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ABSTRACT

In this report, new methods to estimate repeatable runouOJRR hard disk drives are
described. The techniques are based on adaptive feedtbiwaacellation (AFC). To enhance
the performance, the modified Filtered-X LMS (MFX-LMS) atlap algorithm is combined with
a Kalman filter. The estimation of RRO in this report is to befpened at the manufacturing
stage. The estimated data are used in real-time controlnergee the compensation signal which
cancels RRO disturbances. The proposed method is compatiedtver common methods for
handling RRO by simulations. In addition, an frequency delecestimation is proposed to
exclude the high frequency components of RRO in the estimgiirocess. Simulation results
show the effectiveness of the proposed schemes and théingselduction of position errors in

the track following mode.

I. INTRODUCTION

With the continuously increasing storage capacity of haskl drives (HDDSs), the track density
on the disk becomes higher and higher. This makes it a clygglemaccurately position the disk

drive’s read/write head (R/W head) in the presence of sewbstiirbances. In the sector servo



system for HDDs, a circular disk is divided into equally sizengular pieces (called sectors)
whose boundaries are servo fields. A set of servo fields dedirsesvo-written track center. The
position error signal (PES) indicating the deviation of BV head from the servo-written track
center is obtained from each servo field as the R/W head passegh.

The top view of a disk is shown in Fig. 1. In track following spgons, the R/W head normally
follows a data track with reference to a servo-written traekter. The servo-written track center
is typically not a perfect centric circle, since the servddBemay be placed on either side of
the ideal track center due to disturbances in the servangrirocess. The difference between a
servo-written track center and an ideal circular track eenttroduces written-in errors, which
are often referred to as repeatable runout (RRO) errors d¢tiewsin repeatable runout (WI-RRO)
errors since they cause the same errors each time the héaasfahe track. RRO is periodic
and synchronized with disk rotation. The other type of distimces called non-repeatable runout
(NRRO) is caused by disk vibrations, windage, noise and so on.

A great deal of research effort has been focused on the RROeamsapon. In [1]-[4], the
controllers make the R/W head follow the servo-written traekter. This might cause problems

ideal circular
track center

servo-written
track center

Fig. 1. Servo-written track center v.s. ideal circular track center



when the RRO disturbance is not coherent at different tralckparticular, with two adjacent
tracks, when written-in error of the inner track and that lué buter track point outwards and
inwards, respectively, the two track paths could interfeith each other, which may result
in data corruption. To prevent this from happening, anotigpe of control scheme has been
considered [5], [6]. During manufacture of a disk drive,eafservo-writing process, a table
which includes a series of compensation values for RRO wipeet to the positions of servo
fields is calculated and stored. Then, during normal opmratiof the disk drive by the user,
the compensation table is utilized to construct an addiienput into the servo control loop
to correct the servo-written track centers so that they kgec the ideal circular track centers.
Improvement achieved by this scheme depends on the accaf&®RO estimation. Estimating
the RRO disturbance for every track of the disk requires aifsignt amount of manufacturing
time. Therefore, the motivation for this research is to ttgvea technique which can achieve
rapid and accurate estimation of RRO disturbance in diskedriv

Adaptive feedforward cancellation (AFC) has been widelyliggpn HDD industry to reduce
periodic disturbances [2]-[4]. In these methods, the piridisturbance is modeled as a sum of
several sinusoids of known frequencies and the unknowniamdps and phases are estimated
by an adaptive algorithm. The method is effective when dgalith a few selected harmonics.
However, it is impractical to compensate for a large humiddrasmonics due to the constraint
of computation power. In [7] and [8], the authors proposedaaded methods to estimate all
harmonics in RRO disturbance. The methods are based on AF@doubt require intensive
computations. In this report, modifications of the previmehemes are proposed to enhance
the estimation performance. The remainder of this repootrganized as follows. In Section I,

the design schemes from the previous report [8] are brieflieweed. Then a modified scheme



is proposed to improve the estimation performance. Sedtlosescribes an HDD application
of the modified scheme for RRO estimation. The AFC and modifiedhods are compared
with other common methods for handling RRO: the inverse seitgimethod and the repetitive
control method. In Section 1V, a frequency selective edfiomascheme is proposed to exclude
the high frequency components of RRO in the estimation psodésally, conclusions are given

in Section V.

[I. GENERAL PROBLEM FORMULATION AND AFC CONFIGURATION

A block diagram of a general single-input-single-outputS@) linear time invariant (LTI)
discrete-time feedback control system with periodic disances is shown in Fig. 2. In the
figure, P(z) denotes the plant an@'(z) the feedback controller. The referencg:) and the
disturbanced(k) are periodic with periodV. Without loss of generalityr(k) is assumed to
be zero. The periodic disturbandék) is compensated by injecting an additional compensation
signal c?(k), which is an estimation ofi(k), at the reference to minimize its effect on the

error signale(k). Performance of the disturbance cancellation depends era¢huracy of its

estimation. The disturbance can be estimated or learned thhe error signat(k) on which the
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Fig. 2. Block diagram of feedback control system with periodic measen¢ disturbance (k)
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effects ofd(k) andd(k) are given by

T 1+ P()C() @

where S(z) is the sensitivity function of the closed-loop system.

A. Standard AFC

A block diagram description for an AFC scheme to estimatepéeodic disturbancel(k)
is presented in Fig. 3. The AFC scheme shown inside the ddsiexiis an add-on structure
to the feedback system in Fig. 2. Therefore, it does not requi alter the original feedback
configuration.

The AFC scheme consists of two major elements: a digitalrfillé(z), and an adaptive
algorithm, LMS (Least-Mean-Square) block. It aims to galtterancf(k) to follow the periodic

disturbanced(k). The adaptive algorithm adjusts the coefficients of therfilte minimize the

mean-square value of the error signélt). The input signak:(k) is an excitation to the adaptive
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Fig. 3. Block diagram of FXLMS



filter and is chosen to be highly correlated#(@). v(k) represents uncorrelated noise components
which appear ire(k). Notice thate(k) is not the true error betweet{k) andcf(/c), but only the
filtered version of it, as shown in Eq. (1). For this kind of t&ys, z(k) must also be filtered by
S(z), before it is utilized by the LMS algorithm, to ensure comasice. Because of the filtering
notion, the adaptive algorithm is called the Filtered-X LNFSX-LMS) algorithm. In practical
applications,S(z) is unknown and an approximatioﬁ(z) is utilized, with impulse response
s(k). A popular choice for the adaptive filter is a finite impulsspense (FIR) digital filter,
since FIR filters are always stable.

Let the FIR filterI¥ (z) has lengthV, which is the period ofi(k), i.e.

W(z) =wo+wiz '+ Fwy_z VT

Then, the adaptive feedforward compensation with FX-LM§athm can be described by the

following equations:

2(k) = x" (k)w(k), ()
X'(k) = 5(k) = x(k), 3)
w(k+1) =w(k) + ux'(k)e(k), 4)
where
x(k) = -x(k:) w(k—1) - xz(k— N+ 1)1 (5)
x'(k) = _x/(k) d(k—1) - 2'(k— N+ 1)} (6)
w(k) = _wo(k’) wy(k) - le(k)] (7)
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From Fig. 3,z(k) = d(k) is the output of the adaptive filtex(k) is the input signal vector,
x'(k) is the filtered input signal vectow (k) is the filter coefficients at timé in vector form,
1 IS the step size, and denotes the convolution sum. Define the fundamental and dracm

frequenciesf, € Q2 where

In frequency domainj(k) contains frequency components only at frequengijes 2. Therefore,

the input signal:(k) is chosen as an impulse train with periad i.e.

1, if mod(k,N)=0
z(k) = 9)

0, otherwise.

Notice thatz(k) contains the required frequency components for the adafiier 17/ (z) to
generate the corresponding estimate component§/gf Because of the sparse natural of the
signal z(k), the computation of the FX-LMS algorithm is simplified(k) is like a circular
pointer which points to each coefficient o (z) sequentially to be the output(k). Hence,
no computation is required in Eq. (2). Equation (3) can begaleulated, sincé(k) andx(k)
are known beforehand. Assumaék) has lengthL. Then,x’(k) containsL non-zero elements.
Therefore, from Eqg. (4), only. coefficients inil/'(z) need to be updated at every sampling time.
With a small length ofs(k), the computational load is practical for implementation.

Ideally, when there is no uncorrelated noisék) = 0, perfect estimation can be achieved
by producingz(k) = d(k) such thate(k) = 0. The filter coefficient vectow (k) will converge

to an optimal solutionw?. However, in most practical applications(k) # 0. By defining a



coefficient error vector as

ea(k) = w(k) — w, (10)

and using Eq. (4), it is shown that

ea(k +1) = eq(k) + px'(k)e(k),
= eq(k) + px'(k)[s(k) * [d(k) — z(k)] + v(k)],
= ea(k) + pux'(k)[s(k) * [d(k) — 2(k)]]

T ! (k)o(k) (11)

The last termux’(k)v(k) introduces a perturbation to the error equation. This unalele
interference would cause serious degradation in both asom speed and accuracy when the
noise level ofv(k) is high. The effect ofv(k) is reflected in the adaptive filter outputk). In
other words, the estimation results from the FX-LMS aldoritare buried in the noise. Therefore,
it makes sense to apply Kalman filtering to estimdt&) from the noise contaminated signal

z(k).

B. AFC combined with Kalman filter

The structure of AFC with Kalman filtering is in Fig. 4. The mefic disturbancel(k) can

be considered as the states of a stochastic process

d(l) =d(l—1)

z(1) = d(1) + u(l), (12)



where

d(l) = [do(IN) dy(IN) --- del(lN)]T
z(l) = [2(IN) z(IN +1) --- 2((I+1)N —1)]*

u(l) = [u(IN) u(IN +1) -~ u((l+1)N —1)]".

The time index! represents the number of revolutions. Notice that the adafitter output

c;f\(k) in Fig. 3 is now interpreted as the actual disturbad(e) plus the excess noisgk). By

applying standard Kalman filter formula,
K()=P(1-1)[Pl-1)+R]™"
d(l) = [1 - K@)]d( - 1) + K1) y(0) (13)

Ply=[1-K()]P(l-1).

v(k)
d(k)— S(2) 3
+ e(@,
/ ) ]
e TR 56
2 (k) » LMS [«

Fig. 4. Block diagram of AFC system with FX-LMS algorithm and Kalman filter
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Time-varying Kalman filter gain is utilized to speed up cagence. Since:(k) is introduced
by v(k), the noise covarianc& can be selected according to the statistical property(bj to
achieve better estimation results. Assuie- r/, then K (/) and P(l) are simplified to scalars,
which can be calculated beforehand. Notice that the Kalnigen & operated at a sampling rate
N times slower than the system sampling raf(éc) Is obtained from the output of the Kalman
filter.

In the LMS algorithm, a larger step size results in faster convergence. However, there
is an upper bound om to maintain stability of the algorithm. It is known that th&X4¥EMS
algorithm suffers from a reduction in maximum step size duiné delay caused by the dynamics
systemS(z) [9]. The effect of S(z) leads to slower convergence and therefore overall limited
performance. As an simplified example, assuffie) is modeled as a pure dela¥ without

modeling error, i.e.
S(z) = 8(z) =24, (14)
and no Kalman filter is added in the AFC scheme. Using Eq. (@),error signal is written as

e(k) = d(k — A) — z(k — A) (15)

—d(k—A) —x"(k— A)yw(k — A). (16)

Notice that the error signal is computed using the past @ieffi vectorw(k — A). Then, Eq.
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(4) becomes

w(k+1) =w(k) + px(k — A)e(k) (17)

=w(k) + px(k — A) [d(k — A) —x" (k — A)yw(k — A)] . (18)

The delayed coefficient vectow(k — A) in the coefficient update equation results in slow

convergence rate. To remove the delay in the coefficienttepda new error signal is defined

e(k) = e(k) +35(k) * z(k) — xT (k)w(k) (19)

(20)
From Eq. (15)£(k) is expressed as

e(k) =e(k) + z(k — A) — xT(k — A)yw(k) (21)

—d(k — A) = x"(k — A)wi(k). (22)

The new error signal is computed usirg(k) without delay. The FX-LMS algorithm utilize
the error signak(k) is called the Modified Filtered-X LMS (MFX-LMS) algorithm Q1. The

MFX-LMS algorithm is able to eliminate the effect 6f(z) in the case of no modeling errors,
such that the behavior of the system is similar to that of adgted LMS adaptive filter. In this
report, an AFC scheme combining MFX-LMS algorithm and Katnfitering is proposed. Since
the MFX-LMS algorithm does not suffer from maximum step sieduction, a larger step size

can be selected to increase the convergence speed.
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Fig. 5. Block diagram of AFC system with MFX-LMS algorithm and Kalman filter

C. AFC utilize Modified Filtered-X LMS algorithm

The proposed AFC scheme is presented in Fig. 5. It considiseoMFX-LMS algorithm as
shown inside the dashed lines and a Kalman filter. The MFX-LAltfrithm can be described

by the following equations:

2(k) = x" (k)wi(k). (23)
2 (k) = 3(k) * 2(k), (24)
X' (k) = 3(k) * x(F), (25)
2(k) = (k) + 2/ (k) — T (Ryw(k) (26)

w(k+1) = w(k)+ ux'(k)e(k). (27)
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The MFX-LMS algorithm removes the effect of the dynamic systS(z) with the expense of
additional computations in Egs. (24) and (26). Since an @pprate model§(z) is used, the
algorithm have to be robust to model uncertainties. It issshfd 1] that the MFX-LMS algorithm

is stable as long as it satisfies

Re [§(e5T)/5(e5T)) > % C for0<w< X (28)

llE

In other words, for the case of no phase errors the estimatgyditade should be greater than
half of the real one, and for the case of no amplitude erragtiase errors should be less than

60°.
[11. APPLICATION TORRO COMPENSATION INHDDs

In the track following mode of HDDs, the closed-loop contoplerates by the feedback of the
position error signal (PES) with perturbations from RRO arRRO disturbances. The objective
is to estimate the periodic disturbance RRO, and construcbampensation signal to correct the

servo-written track center such that it is closer to an id@&aular track center.

A. Performance comparisons

The track following servo system of HDDs can be represenyeithé block diagram described
in Fig. 2, where the error signalk) is the PES measurement and the periodic disturbdfice
is the RRO. PES can be decomposed in to Repeatable PES (RPESpariReNeatable PES
(NRPES) caused by RRO and NRRO respectively. The disk spindledsm this numerical
simulation study is 7200 rpm, which means that the fundaatdréquency of RRO is 120 Hz.
Pre-recorded RRO and NRRO disturbances for 20 different¢raok used. The level of NRRO

has significant impact on the performance. In these datkdrabe ratio between RPES and
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NRPES is in the following region,

o(RPES)
64 < —— < 0.
061 < ppp < 09 (29)

with mean value 0.77, wherg(-) is the standard deviation. The small ratio and wide rangesmak
it challenging to obtain an accurate estimate of RRO with isbeist performance.

Existing techniques and the proposed method are appliestitnate RRO. Their performances
are evaluated by reduction of RPES after compensation. Theteff RRO on RPES through

the sensitivity function is

RPES(k) = S(2)d(k), (30)

RPES (k) = S(2) [d(k) . ci(k)} . (31)

The performance index is defined as

0(RPES.yy) —o(RPES)
o(RPES)

A o(RPES) = x 100%. (32)

Note that the performance index is negative and it takes arl@alue for a larger reduction of
RPES after compensation.

1) Inverse sensitivity methodAn existing technique is called an inverse sensitivity rodth
In this method, PES is averaged over multiple revolutionshefdisk to reduce NRRO effect,
and then the averaged PES is filtered by an approximationeinverse sensitivity function
to back calculate the estimated RRO. It is an open loop estmaFrequency responses of
the inverse sensitivity functio§—!(z) and its 180-tap FIR approximatioﬁ—\l(z) are shown in

—

Fig. 6. Since RRO only affects PES at harmonic frequengjes 2, S—1(z) is designed to
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Fig. 6. Frequency response 8f () and§-—\1(z) in inverse sensitivity method

intersect the frequency response®f!(z) only at frequencies;,, except atf, f» and f;. The
low gain design at these frequencies is to prevent ampiiicaif the low frequency contents in
NRRO. The compensation performance of the inverse semgithethod is plotted in Fig. 7. The
solid lines with square markers represent the average mpeaiftce for 20 tracks, and the dashed
lines indicate the performance variance among differeattkis. The inverse sensitivity method
achieves an average 50% RPES reduction after 8 revolutiosbaen in Fig. 7. However, the
performance exhibits high variations due to the wide ranfgih® RPES-to-NRPES ratio.

2) Repetitive Control:Since RRO is a periodic disturbance, repetitive control camplied
to estimate RRO at all harmonics of the fundamental frequéraoy block diagram of the closed
loop system utilizing a repetitive controller is shown irgF8. The repetitive controller contains
a stable inverse of the sensitivity function and a periodjna generator. An adjustable again
K, controls the tradeoff between the convergence rate antha&sbin accuracy. The inverse

sensitivity function in the repetitive control is modelesl @ 5th order rational transfer function.
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Fig. 8. RRO estimation using a repetitive controller

Its frequency response is shown in Fig. 9. The performancihefsystem with the repetitive
controller is shown in Fig. 10. Since the repetitive coréoltilizes the feedback error signal,
the closed loop system is more robust to the wide range of theSRB-NRPES ratio. The
performance variations are smaller than that of the inveesssitivity method.

3) AFC schemesThe frequency response of the sensitivity functifz) of the servo system

is shown in Fig. 11. Its approximatioﬁ(z) employed in the AFC setting is a 10-tap FIR filter.
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From Fig. 12, it is shown tha§(;:) satisfies the stability condition of the MFX-LMS algorithm
in Eg. (28). The Performances of the AFC schemes using FX-lavi& MFX-LMS both with

additional Kalman filtering are shown in Figs. 13 and 14. Bo#thods are robust to different
RPES-to-NRPES ratios and result in small performance vanstithey are significantly superior
to the inverse sensitivity method and better than the riygettontrol in terms of performance
variations. Table | summarizes the performances amongrdiit methods after 8 revolutions.
AFC using FX-LMS algorithm reduces RPES by 51%, whereas uMiRgK-LMS algorithm

achieves 59% reduction which is the best of the four. If it ésiced to reduce RPES by half,
using the proposed MFX-LMS algorithm with Kalman filteringrcshorten the estimation period
by 2 or 3 revolutions. This means a significant reduction ohuafiacturing time compared with

the inverse sensitivity method, i.e. 25%.
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Fig. 11. Frequency response §fz) and S(z)
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TABLE |
PERFORMANCECOMPARISONAFTER 8 REVOLUTIONS
Scheme Inverse | Repetitive] FX-LMS | MFX-LMS
Sensitivity| Control | w/ Kalman| w/ Kalman
A o(RPES) || —49.58% | —51.77% | —51.41% —58.92%
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V. FREQUENCY SELECTIVE ESTIMATION

The plant output/(k) in Fig. 2 can be regarded as the True Position Error (TPE) ®RIW
head, i.e. the true deviation from the virtual ideal tracktee Notice that in practice this signal
is unavailable for measurement because of disturbancesR&peatable TPE (RTPE) caused by

RRO disturbancel(k) is given by

RTPE(k) = T(:)d(k) = - f (;zg(gzz)d(k) (33)
RTPE, (k) = T(2) [d(k) . c?(k;)} , (34)
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whereT'(z) is the complimentary sensitivity function of the closedosystem. Using the same
simulation data as in Section Ill, the frequency respons&'(af) of the simulated closed-loop

system in Fig. 15 indicates a significant drop of the gain beyaround 5kHz. It means that the
R/W head cannot follow the high frequency variations in th@sevritten track center due to the
limited control bandwidth. Instead, the R/W head moves alargmoothened path. Therefore,
the high frequency components of RRO have small impacts otrabking performance and can
be excluded from the estimation. To develop a frequencycBedeestimation, a straightforward
way is to remove the high-frequency components in the eigmase(k) by adding a low-pass

filter. This results in an increased computational cost. Aarefficient method is to replace the

usage of an impulse train in(k) by a rectangular wave. In this cas€k) is expressed as

1, if mod(k,N)=0o0r1
v(k) = (35)

0, otherwise.
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Fig. 16. Spectrum of impulse train and rectangular wave

In Fig. 16, from the spectrum comparison of a impulse traifEén (9) and a rectangular wave

in Eg. (35), the magnitude of the rectangular wave rolls bfiigh frequencies. Those frequency
components will hardly show up at the adaptive filter outgét), and thus the frequency selective
estimation is accomplished. In general, a rectangular veggned to contain the necessary

harmonics,fy, k= 1,..., M, is given by

1, ifmod(k,N)=0,...,N;
z(k) = (36)

0, otherwise.

where

N, 1
N 72 37)



23

A new performance index is needed for the frequency sekesttheme. It is defined as

o(RTPEg,,) — c(RTPE)
o(RTPE)

A o(RTPE) = x 100%, (38)

In simulation studies, RTPE reduction can be observed. Congpahe performances of the
proposed AFC scheme using an impulse train and a rectangala in Figs. 17 and 18, the
latter achieves a larger RTPE reduction and smaller pedooa variations. Spectrum of the

-~

estimated(k) compared with that ofl(k) is shown in Fig. 19. It is observed that the frequency
components beyond 5kHz are excluded in the estimation psoaed do not show up iﬁ(k).

Because the number of frequency components required to leagstl is lesser, the proposed
AFC scheme using a rectangular wave can achieve faster arelancurate estimation and thus

a greater reduction of RTPE. In other words, the R/W head chowfdhe ideal circular track

center more closely.
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Fig. 17. Compensation performance using impulse train
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V. CONCLUSIONS

This report discussed the RRO estimation methods used for RiRCGeltation. The adaptive
feedforward compensation scheme with MFX-LMS algorithmsvepplied to estimate RRO.
Kalman filtering was introduced to enhance the performafded=€. The proposed method was
compared with two common methods: the inverse sensitivigghod and the repetitive control
method. In addition, a frequency selective estimation seheas introduced to exclude the high
frequency components of the RRO disturbance. It was achibyechoosing a different input
signal in AFC. The simulation results showed the effectigsna the proposed methods and the

improvement of the tracking performance.
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