 2, where the error signale(k) is the PES measurement and the periodic disturbanced(k)

is the RRO. PES can be decomposed in to Repeatable PES (RPES) and Non-Repeatable PES

(NRPES) caused by RRO and NRRO respectively. The disk spindle speed in this numerical

simulation study is 7200 rpm, which means that the fundamental frequency of RRO is 120 Hz.

Pre-recorded RRO and NRRO disturbances for 20 different tracks are used. The level of NRRO

has significant impact on the performance. In these data tracks, the ratio between RPES and
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NRPES is in the following region,

0.64 ≤
σ(RPES)

σ(NRPES)
≤ 0.90 (29)

with mean value 0.77, whereσ(·) is the standard deviation. The small ratio and wide range make

it challenging to obtain an accurate estimate of RRO with consistent performance.

Existing techniques and the proposed method are applied to estimate RRO. Their performances

are evaluated by reduction of RPES after compensation. The effect of RRO on RPES through

the sensitivity function is

RPES(k) = S(z)d(k), (30)

RPEScmp(k) = S(z)
[
d(k) − d̂(k)

]
. (31)

The performance index is defined as

∆ σ(RPES) =
σ(RPEScmp) − σ(RPES)

σ(RPES)
× 100%. (32)

Note that the performance index is negative and it takes a lower value for a larger reduction of

RPES after compensation.

1) Inverse sensitivity method:An existing technique is called an inverse sensitivity method.

In this method, PES is averaged over multiple revolutions ofthe disk to reduce NRRO effect,

and then the averaged PES is filtered by an approximation of the inverse sensitivity function

to back calculate the estimated RRO. It is an open loop estimation. Frequency responses of

the inverse sensitivity functionS−1(z) and its 180-tap FIR approximation̂S−1(z) are shown in

Fig. 6. Since RRO only affects PES at harmonic frequenciesfk ∈ Ω, Ŝ−1(z) is designed to



15

Frequency (Hz)

M
ag

n
it

u
d
e

(d
B

)

S−1(z)
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Fig. 6. Frequency response ofS−1(z) and Ŝ−1(z) in inverse sensitivity method

intersect the frequency response ofS−1(z) only at frequenciesfk, except atf1, f2 andf3. The

low gain design at these frequencies is to prevent amplification of the low frequency contents in

NRRO. The compensation performance of the inverse sensitivity method is plotted in Fig. 7. The

solid lines with square markers represent the average performance for 20 tracks, and the dashed

lines indicate the performance variance among different tracks. The inverse sensitivity method

achieves an average 50% RPES reduction after 8 revolutions asshown in Fig. 7. However, the

performance exhibits high variations due to the wide range of the RPES-to-NRPES ratio.

2) Repetitive Control:Since RRO is a periodic disturbance, repetitive control can be applied

to estimate RRO at all harmonics of the fundamental frequency. The block diagram of the closed

loop system utilizing a repetitive controller is shown in Fig. 8. The repetitive controller contains

a stable inverse of the sensitivity function and a periodic signal generator. An adjustable again

Kr controls the tradeoff between the convergence rate and estimation accuracy. The inverse

sensitivity function in the repetitive control is modeled as a 5th order rational transfer function.
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Fig. 7. Compensation performance of inverse sensitivity method

Fig. 8. RRO estimation using a repetitive controller

Its frequency response is shown in Fig. 9. The performance ofthe system with the repetitive

controller is shown in Fig. 10. Since the repetitive controller utilizes the feedback error signal,

the closed loop system is more robust to the wide range of the RPES-to-NRPES ratio. The

performance variations are smaller than that of the inversesensitivity method.

3) AFC schemes:The frequency response of the sensitivity functionS(z) of the servo system

is shown in Fig. 11. Its approximation̂S(z) employed in the AFC setting is a 10-tap FIR filter.
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Revolutions

∆
σ
(R

P
E

S
)

[%
]

2 4 6 8 10 12 14 16
-80

-70

-60

-50

-40

-30

-20

-10

0

Fig. 10. Compensation performance of repetitive control



18

From Fig. 12, it is shown that̂S(z) satisfies the stability condition of the MFX-LMS algorithm

in Eq. (28). The Performances of the AFC schemes using FX-LMSand MFX-LMS both with

additional Kalman filtering are shown in Figs. 13 and 14. Both methods are robust to different

RPES-to-NRPES ratios and result in small performance variations; they are significantly superior

to the inverse sensitivity method and better than the repetitive control in terms of performance

variations. Table I summarizes the performances among different methods after 8 revolutions.

AFC using FX-LMS algorithm reduces RPES by 51%, whereas usingMFX-LMS algorithm

achieves 59% reduction which is the best of the four. If it is desired to reduce RPES by half,

using the proposed MFX-LMS algorithm with Kalman filtering can shorten the estimation period

by 2 or 3 revolutions. This means a significant reduction of manufacturing time compared with

the inverse sensitivity method, i.e. 25%.
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TABLE I

PERFORMANCECOMPARISONAFTER 8 REVOLUTIONS

Scheme Inverse Repetitive FX-LMS MFX-LMS
Sensitivity Control w/ Kalman w/ Kalman

∆ σ(RPES) −49.58% −51.77% −51.41% −58.92%

IV. FREQUENCYSELECTIVE ESTIMATION

The plant outputy(k) in Fig. 2 can be regarded as the True Position Error (TPE) of the R/W

head, i.e. the true deviation from the virtual ideal track center. Notice that in practice this signal

is unavailable for measurement because of disturbances. The Repeatable TPE (RTPE) caused by

RRO disturbanced(k) is given by

RTPE(k) = T (z)d(k) =
P (z)C(z)

1 + P (z)C(z)
d(k) (33)

RTPEcmp(k) = T (z)
[
d(k) − d̂(k)

]
, (34)
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whereT (z) is the complimentary sensitivity function of the closed-loop system. Using the same

simulation data as in Section III, the frequency response ofT (z) of the simulated closed-loop

system in Fig. 15 indicates a significant drop of the gain beyond around 5kHz. It means that the

R/W head cannot follow the high frequency variations in the servo-written track center due to the

limited control bandwidth. Instead, the R/W head moves alonga smoothened path. Therefore,

the high frequency components of RRO have small impacts on thetracking performance and can

be excluded from the estimation. To develop a frequency selective estimation, a straightforward

way is to remove the high-frequency components in the error signal e(k) by adding a low-pass

filter. This results in an increased computational cost. A more efficient method is to replace the

usage of an impulse train inx(k) by a rectangular wave. In this case,x(k) is expressed as

x(k) =





1, if mod(k,N) = 0 or 1

0, otherwise.
(35)
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In Fig. 16, from the spectrum comparison of a impulse train inEq. (9) and a rectangular wave

in Eq. (35), the magnitude of the rectangular wave rolls off at high frequencies. Those frequency

components will hardly show up at the adaptive filter outputz(k), and thus the frequency selective

estimation is accomplished. In general, a rectangular wavedesigned to contain the necessary

harmonics,fk, k = 1, . . . ,M , is given by

x(k) =





1, if mod(k,N) = 0, . . . , N1

0, otherwise.
(36)

where

N1

N
≤

1

2M
(37)
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A new performance index is needed for the frequency selective scheme. It is defined as

∆ σ(RTPE) =
σ(RTPEcmp) − σ(RTPE)

σ(RTPE)
× 100%, (38)

In simulation studies, RTPE reduction can be observed. Comparing the performances of the

proposed AFC scheme using an impulse train and a rectangularwave in Figs. 17 and 18, the

latter achieves a larger RTPE reduction and smaller performance variations. Spectrum of the

estimated̂(k) compared with that ofd(k) is shown in Fig. 19. It is observed that the frequency

components beyond 5kHz are excluded in the estimation process and do not show up in̂d(k).

Because the number of frequency components required to be estimated is lesser, the proposed

AFC scheme using a rectangular wave can achieve faster and more accurate estimation and thus

a greater reduction of RTPE. In other words, the R/W head can follow the ideal circular track

center more closely.
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Fig. 17. Compensation performance using impulse train



24

Revolutions

∆
σ
(R

T
P

E
)

[%
]

2 4 6 8 10 12 14 16
-80

-70

-60

-50

-40

-30

-20

-10

0

Fig. 18. Compensation performance using rectangular wave

Freq (Hz)

N
or

m
al

iz
ed

M
ag

n
it

u
d
e

d(k)

Freq (Hz)

d̂(k)

0 5000 100000 5000 10000
0

0.005

0.01

0.015

0.02

0

0.005

0.01

0.015

0.02

Fig. 19. Spectrum ofd(k) and d̂(k)



25

V. CONCLUSIONS

This report discussed the RRO estimation methods used for RRO cancellation. The adaptive

feedforward compensation scheme with MFX-LMS algorithm was applied to estimate RRO.

Kalman filtering was introduced to enhance the performance of AFC. The proposed method was

compared with two common methods: the inverse sensitivity method and the repetitive control

method. In addition, a frequency selective estimation scheme was introduced to exclude the high

frequency components of the RRO disturbance. It was achievedby choosing a different input

signal in AFC. The simulation results showed the effectiveness of the proposed methods and the

improvement of the tracking performance.
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