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ABSTRACT 

 

In this paper we present a theoretical investigation of the stability and the 

dynamics of the non-linear behavior of a slider at very low head media spacing. A 

single DOF head disk interface (HDI) model, with constant air bearing stiffness 

and damping has been used to study the effect of disk waviness on the nonlinear 

slider dynamics in the presence of intermolecular and electrostatic forces. A 

variational approach based on the principle of least action was used to derive the 

equations of motion of the slider. Further, a stability criteria was derived that 

helped to better understand the instabilities that appear in the slider when it is 

flying in close proximity to the disk surface. Due to the nonlinear nature of the 

interaction between the slider and the disk, we observed some unexpected features 

of the motion of the slider. In particular the effects of the nonlinear interaction 

force, air bearing stiffness and damping on the instabilities of the periodic 

motions of the slider are discussed in detail using a frequency-response diagram.  
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LIST OF FIGURES 

 

1. Evolution of the resonance peak computed for four different values of distance: 

D1=10nm, D2=5nm, D3=3.5nm and D4=3.2nm. Red lines (-□-) correspond to u- and blue 

lines (-○-) correspond to u+. The numerical parameters are k = 2.5*106 N/m, c = 0.1 

N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 

2. Evolution of the resonance peak computed for numerical values of D=3.4nm, k = 2.5*106 

N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. The stability 

criterion predicts that u+ is always stable, whereas u- exhibits two stable domains and one 

unstable domain. The domains are separated by the points where the derivative dA/du- → 

±∞. 

3. Evolution of the phase curve associated to the resonance peak plotted in Fig. 2 for the 

numerical value of D=3.4nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 

volts, dxdy = 1000 µm2. The stability criterion predicts that φ+ is always stable, whereas 

φ- exhibits two stable domains and one unstable domain. 

4. Zoom of the region ‘p’ of the resonance peak shown in Fig.2. As dA/du- diverges again, 

this defines a new domain u- which is predicted to be stable. The resonance occurs where 

u+ = u-. 

5. Zoom of the region ‘p’ of the phase curve shown in Fig.3. The resonance is located at φ = 

-90o where φ+ = φ- and belongs to a stable domain. 

6. Evolution of the resonance peak computed for four different values of distance: 

D1=10nm, D2=5nm, D3=3.5nm and D4=3.2nm. The numerical parameters are k = 

2.5*106 N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 
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7. Evolution of the resonance peak computed for three different values of air bearing 

stiffness: k1 = 5*106 N/m, k2 = 2.5*106 N/m and k3 = 1*106 N/m. The resonance 

frequency (ωo) for the three cases is given by √(k/m). The numerical parameters are D = 

4nm, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 

8. Evolution of the resonance peak computed for three different values of air bearing 

damping: c1 = 0.2 N/m/sec, c2 = 0.1 N/m/sec and c3 = 0.055 N/m/sec. The numerical 

parameters are D = 4nm, k = 2.5*106 N/m, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 

µm2. 

9. Evolution of the resonance peak computed for three different values of the Hamakar 

constant: H1 = 2.7*10-19 J, H2 = 8.9*10-20 J and H3 = 2.9*10-20 J. The numerical 

parameters are D = 3.8 nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, v = 0 volts, dxdy = 1000 

µm2. 

10. Evolution of the resonance peak computed for three different values of potential 

difference between the slider and the disk: v1 = 0.5 volts, v2 = 0.3 volts and v3 = 0 volts. 

The numerical parameters are D = 3.4 nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, H = 

8.9*10-20 J, dxdy = 1000 µm2. 

11. Variation of the amplitude as a function of the distance, i.e. the approach-retract curve. 

The numerical parameters are k = 2.5*106 N/m, c = 0.1 N/m/sec, u = 0.9, H = 2.9*10-20 

J, and v = 0.0 volts. The curve exhibits a hysteretic cycle (ABCD) due to the nonlinear 

force that characterizes bifurcations from a mono-stable to a bi-stable state. 
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1. INTRODUCTION 

 

The disk drive industry is continually faced with the demand for higher areal recording densities, 

faster data access speeds, higher reliability, and lower costs. The new industry goal is to achieve 

an areal recording density of 1 Tbit/in2. This demand for higher areal density translates directly 

into a demand for higher track density and higher linear bit density, which in turn, requires 

significant reduction in the in-plane and out-of-plane vibrations of the magnetic head. In order to 

achieve the necessary higher linear bit density, the Wallace spacing law dictates that the 

magnetic spacing between the slider and the disk must be reduced to less than 10 nm. At such 

low head disk spacing additional forces, such as intermolecular and electrostatic forces, will 

come into play, which may result in larger fly height modulations. A study of the effect of 

intermolecular and electrostatic forces on slider dynamics was presented in previous papers [1-

3]. Besides, Wu and Bogy [4] have also shown that there is a reduction in fly height due to 

intermolecular forces (IMF) for sub 5nm flying sliders. Thornton and Bogy [5] also predicted 

instability due to these forces at the HDI. Here we extend our analysis and focus on the effect of 

disk waviness on the stability and dynamics of slider in the presence of intermolecular and 

electrostatic forces. 

 

 

2. HEAD-DISK INTERFACE MODEL  

 

The differential equation that describes the 1-dimentional motion z(t) of the slider is given by 
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where m, c and k = mωo
2 are respectively the slider mass (1.6 mg), air bearing damping and air 

bearing stiffness respectively and ωo is the resonance frequency. Fdiskcos(ωt) is the force due to 

disk waviness where Fdisk = k*adisk. Here ω is the disk waviness frequency and adisk is the 

amplitude of disk waviness. V[z(t)] is the interaction potential due to intermolecular and 

electrostatic forces between the slider and the disk.  To describe the interaction between the 

slider and the disk, the attractive coupling force is assumed to be derived from a plane-plane 

interaction and it can be expressed as [6]: 
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where H, εo, ke, v, dxdy and D are the Hamaker constant, permittivity constant (8.85 x 10-12 

farad/m), dielectric constant of the medium (1 for air), potential difference between the slider and 

the disk, area of the slider in close proximity with the disk and the distance between the disk and 

the equilibrium position of the slider, respectively.  

 

 

3. EULER-LAGRANGE EQUATIONS OF MOTION OF THE SLIDER 

 

A variational method based on the principal of least action is used in this analysis. Instead of 

using canonical variables, which requires the use of Hamiltonians, Sturrock developed a 

technique that does not require canonical variables. It consists of averaging the Lagrangian and 

then writing down the corresponding Euler-Lagrange equations. Whitham developed a similar 
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technique for waves in which the frequency and wave number as well as the amplitude are 

slowly varying functions of space and time. Bispop supplied a more rigorous justification of this 

technique. Although this technique is not as elegant as those using canonical variables, it has the 

advantage of being directly applicable to partial as well as ordinary differential equations [7-12]. 

 

For any path z(t), that could take the system from initial time ta to final time tb, we define an 

action I[z(t)] which is a functional of the path z(t) as: 
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Here L is the Lagrangian of the system given by: 
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The main aim of the use of the variational principal is to employ a harmonic trial function of the 

form z(t) = A(t)cos(ωt+φ(t)) that allows us to perform a non-perturbative analytical treatment in 

which the dissipation is included. Amplitude (A(t)) and phase (φ(t)) are assumed to be slowly 

varying functions with time compared to the period T = 2π/ω. Since the oscillator responds with 

a delay to the excitation, the sign of the phase chosen means that φ varies in the domain [-180o, 

0o]. To get the equations of motion in terms of amplitude and phase, we assume a long duration 

∆t = tb - ta such that ∆t >> T and calculate the action as a sum of small pieces of duration T as: 
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Here Le is the mean Lagrangian during one period and appears as an effective Lagrangian for a 

large time scale compared to the period. Owing to the quasi-stationary behavior of the amplitude 

and the phase over the period, the effective Lagrangian is calculated as follows: 

∫
+

=
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e dttzzL

T
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),,(1),,,( &&& ϕϕ  (6) 

 

Note that the effective Lagrangian is now a function of the new generalized coordinates A and φ 

and their associated generalized derivatives. Since the period T is small in comparison to ∆t = tb - 

ta during which the total action is evaluated, the continuous expression of the action is: 

∫=
b

a

t

t
e dAALI τϕϕ ),,,( &&  (7) 

where the measure dτ is such that T << dτ << ∆t. 

 

The observation that the solution of the Lagrange’s equations of motion extremizes the action 

was made by Hamilton. Jacobi extended Hamilton’s work and stated that the equations of motion 

can be obtained using the (Jacobi’s) Principle of Least or Stationary Action. It states that “The 

motion of the particle on the configuration manifold is such that the path of the particle is 

geodesic with respect to the action-line element” [7-12]. By definition, a geodesic curve between 

the two points is the path of shortest length between them. Expressed as a variational principle, 

the Euler-Lagrange necessary condition for the curve to be a geodesic is δI = 0.  

 

Applying the principle of least action δI = 0 to the functional Le, we obtain the Euler-Lagrange 

Equation for the effective Lagrangian: 
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Substituting the value of the effective Lagrangian calculated above in the Euler-Lagrange 

Equation of motion, we obtain: 

[ ]
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The equations of motion of the stationary solutions A and φ are then obtained by setting the first 

and second derivates of A and φ to be zero. Thus, we obtain two coupled equations in A and φ, 

expressed as: 
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Using the trigonometric identity sin2(φ) + cos2(φ) = 1, and rearranging the terms to get the 

relationship between the frequency and the amplitude at a given distance D, we get: 
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where u = ω/ωo is the driving frequency normalized to the resonance frequency of the free slider. 

Here the signs plus and minus are deduced from the sign of cos(φ), u- corresponds to the value of 

the phase ranging from 0o to -90o as cos(φ) > 0, and u+ corresponds to the value of the phase 
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ranging from -90o to -180o as cos(φ) < 0. This is in agreement with the sign convention of the 

phase of the assumed harmonic solution of the form z(t) = A(t)cos(ωt+φ(t). The two branches 

define the distortion of the resonance peaks as a function of D, where u- and u+ gives the 

evolution of the resonance peak for frequency values below and above the resonance, 

respectively. 

 

Fig.1 shows the distortion of the resonance peak versus the distance D. Red lines (-□-) 

correspond to u- and blue lines (-○-) correspond to u+. We observe that for an attractive force the 

peak is increasingly distorted towards the low frequencies as D is reduced. This is because for 

large values of D, the slider is far from the disk surface, and hence the nonlinear effects, i.e. the 

effect of intermolecular forces and electrostatic forces, are negligible and the peak keeps the well 

defined Lorenzian shape (H = 0 and v = 0). But at low separations the magnitude of the 

attractive forces increases, which results in the distortion of the resonance peak. 

 

 

4. HEAD DISK INTERFACE STABILITY CRITERIA 

 

To obtain the stability criteria of the branches u+ and u- of the resonance peaks, the equations 

must be linearized about the stationary solutions (now identified by index ‘eq’) [13-18]. We 

assume that A = Aeq + Ap and φ = φeq + φp where Ap and φp are small perturbations from 

equilibrium points Aeq and φeq respectively. On linearization the equations of motion (9) can be 

written in the state space form as: 
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To discuss the stability of the branches, we calculate the eigenvalues of the matrix M as det(M-

λI) = 0. This equation reduces to the form: 
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The characteristic equation is equivalent to the following system: 
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The stable solutions are those given by Re(λi) < 0, thus: 
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The condition X > 0 and Y > 0 is equivalent to saying that X+Y > 0 and XY > 0. 

 

We first consider the term XY > 0. Observe that, 
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Next, we define a function R(Aeq,ω) as: 
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Substituting the value of R(Aeq,ω) in the above equations we get: 
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Note that the denominator is the product XY, thus: 
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Since mF diskω2  is always positive, the stability condition XY > 0 reduces to: 
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Hence the stability criteria are: 
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Next we consider the condition X+Y > 0. For the range of values that the parameters can take it 

turns out always to be that 

0
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Hence the stability criteria’s are only given by the condition XY > 0. 

 

Fig’s. 2 and 3 show the distortion of the resonance peak and of the associated phase curves, 

respectively. Fig’s. 4 and 5 are the zooms on the region ‘p’ of Fig. 2 and 3, respectively. From 
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Fig. 2 we observe that dAeq/du+ is always negative for the branch u+ and from Fig. 3 we observe 

that the associated value of the phase is always below -90o, thus cos(φeq) < 0 for the branch u+. 

This analysis shows that u+ is always stable for all values of Aeq. 

 

From Fig. 3 we observe that the phase associated with the branch u- is always above -90o, thus 

cos(φeq) > 0 for the branch u-. Thus for stability dAeq/du- must be > 0. From Fig. 2 we observe 

that the sign of derivative changes twice for the branch u-. On the lower part of the branch 

corresponding to the small values of A, we observe that dAeq/du- > 0, which indicates that the 

branch is locally stable. When dAeq/du- < 0, the stability criteria is no longer satisfied and the 

branch u- becomes unstable locally. On the upper part of the branch u- the derivative changes 

sign again and dAeq/du- becomes positive, this implies that the branch u- becomes stable again 

locally. Thus we see that the branch u- and φ- exhibit two stable and one unstable domain. The 

resonance condition is dAeq/du = 0, which implies that cos(φeq) = c2Aeq/2mFdisk. This condition 

can be used to say that u- = u+ and φ- = φ+ at the resonance.  

 

5. RESULTS 

 

5.1 EFFECT OF SLIDER-DISK SEPARATION ON HEAD-DISK INTERFACE 

STABILITY 

 

Fig.6 plots the evolution of the resonance peak as the head disk separation varies. The evolution 

of the resonance peak is plotted for four different values of head disk separation: D1=10nm, 

D2=5nm, D3=3.5nm and D4=3.2nm. We observe that for an attractive force, the peak is 
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increasingly distorted towards the low frequencies as D is reduced, which results in an increase 

in the width of the unstable regime. This is because as the head disk spacing reduces the 

magnitudes of intermolecular forces and electrostatic forces become increasingly significant and 

results in head-disk interface instability. 

 

5.2 EFFECT OF AIR-BEARING STIFFNESS AND DAMPING ON THE HEAD-DISK 

INTERFACE STABILITY 

 

Fig. 7 plots the variation of the frequency response curve for three different values of air bearing 

stiffness. We observe that as the air bearing stiffness increases the amplitude of slider vibration 

increases. There is also an increase in the unstable domain of u with an increase in the air bearing 

stiffness. Fig. 8 plots the variation of the frequency response curve for three different values of 

air bearing damping. In the absence of damping, the peak amplitude of slider vibration is infinite. 

We observe that as the air bearing damping increases the amplitude of slider vibration decreases. 

The unstable domain of u also decreases as the air bearing damping increases. 

 

5.3 EFFECT OF INTERMOLECULAR FORCES AND ELECTROSTATIC FORCES ON 

HEAD-DISK INTERFACE STABILITY 

 

Typical value of the Hamaker constant with a representative thickness of DLC layer on the slider 

and lubricant layer on the disk is 8.9*10-20 J. Similarly typical values of the Hamaker constant 

for a DLC-DLC interface and a Lube-Lube interface are 2.7*10-19 J and 2.9*10-20 J respectively. 

Fig. 9 plots the variation of the frequency response curve for three different values of the 
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Hamaker constant. As expected in the absence or for small magnitudes of intermolecular forces 

the peak keeps the well defined Lorenzian shape (H = 0 and v = 0). As the Hamaker constant 

increases, the magnitude of the intermolecular forces between the slider and the disk increases 

and this results in an increase in the amplitude of slider vibrations. There is also an increase in 

the unstable domain of u, with an increase in the magnitude of intermolecular forces. Fig. 10 

plots the variation of the frequency response curve for three different values of potential 

difference between the slider and the disk. As the potential difference between the slider and the 

disk increases, the magnitude of electrostatic forces between the slider and the disk increases, 

which results in an increase in the amplitude of slider vibrations. There is also an increase in the 

unstable domain of u, with an increase in the magnitude of intermolecular forces. 

 

5.4 APPROACH-RETRACT CURVES FOR SLIDER MOTION IN HDD 

 

The multivaluedness of the approach-retract curve as shown in Fig. 11, due to the nonlinearity, 

has significance from the physical point of view because it leads to jump phenomena. We 

observe that the solution generates a domain of distance D where the slider may show unstable 

behavior. In the domain ABCD three values of the amplitude can be reached for a given value of 

the slider-disk separation. When the slider approaches the disk, the amplitude slowly increases 

up to point ‘D’ and then jumps to point ‘A’. At this point a further decrease in the distance 

between the slider and the disk results in the decrease of the amplitude. Similarly, when the 

slider is retracted from the disk, first the amplitude increase up to the point ‘B’ and then it jumps 

to point ‘C’. A further increase in the distance between the slider and the disk will result in a 

decrease in the amplitude. Analysis similar to that used in the case of the response diagram can 
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be used to predict the stability of the branches D+ and D-. We observe that the branch D- is 

always stable. The stability of the branch D+ depends on the value of H and v. 

 

 

6. CONCLUSIONS 

 

A theoretical analysis has been presented to investigate the stability of the slider in hard disk 

drives at the head disk interface (HDI). A single DOF HDI model, with constant air bearing 

stiffness and damping has been used to study the effect of disk waviness on the nonlinear slider 

dynamics in the presence of intermolecular and electrostatic forces. A variational approach based 

on the principle of least action was used in this analysis. The stationery solutions were obtained 

and a stability criterion was formulated in terms of the phase value and the sign of the derivative 

of the curve. This helped us to better understand the instabilities that appear in the slider when it 

is flying in close proximity to the disk surface. Due to the nonlinear nature of the interaction 

between the slider and the disk, we observed some unexpected features of the motion of the 

slider. We found that the branch associated to the disk waviness frequencies larger than the 

resonance frequency is always stable and the branch associated to the disk waviness frequencies 

smaller than the resonance frequency exhibits two stable domains and one unstable domain. In 

particular the effects of the nonlinear interaction force, air bearing stiffness and damping on the 

instabilities of the periodic motions of the slider are discussed in detail using the frequency-

response diagram. We also found that as the magnitude of intermolecular and/or electrostatic 

forces increases, the system becomes increasingly unstable. 
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Fig.1 Evolution of the resonance peak computed for four different values of distance: D1=10nm, 

D2=5nm, D3=3.5nm and D4=3.2nm. Red lines (-□-) correspond to u- and blue lines (-○-) 

correspond to u+. The numerical parameters are k = 2.5*106 N/m, c = 0.1 N/m/sec, H = 8.9*10-20 

J, v = 0.3 volts, dxdy = 1000 µm2. 
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Fig.2 Evolution of the resonance peak computed for numerical values of D=3.4nm, k = 2.5*106 

N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. The stability criterion 

predicts that u+ is always stable, whereas u- exhibits two stable domains and one unstable 

domain. The domains are separated by the points where the derivative dA/du- → ±∞. 
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Fig.3 Evolution of the phase curve associated to the resonance peak plotted in Fig. 2 for the 

numerical value of D=3.4nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, 

dxdy = 1000 µm2. The stability criterion predicts that φ+ is always stable, whereas φ- exhibits two 

stable domains and one unstable domain. 
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Fig.4 Zoom of the region ‘p’ of the resonance peak shown in Fig.2. As dA/du- diverges again, 

this defines a new domain u- which is predicted to be stable. The resonance occurs where u+ = u-. 
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Fig.5 Zoom of the region ‘p’ of the phase curve shown in Fig.3. The resonance is located at φ = -

90o where φ+ = φ- and belongs to a stable domain. 
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Fig.6 Evolution of the resonance peak computed for four different values of distance: D1=10nm, 

D2=5nm, D3=3.5nm and D4=3.2nm. The numerical parameters are k = 2.5*106 N/m, c = 0.1 

N/m/sec, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 
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Fig.7 Evolution of the resonance peak computed for three different values of air bearing 

stiffness: k1 = 5*106 N/m, k2 = 2.5*106 N/m and k3 = 1*106 N/m. The resonance frequency (ωo) 

for the three cases is given by √(k/m). The numerical parameters are D = 4nm, c = 0.1 N/m/sec, 

H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 
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Fig.8 Evolution of the resonance peak computed for three different values of air bearing 

damping: c1 = 0.2 N/m/sec, c2 = 0.1 N/m/sec and c3 = 0.055 N/m/sec. The numerical parameters 

are D = 4nm, k = 2.5*106 N/m, H = 8.9*10-20 J, v = 0.3 volts, dxdy = 1000 µm2. 
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Fig.9 Evolution of the resonance peak computed for three different values of the Hamakar 

constant: H1 = 2.7*10-19 J, H2 = 8.9*10-20 J and H3 = 2.9*10-20 J. The numerical parameters are 

D = 3.8 nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, v = 0 volts, dxdy = 1000 µm2. 

 29



 

 

 

 

 

 

Fig.10 Evolution of the resonance peak computed for three different values of potential 

difference between the slider and the disk: v1 = 0.5 volts, v2 = 0.3 volts and v3 = 0 volts. The 

numerical parameters are D = 3.4 nm, k = 2.5*106 N/m, c = 0.1 N/m/sec, H = 8.9*10-20 J, dxdy = 

1000 µm2. 
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Fig. 11 Variation of the amplitude as a function of the distance, i.e. the approach-retract curve. 

The numerical parameters are k = 2.5*106 N/m, c = 0.1 N/m/sec, u = 0.9, H = 2.9*10-20 J, and 

v = 0.0 volts. The curve exhibits a hysteretic cycle (ABCD) due to the nonlinear force that 

characterizes bifurcations from a mono-stable to a bi-stable state. 
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