
Comparison of CFD calculations of flows in Hard Disk

Drives with Experiments: Part I

Sujit Kirpekar and David B. Bogy

Computer Mechanics Laboratory

Department of Mechanical Engineering

University of California at Berkeley

Berkeley, CA 94720

Telephone: (510)642-4975

Fax: (510)643-9786

kirpekar@newton.berkeley.edu

January 23, 2006

i



Contents

1 Introduction 1

2 Modeling 3

2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Computational Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Parametric Grid Generation . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Approximations for Boundary Conditions . . . . . . . . . . . . . . . . 7

2.2.4 Initial Conditions and Statistical Steadiness . . . . . . . . . . . . . . 8

3 Grid Dependency Studies 11

3.1 Kinetic Energy and Windage . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Off-Track and On-Track Drag . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experimental Validation 17

4.1 Measurements along a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Measurements on the area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Frequency contribution to RMS . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Length and time scales . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions and Future Work 23

6 Tables 27

7 Figures 29

ii



List of Figures

1 Top View of Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Top View of Computational Model . . . . . . . . . . . . . . . . . . . . . . . 29

3 Wireframe Isometric View of Computational Model . . . . . . . . . . . . . . 29

4 Typical domain decomposition for parallel computation . . . . . . . . . . . . 29

5 Top view of the computational grid (Grid 1 in Table 1) . . . . . . . . . . . . 30

6 Closeup showing regions 1, 3 and 4 (Grid 1 in Table 1) . . . . . . . . . . . . 30

7 Closeup showing region 3 (Grid 1 in Table 1) . . . . . . . . . . . . . . . . . . 30

8 Global energy-related quantities for Grid 5 . . . . . . . . . . . . . . . . . . . 31

9 Global energy-related quantities for Grid 5 . . . . . . . . . . . . . . . . . . . 32

10 Time history of the drag coefficients for Grids 1, 2 and 3. . . . . . . . . . . . 33

11 Time history of the drag coefficients for Grids 4, 2 and 5. . . . . . . . . . . . 33

12 Contribution to CD Off Track RMS from different frequency bands, shown for

Grids 1, 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Contribution to CD Off Track RMS from different frequency bands, shown for

Grids 4, 2 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

14 Contribution to CD On Track RMS from different frequency bands, shown for

Grids 1, 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 Contribution to CD On Track RMS from different frequency bands, shown for

Grids 4, 2 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 Comparison of the RMS contributions to CD Off Track from the finest grid

and the extrapolated contributions. Also shown is the GCI23
z across different

frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



17 Comparison of the RMS contributions to CD On Track from the finest grid

and the extrapolated contributions. Also shown is the GCI23
z across different

frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18 Location of measurement line for hot-wire experimental data, from Gross (2003) 36

19 Location of measurement area for hot-wire experimental data, from Gross

(2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

20 Mean flow speed along measurement line. LES data is plotted along with

error bars representative of GCI . . . . . . . . . . . . . . . . . . . . . . . . . 37

21 RMS of flow speed fluctuation along measurement line. LES data is plotted

along with error bars representative of GCI . . . . . . . . . . . . . . . . . . . 37

22 Turbulence intensity along measurement line. LES data is plotted along with

error bars representative of GCI . . . . . . . . . . . . . . . . . . . . . . . . . 38

23 Frequency spectrum of velocity fluctuations at different locations, from Grid 5 38

24 Frequency spectrum of velocity fluctuations at different measurement loca-

tions, reproduced from Gross (2003) . . . . . . . . . . . . . . . . . . . . . . . 38

25 Mean flow speed in m/s, plotted for various x-positions . . . . . . . . . . . . 39

26 RMS flow fluctuations in m/s, plotted for various x-positions. . . . . . . . . 40

27 Mean flow velocity over entire measurement area, from LES . . . . . . . . . 41

28 Mean flow velocity over entire measurement area, from experiments of Gross

(2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

29 RMS flow fluctuations over entire measurement area, from LES . . . . . . . 41

30 RMS flow fluctuations over entire measurement area, from experiments of

Gross (2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

31 0-2 kHz contribution to RMS flow fluctuations, from Gross (2003) . . . . . . 42

32 0-2 kHz contribution to RMS flow fluctuations, from LES . . . . . . . . . . . 42

33 2-20 kHz contribution to RMS flow fluctuations, from Gross (2003) . . . . . 42

iv



34 2-20 kHz contribution to RMS flow fluctuations, from LES . . . . . . . . . . 42

35 2-6 kHz contribution to RMS flow fluctuations, from Gross (2003) . . . . . . 43

36 2-6 kHz contribution to RMS flow fluctuations, from LES . . . . . . . . . . . 43

37 6-10 kHz contribution to RMS flow fluctuations, from Gross (2003) . . . . . 43

38 6-10 kHz contribution to RMS flow fluctuations, from LES . . . . . . . . . . 43

39 10-20 kHz contribution to RMS flow fluctuations, from Gross (2003) . . . . . 44

40 10-20 kHz contribution to RMS flow fluctuations, from LES . . . . . . . . . 44

41 Integral time scale of the flow (in number of disk rotations) . . . . . . . . . . 44

42 Integral length scale of the flow (mm) . . . . . . . . . . . . . . . . . . . . . . 44

43 Cross term of the time-averaged Reynolds stress tensor . . . . . . . . . . . . 45

List of Tables

1 Grids with variable out-of-plane (z) resolution . . . . . . . . . . . . . . . . . 27

2 Grids with variable in-plane (rφ) resolution . . . . . . . . . . . . . . . . . . . 27

3 Grid Convergence results for global quantities . . . . . . . . . . . . . . . . . 28

v



1 INTRODUCTION

Abstract

In this two part study, comprehensive validation results are presented for the simu-

lation of turbulent flows in model hard disk drives. In this report, which is the first part

of the study, we compare simulation results with the hot-wire experimental data from

the thesis of Gross (2003). In the second part, contained in a separate report, compari-

son is drawn against the results of Barbier (2006). Large eddy simulation (LES) results

of the airflow between two co-rotating disks with a single e-block arm as an obstruction

are reported here. The computational model closely mimics the simulation conditions.

In this report, all results are presented in the context of grid convergence and estimates

of the associated uncertainty are reported. In the second report, numerical dissipation

and iteration errors are reported. We found that grids in the 2-2.5 Million cells range

(for a 3 inch drive) are in the asymptotic range. By varying the grid independently

in the z- and r − φ directions, the sensitivity and convergence characteristics of the

in-plane and out-of-plane resolutions are reported. It is found that the simulations

show monotonic convergence in z and oscillatory convergence in r − φ, with GCI val-

ues approximately 20-30 % for most quantities. In validating our LES results with

the hot wire experiments, we found good agreement in the mean quantities but larger

discrepancies in the RMS quantities. Our findings show that LES results tend to over

predict the fluctuations compared to the experiments in almost all frequency bands,

and spectra converge to solutions that do not qualitatively agree with the experiments.

1 Introduction

With the rapid proliferation of hard disk drives into non-traditional applications such as

music players, cell phones and digital cameras, new demands are placed on the size, speed and

reliability of these drives. Correspondingly, there has been a strong demand for higher areal

density, faster data transfer rates and better reliability. To achieve higher track densities, the
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1 INTRODUCTION

available area to position the read-write head is reduced, thereby reducing the tolerance for

track-misregistration (TMR). On the other hand, higher data transfer rates result in higher

speeds of disk rotation, which in turn increase the Reynolds number of the air flow.

Flows in hard disk drives have been investigated by several authors, including the current

authors. For a recent summary of both the experimental and the computational progress so

far, we refer the reader to Kirpekar and Bogy (2005b). However, in most numerical studies of

such complex flows, little attention is paid to reporting the numerical errors and uncertainties

of the results. While it has become relatively easy to calculate such flows using commercial

CFD software, the accuracy of these results is questionable at best. In the current work, we

hope to shed some light on the sources of discrepancies between numerical and experimental

results on disk drive flows.

Errors (i.e. the difference between the simulation result and the actual physical value)

may be divided into two broad parts: modeling errors and numerical errors. Modeling errors

are due to mathematical assumptions of the physical problem itself; e.g. the assumption

of incompressibility, the application of simplified boundary conditions, the use of a sub-

grid scale turbulence model, the assumption of isothermal flow, etc. Numerical errors are

those due to the technique of solving the mathematical problem; e.g. discretization in space

and time, grid convergence, artificial dissipation and dispersion, truncation of the iteration

process in every time step, computer round off, etc. By providing an estimate for each of

these sources of errors, simulation results may be corrected and accurate results may be

reported. Estimation of such errors will allow the placement of an accurate “error bar”

on any simulation data reported. While it may be next to impossible to account for all

of these errors, our work focuses on determining the error introduced by the grid (i.e. the

discretization error). In the second part of this work, we also consider the iteration error

and the errors introduced by artificial dissipation.

The specific motivations of this work are as follows:
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2 MODELING

1. To demonstrate typical grid resolutions needed to obtain solutions in the asymptotic

range.

2. To quantify the numerical errors and uncertainties of disk drive turbulence simulations

which can be computed using current computational resources.

3. To validate our computational results against experimental data sets that investigated

realistic drive configurations, and finally,

4. To provide insights into certain physical aspects of the flow that may not be readily

understood from experiments

In the first of this two-part paper, we validate our results against the experimental data

of Gross (2003), while in the second paper, we discuss the results of Barbier (2006).

2 Modeling

2.1 Experimental Setup

The experimental setup (with which we propose to benchmark our calculations) is described

in detail in Gross (2003). For clarity, a schematic of the setup is shown in Figure 1 (repro-

duced directly from Gross (2003)).

The setup consists of two co-rotating glass disks of 84 mm diameter. The disk spacing

is 2.0 mm and the shroud gap is 1 mm wide. A single e-block arm of 1.0 mm thickness

was placed between them without the use of any suspension or slider assembly. The e-block

arm was not actuated but it could be fixed in three positions to experiment with inner- ,

middle- and outer-diameter configurations. Additionally, the thickness of the e-block arm

was also varied from 1.0 to 1.6 mm. A constant-temperature hot-wire anemometer was used
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2 MODELING 2.2 Computational Model Setup

for velocity measurements. The hot-wire probe was oriented axially at the midplane of the

setup, which made it “most sensitive to the in-plane flow speed component”.

It is important to note that in the experimental setup, the disks are shrouded for only

250 degrees of their circumferential arc-length. The remaining shroud is cut away to allow

for the insertion of the e-block arm and the hot-wire probe. This region is essentially open

to the atmosphere and poses some difficulty in computational modeling.

2.2 Computational Model Setup

Our computational model tries to closely follow the experimental setup of Gross (2003). The

same geometrical dimensions are used for the disks and the e-block arm. The computational

model (without the grid) is shown in Figure 2. An isometric wireframe view is also shown

in Figure 3, which shows the smaller out-of-plane (z) dimension as compared to the in-plane

(r − φ) dimensions.

The Reynolds number of the flow based on the disk-to-disk spacing is 5,533, while based

on the disk outer radius it is 116,197. Traditionally, the former method of reporting the

Reynolds number is more prevalent, because it accounts for the axial length scale. In any

case, the presence of a blunt body obstruction breaks the azimuthal symmetry and makes

the flow turbulent, requiring the use of a turbulence model for simulation.

The Kolmogorov’s microscale can be estimated from the Reynolds number associated

with the largest eddies of the flow:

η = l

(
u′l

ν

)
−3/4

(1)

Here we may estimate the size of the largest eddies (l) to be equal to the disk-to-disk

thickness, 2mm. And assuming that the velocity associated with the large eddies (u′) is 10%

of the maximum linear disk velocity, the Kolmogorov’s scale (η) is approximated to 0.0175
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2 MODELING 2.2 Computational Model Setup

mm. This is a valid apriori assumption, based on the experimental data of Gross (2003).

Also, η is in good agreement with earlier estimates of Kazemi (2004) and Kirpekar and Bogy

(2004).

Given the Reynolds number of the flow, the Kolmogorov dissipation scale and the geo-

metric volume of interest, a true direct numerical simulation would require more than 200

Million cells – which is the reason why most flows in disk drives are addressed using Large

Eddy Simulation (LES).

2.2.1 Numerical Methods

Our large eddy simulations are performed using a commercial CFD code, CFD-ACE. The

Algebraic Dynamic Model (Germano et al., 1991) was used for the sub-grid scale modeling.

Our prior experience with using commercial codes to compute LES solutions (Kirpekar and

Bogy, 2005a) indicates that this is the most suitable SGS model.

CFD-ACE uses a box-filter for both the grid filtering and test filtering. The grid filter

is taken to be the grid itself, while the width of the test filter is twice that of the grid

filter. In addition to spatial averaging (smoothing), the dynamic coefficient is also artificially

truncated to prevent instabilities.

CFD-ACE employs a segregated solver using the SIMPLEC technique. The elliptic

pressure-coupling equation is solved using a multigrid technique. The maximum number

of iterations are limited to 50 per time step. For most time steps, the solver would converge

within 40 iterations. The criteria for convergence was that the residuals for each quantity

(in the velocity or pressure equations) be less than 10−4.

Central differencing was used in space with a first order implicit method in time. A

constant time step of 10−5 seconds was used. A second order semi-implicit method (Crank

Nicholson) would lead to unstable calculations for all our grids, hence the use of the first order

method. Regarding the artificial dissipation associated with the first order time integration,
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very little difference was noticed between solutions using a first order and a second order

method for the LES of a blunt body flow (see Kirpekar and Bogy, 2005a). This is most likely

due to the small time step size.

2.2.2 Parametric Grid Generation

To study the grid dependency of our LES solutions, simulations were conducted for several

different grids. To ensure a close geometric relationship between the different grids the

mesh generation was parametrized. The grid was completely generated by specifying the

number of nodes (and their distribution) along the edges. By changing the number of nodes

uniformly (say in geometric progression) very similar (but refined) grids could be generated.

The meshing strategy was to completely specify the grid parameters in the plane of the disks

and then extrude the entire domain axially.

The in-plane region of the grid was divided into four distinct regions (See Figure 5 and

6):

1. Coarse structured grid: which accounts for a major part of the flow domain and does

not contain any obstructions

2. Fine structured grid in the shroud gap: Here the grid is refined to resolve the streamline

curvature near the shroud. However, this refinement is only sufficient to resolve the

main features of the flow in the shroud, but not the boundary layer adjacent to the

shroud

3. Upstream and downstream structured grid refinement: The grid is refined in the region

immediately upstream and downstream of the arm. This allows the accurate placement

of the first node downstream from the solid wall of the arm. This helps us resolve (or

not resolve, depending on the grid) the separated shear layer and the associated small
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turbulent structures close to the wall of a blunt body. (See Figure 7 for a close up view

of this region)

4. Upstream and downstream unstructured grid relaxation: To interface the fine grid

near the arm with the coarser grid in the rest of the domain, an unstructured grid was

used. The meshing tool for unstructured grids produces quadrilateral-dominant cells

(90% quads, 10% triangular cells) which drastically reduces the number of cells needed

compared to a purely triangular mesh (See Figure 6 for close up view of this region)

Our initial attempts at grid dependency studies showed that solutions changed quite dif-

ferently due to in-plane refinement as compared to out-of-plane refinement. For this reason,

the grid was refined independently along the two orthogonal directions and convergence of

the solutions is reported accordingly.

2.2.3 Approximations for Boundary Conditions

The boundary conditions for the computational domain are implemented as follows:

1. The top and bottom disks (along with the central hub) are modeled as rigid rotat-

ing walls. Effects such as run-out (especially NRRO), clamping distortions and disk

vibrations cannot be accounted for in this model.

2. The actuator (with only one e-block arm) is also modeled as a fixed obstruction to the

flow, with no-slip boundary conditions. Vibrations of the arm (which are of the order

of a few nanometers) are not used as boundary conditions to the flow field.

3. Relaxation zone: The original experiments of Gross (2003) are “open” to the atmo-

sphere in the region downstream of the arm. Similar boundary conditions are applied

in our computational domain by radially extending the domain 5 mm from the shroud.

Atmospheric pressure boundary conditions allowing the inflow and outflow of air are
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then applied to the edge of this extended region. If the computational domain had not

been extended, atmospheric pressure boundary conditions would have to be applied at

the edge of the rotating disk. This would, however, not be physical, since we do not

expect the pressure to be atmospheric immediately close to the edge of the disk. By

extending the domain outwards, a “relaxation zone” is created where the pressure in

the drive may adjust to the ambient conditions.

4. In the computational domain the shroud gaps are modeled as symmetric boundaries

(slip wall boundary conditions). This ensures that in the gap, airflow is permitted

only in the plane of the disks, but not perpendicular to them. Since the addition of

cells to the top and bottom of the current domain is not computationally feasible, this

is a good approximation to the narrow shroud gap. Alternately, a periodic boundary

condition may be enforced between the top and bottom shroud gaps, such that the

flow leaving the domain at the top reenter the domain at the bottom. This boundary

condition, however, led to unphysical travelling waves in the velocity solutions, and

hence was not used.

2.2.4 Initial Conditions and Statistical Steadiness

All of our LES calculations are initialized from steady state k − ε solutions to the flow

field. CFD-ACE uses the original k− ε implementation of Launder and Sharma (1974) with

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0 and σε = 1.3. Given the empirical nature

of the ε equation, and the use of coefficients based on simple turbulent shear flow, we did

not expect the ε solution to be accurate. This is manifested in the high residuals for the ε

variable, which do not reduce even with very large number of iterations (10,000). However,

velocity and pressure values at various points in the domain remained constant (within 10%

of the mean) after about 250 iterations. Using this as a guideline, each k − ε solution was

computed for 2000 iterations and the resulting solution was used as the initial conditions for
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the LES calculation.

From prior experience, it is understood that instantaneous solutions of an LES are quite

different (qualitatively) from the steady k − ε solutions. On integration in time, the LES

solutions change rapidly from the predicted initial conditions and gradually achieve statistical

steadiness. However, since the flow is highly turbulent, a local measure of steadiness (e.g.

based on the convergence of the mean velocity at one point) is generally inappropriate, and

a more global metric needs to be defined. For our simulations, we compute the (filtered)

kinetic energy and the Windage 1 and use an energy balance argument to claim statistical

steadiness.

To illustrate this technique, we consider the following definitions and equations. Let U

be the three-dimensional velocity vector. The kinetic energy of the flow may be defined as:

E(x, t) =
1

2
U · U (2)

while the filtered kinetic energy can be obtained by filtering the kinetic energy field,

E(x, t) =
1

2
U · U = Ef(x, t) + kR(x, t) (3)

where the kinetic energy of the filtered velocity field is defined as,

Ef =
1

2
U · U (4)

and the residual kinetic energy is defined as,

kR =
1

2
U · U −

1

2
U ·U (5)

It is easy to derive the conservation equation (see Pope (2003) or Kundu (1990) ) for Ef ,

1Windage is defined as the power supplied by the disk motor to the flow domain through the rotating
disks and hub
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2 MODELING 2.2 Computational Model Setup

which is,

∂Ef

∂t
+ U · ∇Ef =

∂

∂xi

{

Uj

(

2νSij − τ r
ij −

p

ρ
δij

)}

− 2νSij Sij + τ r
ijSij (6)

where the filtered rate-of-strain tensor is given by,

Sij =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)

(7)

and the sub-grid scale (residual) stress tensor τ r
ij is algebraically determined from Sij on

applying the grid and test filters (see Germano et al. (1991) and Lilly (1992)).

Let V (x) be the volume and A (x) be the surface area of our computational domain. A

may be subdivided into, A = Aw +Ad +Ao, where the subscripts refer to stationary “walls”

(both no-slip and symmetry planes), rotating “disks” and flow “outlets”.

Integrating Eqn. 6 over V and converting the divergences into surface integrals over A ,

we obtain the following energy balance,

∂

∂t

∫

V

EfdV

︸ ︷︷ ︸

Rate of change of KE

−

∫

Ad

(
2νUj Sij − Ujτ

r
ij

)
dA

︸ ︷︷ ︸

Windage

= (8)

−

∫

Ao

EfUjdA

︸ ︷︷ ︸

Flux of KE

+

∫

Ao

(
2νUj Sij − Ujτ

r
ij

)
dA −

∫

Ao

p

ρ
UjdA

︸ ︷︷ ︸

Net work by stresses at outflow

+

∫

V

(
−2νSij Sij + τ r

ijSij

)
dV

︸ ︷︷ ︸

Viscous and SGS dissipation

In this equation, the Flux of kinetic energy is the net kinetic energy produced or destroyed

due to the flow of air outside our domain. The Net work by stresses at outflow is the work

done by the surface forces (arising from the shear stress and SGS stress) on the computational
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volume at the boundary.

To achieve a statistical steady state it is important that an energetic balance is achieved,

i.e. the energy production and dissipation balance each other, and that the net rate of

change of kinetic energy be small. Since the velocity is solenoidal, our calculations are mass

conserving, and we do not expect very large contributions to the kinetic energy from the

outflow/inflow. A dominant balance is therefore expected between the Windage and the

(combined viscous and SGS) dissipation.

Based on the explanation above, we computed the kinetic energy and the Windage of

each simulation as the calculation progressed. Statistics of the flow (such as means, r.m.s.

and higher moments) are then calculated only after the kinetic energy has “settled down”,

i.e. did not change by more than 5% of its mean value. This provided us a systematic

method for estimating statistics of the flow based on global quantities rather than on a point

by point basis. The initial transients typically lasted for about 2-3 revolutions (1200-1800

time steps) of the disk. Our calculations are continued until 8 revolutions – giving us 6

revolutions (3600 time steps) of useful data.

3 Grid Dependency Studies

Grids in the 0.5 Million cell range, which may be computed on a single desktop machine

showed very poor convergence and hence the resolution was increased to approximately 2.5

Million cells. Any more refinement would have been impractical as the LES would require

very long computation times. Each of the five simulations reported here was run for 2-3

weeks on a clustered Linux system using 8-32 CPUs to gather data for 8 disk revolutions.

(An example of a parallel domain decomposition is shown in Figure 4) While the current

authors have simulated cases in excess of 15 Million cells, such computations cannot be

practically included in the kind of grid refinement studies presented here.
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3 GRID DEPENDENCY STUDIES 3.1 Kinetic Energy and Windage

The various grids used in our work (labeled: Grid 1 to Grid 5) are described in Tables 1

and 2. Grid 1, 2 and 3 denote increasing z- resolution (i.e out-of plane resolution), while Grids

4, 2 and 5 represent increasing r − φ (in-plane) resolution. Since each grid was generated

by completely specifying the grid in one r − φ plane, and extruding it axially, the in-plane

and out-of-plane resolutions could be varied independently. The average resolution of the

grid may be computed from the volume or area of the domain and the number of cells. In

these tables, representative grid resolutions, h, hz and hrφ are determined using the following

definitions:

h =

(
Volume

N

)1/3

(9)

hz =
Axial dimension

Nz
(10)

hrφ =

(
In-plane area

Nrφ

)1/2

(11)

In presenting the convergence results for two orthogonal directions, we often notice that

the two sets of grids (1-2-3 and 4-2-5) are converging to different results when extrapolated

to h = 0. Nevertheless, the actual value of the result at h = 0 is not of much consequence to

us, since it is significantly affected by several factors other than the grid (as discussed briefly

earlier). However, extrapolated error and the grid convergence index (GCI) are very useful

in quantifying the uncertainty of the results.

3.1 Kinetic Energy and Windage

We start by discussing the convergence of global quantities such as the kinetic energy,

windage and drag on the arm. The windage and the drag on the arm are especially im-

portant to the disk drive community, because they refer to the power required by the motor
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to run the disks and the force on the actuator, respectively. These quantities are referred

to as “global”, because they are obtained by integration in space, and the integrand is de-

pendant on the properties of the flow at several locations. Global quantities are expected

to show better behavior in convergence than local estimates, since the integration should

smooth out local errors and present an average estimate of the rates of convergence.

The evolution of the kinetic energy and windage are shown in Figure 8. In this Figure,

results are presented for the finest grid (Grid 5) and error bars are included based on the

Grid Convergence Index (GCI) of the mean kinetic energy and windage. In obtaining the

GCI, we have followed the guidelines of the ASME Journal of Fluids Engineering, policy

statement on the control of numerical accuracy. In this figure, and all subsequent figures,

error bars are applied to data from the finest grid itself, instead of the more customary

practice of using the extrapolated data. Usually, the extrapolated solutions are close enough

to the finest grid calculations to be included in the uncertainty error bars. Nonetheless, if

these computations were to serve as a benchmark for future validation efforts, the fine grid

data would be more useful than the extrapolated solutions.

In Figure 8 the quantities are non-dimensionalized using the following definitions: Let,

Uo = Ωro be the disk edge velocity, where Ω is the rotation speed and ro is the disk outer

radius. Let V be the volume of the domain and the Ad be the area of the disks. Then, the

non-dimensional kinetic energy and windage may be defined as,

k∗ =
1
2

∫

V
u · udV

1
2
U2

o V
(12)

W ∗ =

∫

Ad

(
2νujSij − ujτ

r
ij

)
dA

[
1
2
U2

o

]
[Uo] Ad

(13)

In the same Figure 8, the third sub-figure shows the rate of change of k∗. Finally, in the
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3 GRID DEPENDENCY STUDIES 3.1 Kinetic Energy and Windage

fourth sub-figure, the difference between the rate of change of kinetic energy and windage

(i.e. right-hand-side of Eqn 8) is plotted, which is mainly the combined viscous, SGS and

numerical dissipation.

From the figure, we notice that the rate of change of kinetic energy decreases almost to

zero after about 2 revolutions of the disk. The kinetic energy decays from its steady value,

indicating the k−ε solutions tend to overpredict the kinetic energy of the flow. Interestingly,

the decay in kinetic energy is very close to an exponential function, and a direct comparison

of an exponential curve with the kinetic energy is plotted in Figure 9. The rate of decay was

found to have a time constant of 0.737 revolutions, suggesting, that the kinetic energy will

achieve 5% of it’s mean value in 2.209 revolutions. In reporting the rest of our results, our

statistical averaging is started after the kinetic energy is within 5% of its converged mean

value. In Figure 8, this is a little after 2 revolutions. At about 3 revolutions, the change in

kinetic energy is less than 1% of the mean.

The error bars in the Figure 8 are based on the data from Table 3, by using the higher

value of GCI. The table also reports the absolute error in the solutions (ea) and the error

in the extrapolated solution (eexp). The GCI is computed separately in the in-plane and the

axial directions and is reported in Table 3. Since we are dealing with global quantities, the

GCI calculations are based on the global grid size h, and not on directional resolutions such as

hz and hrφ. The kinetic energy and windage both show monotonic convergence in both the z-

and r−φ directions. In Table 3 the calculated order of convergence ranges from 1.02 to 2.71,

which is in good agreement with the formal order of accuracy, 2. This is also an indication

that the chosen grids are in the asymptotic range. In general, increasing the resolution

causes both the mean kinetic energy and windage to decrease. From this one may infer that

increasing the number of cells allows the resolution of smaller flow structures associated with

smaller kinetic energies. The energy cascade from the larger to the smaller eddies is thus

responsible for lowering the total kinetic energy of the domain. Interestingly, in case of both
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3 GRID DEPENDENCY STUDIES 3.2 Off-Track and On-Track Drag

the kinetic energy and windage, we observe a higher sensitivity to the z-resolution than the

r − φ resolution. This also leads to the result that GCI23
z > GCI25

rφ, which implies a higher

uncertainty due to the resolution in the z direction. It it known that the velocity profiles

in a disk drive are similar to turbulent Couette flow (interdisk velocity profiles are reported

extensively in Kirpekar and Bogy (2006)). Since the principal mechanism to generate kinetic

energy is from the rotating disks, the interdisk resolution plays a vital role in the kinetic

energy of the flow. The momentum being “pumped” into the domain is highly dependant on

the resolution in the boundary layer. On the other hand, the in-plane resolution (especially

in the wake of the arm) determines the rate of loss of kinetic energy to the viscous and SGS

sinks. The overall result is that the energetics of the flow domain are more sensitive to the

z-resolution than the r − φ resolution in the range considered.

3.2 Off-Track and On-Track Drag

A similar time history of the coefficient of drag, CD, on the actuator is plotted in the

Figures 10 and 11. The time history is shown for the final 6 revolutions of the computation.

The coefficients are further decomposed into Off-Track and On-track directions, where Off-

Track is the direction perpendicular to the axis of the e-block arm, and On-track is the

direction parallel to the axis of the e-block arm. In computing these coefficients the projected

areas of the arm and the disk edge speed Uo are used.

From Figure 10 we observe that CD Off-track is almost twice as large as CD On-track,

which is due to the orientation of the arm in the rotating flow. Figure 10 also shows that in-

creasing the z-resolution increases the mean Off-Track drag but decreases the mean On-track

drag. Interestingly, the RMS values of both the Off-Track and On-track drag reduce. This

suggests that under-resolved simulations, which are dominated by the large scale motions,

tend to over predict the fluctuations of pressure acting on the arm. Increasing the resolution

allows the cascade to (slightly) smaller scales than before, resulting in smaller fluctuations
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3 GRID DEPENDENCY STUDIES 3.2 Off-Track and On-Track Drag

at the large eddy level.

There is little difference in the convergence results for the z and r − φ directions for the

drag, given in Table 3. Our results indicate that the GCI is high (20-30%) for the mean and

RMS values of drag coefficients. The RMS values of the drag coefficients show oscillatory

convergence in the r − φ direction and hence the GCI is not reported.

The RMS values of the drag coefficient on the arm may be broken down into frequency

components using Parsevals theorem. Information regarding the amount of energy associated

with different frequency bands is important to the disk drive component designers, who may

then design structures with natural frequencies that do not fall in the heavily excited bands.

Figures 12 and 13 show the RMS contribution from different frequency bands to the

Off-Track drag coefficient. Similarly, Figures 14 and 15 show the RMS contribution from

different frequency bands to the On-Track drag coefficient. Interestingly, some clear trends

are demonstrated: By increasing the resolution, the low frequency contribution (0-1 kHz)

decreases, while the higher frequency contribution, especially 1-6 kHz, increases. This trend

is consistently demonstrated in both the z- and r−φ directions; However, as seen in Figures 12

and 13, convergence is monotonic in z- but oscillatory in the r − φ direction. We note that

to obtain the resultant RMS due to all frequency bands, algebraic addition is not permitted,

but the RMS values should be added geometrically: by summing their squares and taking

the square root.

The Figures 12 to 15 display an important trend in the frequency components of the

excitation force on the actuator. This data (in the monotonically convergent cases), may be

used to obtain the extrapolated solution and the GCI. It is most useful to directly compare

the extrapolated values with the values from the finest grid (Grid 3), along with the GCI.

This is done in Figure 16 for the Off-Track component and Figure 17 for the On-Track

component. Again, the Figures show very interesting results. Firstly, the difference between

the extrapolated solution and the solution from the finest grid decreases with increasing
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frequency. Generally, there is excess energy in the lower frequencies, but less energies in the

higher frequencies. Secondly, the GCI decreases with increasing frequency, indicating that

the LES solutions converge much faster in the higher frequency components. In Figure 16,

the very high GCI value in the 6-10 kHz range is hard to explain and may be considered

spurious. The contributions in the 10-50 kHz range are not analyzed for convergence since

the values are very close to each other.

4 Experimental Validation

In this section our numerical results are directly compared with the experimental data of

Gross (2003). Two experimental data sets are available: Shown in Figure 18 are measure-

ments along a single line in the wake of the arm, and shown in Figure 19 are measurements

in a broader rectangular area, again downstream of the e-block arm. The measurement area

in Figure 19 is referenced by an x-y coordinate system

4.1 Measurements along a line

Figure 20 shows the mean velocity along the measurement line, Figure 21 shows the RMS

velocity and Figure 22 shows the turbulence intensity (i.e. the ratio of the RMS to the mean

velocity). In these figures the distance along the measurement line is non-dimensionalized by

the length of the line, so all the plots range from to 0 to 1. The 0 end of the plot corresponds

to outside the edge of the disk, while the 1 end of the plot corresponds to the inner location

(see Figure 18) In all the figures the percentage occurrence of oscillatory convergence is

displayed at the top along with the average order of convergence. In plotting the error bars

on the figures the GCI was determined using the usual formula, but with the average order

pavg, of the method. The error bars were then included in the figures at ten equispaced

locations. In all three figures a higher number of points showed oscillatory convergence in
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4 EXPERIMENTAL VALIDATION 4.1 Measurements along a line

the r−φ direction than in the z-direction, hence the GCI estimates are from convergence in

the z-direction.

In general there is higher agreement in the mean quantities than in the RMS quanti-

ties. The spatial variation of the mean velocity along the measurement line is in fairly good

agreement with the experimental data. Remarkably, the agreement is very good close to the

outer edge of the disk, where we expect the influence of the outflow boundary condition.

This indicates that the relaxation region included in our simulations provides a good esti-

mation to the physical outflow boundary. The velocity profiles show a higher local variation

compared to the experimental data – which is smoother. The reason for this may be that

the experimental data is based on readings taken over several minutes (i.e. several thousand

revolutions) while the computational data is averaged for 6 revolutions only. In general, the

percentage of points showing oscillatory convergence is higher for the RMS velocity than the

mean velocity.

It is the general observation that the LES results tend to over predict the RMS fluctua-

tions of velocity. This is consistent with the drag results outlined previously, and it tends to

corroborate the notion that LES simulations on the current grids tend to under resolve the

smaller scales of motion, leading to higher fluctuations in the large scales. Figure 22 shows

the turbulence intensity along the measurement line, which is the ratio of the RMS to the

mean velocities. Again, the turbulence intensity is higher in the simulation compared to the

experiment, but the agreement is good close to the outflow boundary condition. In Gross

(2003), in addition to the turbulence intensity, the mean and RMS dynamic pressure head

is also reported. These quantities can be easily deduced from the mean and RMS velocities,

hence we do not report them here.

In Figure 23 the frequency spectrum of the velocity fluctuations is plotted, which may be

compared with the experimental results in Figure 24. Several observations can be made with

regard to Figure 23. Firstly, the data is more noisy than the experimental results because of
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4 EXPERIMENTAL VALIDATION 4.2 Measurements on the area

the limited data set available. Secondly, there are no clear peaks corresponding to frequency

locking. The orientation of the arm in the rotating flow and the complex geometry of the arm

itself, generated a complex wake. The vorticity shed from the arm organizes itself into eddies

behind the arm but this phenomenon is not self-selective of any frequency. The fluctuations

are contained in the low frequencies (0-6 kHz) and are much smaller at frequencies beyond

that. This unsteadiness appears to be mostly random, but the flow structures that are shed

are long lived and coherent. These flow structures are carried around by the rotating disk

and are dissipated in time.

4.2 Measurements on the area

Figures 25 and 26 show a direct comparison between the LES and experimental data. Again,

the LES results are from Grid 3, and the percentage oscillatory convergence and average order

of accuracy are included on the top of each sub-figure. The error bars on the LES data are

based on the GCI from the average order of accuracy.

In the Figures 25 and 26 the mean and RMS velocities are plotted as functions of the

y-coordinate (ranging from -6 to 6). Different x-locations (ranging from 2 to 12) are plotted

in different sub-figures. See Figure 19 for the location of the x-y coordinate system.

As shown in these figures, there is better agreement in the mean velocities than in the

RMS velocities. The experimental data shows that the mean velocity has a radial gradient

and there is a well defined transition from a smaller velocity to a larger velocity when going

from y = −6 to 6. This is because the flow is blocked immediately downstream of the arm,

and is accelerated in the space between the arm and the hub. The LES data also shows a

similar trend, but the transition is a little further away from the hub. For x = 12 and x = 10

the magnitudes are in remarkable agreement.

In terms of RMS, the experiments show a moderate level of fluctuations in the wake, and

a slight increase in the fluctuations in the region where the mean velocity transitions, followed
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4 EXPERIMENTAL VALIDATION 4.2 Measurements on the area

by much smaller fluctuations approaching the hub. The LES results, however, show different

qualitative features. They exhibit a higher level of RMS fluctuations and a significantly

higher peak in the flow transition region. Additionally, x = 12, x = 10 and x = 8 also show

a peak in RMS near the hub too.

Finally, Figures 27 to 30 graphically summarize the results in the rectangular measure-

ment area. While Figures 27 and 28 share the same color scale for the mean velocity,

Figures 29 and 30 have different color scales for the RMS as denoted. The figures for mean

velocity show the transition of the velocity from the blocked region to the accelerated region.

The experimental figure also shows, by a dotted line, the location of the suspension slider

assembly if it were to be included in the setup. Figures 29 and 30 show the larger differences

between the RMS fluctuations, as discussed earlier.

4.2.1 Frequency contribution to RMS

The frequency contribution to the RMS from different frequency bands is now discussed in

detail. Figures 31 and 32 compare the 0-2 kHz frequency contributions to the RMS, while

Figures 33 and 34 compare the contributions from 2 to 20 kHz.

In both cases the RMS from the LES is approximately two to three times larger than that

predicted from the experiments. While it is unclear what the exact source of discrepancy

is, it is well known that simulations tend to over predict some components of the RMS

fluctuations. E.g. in a separate study by the authors, the flow across a square cylinder was

computed and streamwise Reynolds stresses (i.e. the streamwise velocity RMS fluctuations)

were over predicted. This over prediction was due to the nature of the SGS model itself

and we may conclude that modeling error contributes significantly to the prediction of the

velocity fluctuations.

Both Figures 32 and 34 show the clear stream of shed eddies that contribute to higher

fluctuations. The region blocked by the arm has higher fluctuations than the accelerated flow

20



4 EXPERIMENTAL VALIDATION 4.2 Measurements on the area

region. The thesis of Gross (2003) also breaks down the 2-20 kHz contribution to the RMS in

to 2-6, 6-10 and 10-20 kHz bands. Figures 35 through 40 provide a direct comparison between

the LES and the experiments for these frequency bands. The general trend is that the LES

consistently predicts higher fluctuations compared to the experimental data in all frequency

bands. With increasing grid resolution, both in the r − φ and z-directions, the 2-6 and 6-10

kHz contribution to the RMS increases, while the 0-2 kHz contribution decreases. This trend

is exactly similar to the trend in the drag coefficients shown in Figures 12-15 and is hence

not repeated. This leads to the conclusion that when performing calculations on successively

refined grids, LES solutions converge to spectral contents that do not qualitatively agree

with the experimental spectra. Thus grid-free LES solutions can never agree perfectly with

experiments, which is most likely due to the deficiency in the SGS model, as hinted at

earlier. Other factors, such as limited data for averaging LES solutions, influence of boundary

conditions and the uncertainty in the hot-wire measurement process may also contribute to

the discrepancy between the results.

4.2.2 Length and time scales

The characterization of the turbulent flow is not complete without the specification of a

time scale and a length scale. The integral time scale of the flow may be computed using

the normalized auto-correlation function,

ρ(s) =
1
T

∫ T

0
u′

φ(t)u
′

φ(t + s)dt

1
T

∫ T

0
u′

2

φ (t)dt
(14)

where u′

φ = uφ − uφ, according to the Reynolds decomposition.

The integral time scale may be then computed as,

τ =

∫
∞

0

ρ(s)ds (15)
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4 EXPERIMENTAL VALIDATION 4.2 Measurements on the area

and invoking Taylor’s frozen field hypothesis (see Pope, 2003), the integral length scale may

be computed as:

λ = τuφ (16)

The integral time scale and length scale are shown in Figures 41 and 42. The time scale is

non-dimensionalized to represent the number of disk rotations. The time scale is the largest

in the accelerated part of the area and is relatively small in the region of the wake. This

indicates that although the flow is being accelerated in this region, the flow remains largely

laminar and fluctuations are well correlated for almost a whole revolution of the disk. In the

more turbulent wake, the fluctuations flow remain uncorrelated, and the integral time scales

are small. In the laminar region the combined effect of flow acceleration and larger time

scales, leads to much larger length scales. The length scales are much smaller in the wake.

This indicates that the largest flow structures in the domain are contained in the laminar

flow region and the wake is characterized by much smaller flow structures with shorter life

spans.

We also note that most of the eddies in the turbulent wake have a length scale of about

2 mm or less, which is also the disk-to-disk spacing in the model. Hence, estimations of the

Kolmogorov’s microscale based on this estimate is valid, as done previously.

Finally, the cross term of the Reynolds stress tensor representing uruφ is plotted in

Figure 43. It clearly shows a distinct ridge in the stress component in the region where the

flow transitions from the accelerated region to the wake region. This indicates the region of

strong production of turbulence and the region where the turbulent field is anisotropic. The

negative sign of the stress component is typical of a turbulent shear flow and indicates the

production of turbulence from the interaction between the fluctuating field and the mean

field.
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5 Conclusions and Future Work

To summarize:

1. For the first time, comprehensive grid convergence results have been presented for flows

in hard disk drives. We found that grids in the 2-2.5 Million cells range (for a 3 inch

drive) are in the asymptotic range. While it is customary to vary the grid uniformly in

all three dimensions and report the convergence, such an effort would have missed the

independent sensitivity and convergence characteristics of the in-plane and out-of-plane

resolutions.

2. In the face of limited computational resources and very long simulation time, we have

also outlined a rigorous and novel technique to define the (statistical) steadiness of the

flow. This is based on monitoring the kinetic energy and windage of the flow. We

found that simulations initiated from steady k − ε solutions decay exponentially to

their steady values, which is helpful in deciding an averaging interval for reporting the

statistics of the flow.

3. Our grid convergence results mainly show monotonic convergence in z and oscillatory

convergence in r − φ, with GCI values approximately 20-30 % for most quantities.

More importantly, we noticed higher sensitivity of the quantities to the z-resolution,

which indicates the importance of resolving the axial dimension adequately for accurate

simulation. The simulation results also show that increasing the grid resolution changes

the spectral content of the drag on the arm. Increasing grid resolution decreases the

0-1 kHz content while increasing the higher 2-6 kHz spectral content. Finally, the

results of this paper can assist disk drive CFD practitioners to estimate the grid based

uncertainty of their simulations and compensate (correct) their results based on the

data presented here.
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4. In validating our LES results with the hot wire experiments, we found good agreement

in the mean quantities but larger discrepancies in the RMS quantities. Generally,

statistical quantities reported in an LES do not account for the direct influence of

the unresolved scales and hence such comparisons should be made with caution. Our

findings show that LES results tend to over predict the fluctuations in almost all

frequency bands, and the spectra converge to solutions that do not qualitatively agree

with the experiments. While the contribution from the highest frequencies is very

small, (e.g. the contribution of 10-20 kHz range to the RMS is only 0.6%) LES results

still overpredict the amount of fluctuations arising from this frequency band. It is

postulated that the modeling assumptions, mainly the SGS model, are responsible for

the lack of agreement.
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6 Tables

Table 1: Grids with variable out-of-plane (z) resolution

Grid Volume Number of Number of Number of h hz hrφ

Name mm3 cells, N out-of-plane in-plane mm mm mm

cells, Nz cells, Nrφ

Grid 1 1.043 × 104 1,101,264 16 68,829 0.2116 0.1250 0.2735
Grid 2 1.043 × 104 1,651,896 24 68,829 0.1848 0.0833 0.2735
Grid 3 1.043 × 104 2,202,528 32 68,829 0.1679 0.0625 0.2735

Table 2: Grids with variable in-plane (rφ) resolution

Grid Volume Number of Number of Number of h hz hrφ

Name mm3 cells, N out-of-plane in-plane mm mm mm

cells, Nz cells, Nrφ

Grid 4 1.043 × 104 1,171,632 24 48,818 0.2072 0.0833 0.3248
Grid 2 1.043 × 104 1,651,896 24 68,829 0.1848 0.0833 0.2735
Grid 5 1.043 × 104 2,361,324 24 98,389 0.1640 0.0833 0.2288
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Table 3: Grid Convergence results for global quantities

Global Quantity pz e23
a,z e23

ext,z GCI23
z prφ e25

a,rφ e25
ext,rφ GCI25

rφ

(%) (%) (%) (%) (%) (%)

Kinetic Energy Mean 1.85 2.66 15.87 17.12 2.71 2.19 6.09 7.17

Windage Mean 1.45 1.19 8.71 10.01 1.19 1.19 8.54 9.83

Off-track drag Mean 1.56 2.48 13.28 19.15 1.02 2.39 15.63 23.16

RMS 1.09 1.26 12.85 14.23 −

On-track drag Mean 1.74 1.90 11.69 13.09 1.48 5.02 34.93 32.36

RMS 1.74 2.38 15.05 16.35 −
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7 Figures

Figure 1: Experimental Setup (from
Gross, 2003) (diagram is not to scale)

Figure 2: Top View of Computational
Model (diagram is to scale)

Figure 3: Wireframe Isometric View of
Computational Model

Figure 4: Typical domain decomposi-
tion for parallel computation
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Figure 5: Top view of the computational grid
(Grid 1 in Table 1)

Figure 6: Closeup showing regions 1, 3 and
4 (Grid 1 in Table 1)

Figure 7: Closeup showing region 3 (Grid 1 in Table 1)
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Figure 8: Global energy-related quantities for Grid 5
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Figure 10: Time history of the drag coefficients for Grids 1, 2 and 3.
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Figure 11: Time history of the drag coefficients for Grids 4, 2 and 5.
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7 FIGURES

Figure 12: Contribution to CD Off Track
RMS from different frequency bands, shown
for Grids 1, 2 and 3

Figure 13: Contribution to CD Off Track
RMS from different frequency bands, shown
for Grids 4, 2 and 5

Figure 14: Contribution to CD On Track
RMS from different frequency bands, shown
for Grids 1, 2 and 3

Figure 15: Contribution to CD On Track
RMS from different frequency bands, shown
for Grids 4, 2 and 5
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Figure 16: Comparison of the RMS contributions to CD Off Track from the finest grid and
the extrapolated contributions. Also shown is the GCI23

z across different frequency bands

Figure 17: Comparison of the RMS contributions to CD On Track from the finest grid and
the extrapolated contributions. Also shown is the GCI23

z across different frequency bands
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Figure 18: Location of measurement line for hot-wire experimental data, from Gross (2003)

Figure 19: Location of measurement area for hot-wire experimental data, from Gross (2003)
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Figure 20: Mean flow speed along measurement line. LES data is plotted along with error
bars representative of GCI
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Figure 21: RMS of flow speed fluctuation along measurement line. LES data is plotted along
with error bars representative of GCI
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Figure 22: Turbulence intensity along measurement line. LES data is plotted along with
error bars representative of GCI
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Figure 24: Frequency spectrum of velocity
fluctuations at different measurement loca-
tions, reproduced from Gross (2003)
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Figure 25: Mean flow speed in m/s, plotted for various x-positions. Both Experimental and
LES data is shown, the latter with error-bars based on the GCI. At the top of each sub-figure,
the percentage occurrence of oscillatory convergence and the average order of convergence is
printed.
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Figure 26: RMS flow fluctuations in m/s, plotted for various x-positions. Both Experimental
and LES data is shown, the latter with error-bars based on the GCI. At the top of each
sub-figure, the percentage occurrence of oscillatory convergence and the average order of
convergence is printed.
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Figure 27: Mean flow velocity over entire
measurement area, from LES

Figure 28: Mean flow velocity over en-
tire measurement area, from experiments of
Gross (2003)
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Figure 29: RMS flow fluctuations over entire
measurement area, from LES

Figure 30: RMS flow fluctuations over en-
tire measurement area, from experiments of
Gross (2003)
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Figure 31: 0-2 kHz contribution to RMS flow
fluctuations, from Gross (2003)

24681012
−6

−4

−2

0

2

4

6

x

y

0

0.5

1

1.5

2

2.5

3

Figure 32: 0-2 kHz contribution to RMS flow
fluctuations, from LES

Figure 33: 2-20 kHz contribution to RMS
flow fluctuations, from Gross (2003)
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Figure 34: 2-20 kHz contribution to RMS
flow fluctuations, from LES
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Figure 35: 2-6 kHz contribution to RMS flow
fluctuations, from Gross (2003)
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Figure 36: 2-6 kHz contribution to RMS flow
fluctuations, from LES

Figure 37: 6-10 kHz contribution to RMS
flow fluctuations, from Gross (2003)
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Figure 38: 6-10 kHz contribution to RMS
flow fluctuations, from LES
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Figure 39: 10-20 kHz contribution to RMS
flow fluctuations, from Gross (2003)
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Figure 40: 10-20 kHz contribution to RMS
flow fluctuations, from LES
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Figure 41: Integral time scale of the flow (in
number of disk rotations)
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Figure 42: Integral length scale of the flow
(mm)
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Figure 43: Cross term of the time-averaged Reynolds stress tensor
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