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Abstract

This paper proposes controller design methods, specially for track-following con-

trol of the magnetic read/write head in a hard disk drive (HDD). The servo system to

be considered is a general dual-stage multi-sensing system, which encompasses most

of the track-following configurations encountered in the HDD industry, including the

traditional single-stage system. For the general system, a robust track-following prob-

lem is formulated as a time-varying version of the robust H2 synthesis problem. Both

dynamic and real parametric uncertainties, which are typical model uncertainties in

track-following control, are taken into account in the formulation. Three optimal ro-

bust controller design techniques with different robustness guarantees are applied to

solve the synthesis problem. These are mixed H2/H∞, mixed H2/µ, and robust H2

syntheses. Advantages and disadvantages of each method are presented. Multirate

control, which is inherent to control problems in HDDs, is obtained by reducing multi-

rate problems into linear time-invariant ones, for which there are many useful theories

and algorithms available. Most of the techniques proposed in this paper heavily rely

on efficient numerical tools for solving linear matrix inequalities.

Key Words: Dual-stage servo, track-following control, multi-rate control, robustness.
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1 Introduction

Track-following control of the magnetic read/write head in hard disk drives (HDDs) is

of great importance in meeting recent and future requirements of extremely high track

density. For a given system consisting of several components such as a suspension, sensors,

and actuators, servo control should achieve optimal track-following performance to meet

several objectives. Optimal control will not only realize small track-misregistration but

also give us useful information regarding the limitations of a given system, as well as useful

information on how to modify the system structure.

In addition to optimality, robustness is essential in track-following control. This is

because there are many disturbances affecting the control system, such as measurement

noise, track runout, windage, and external shock. Moreover, a controller has to be designed

so that it maintains acceptable track-following performance for hundreds of thousands of

HDD units with slightly different dynamics.

This paper proposes several robust and optimal control methods for a general servo

system, called the dual-stage multi-sensing (DSMS) system. The DSMS system has two

actuators and several sensor measurements, and is expected to be necessary for achieving

the highly precise track-following that will be required in future HDDs. For this multi-

variable control system, it is not easy to systematically design a controller that provides

both optimality and robustness by using classical control theory. Therefore, we will ap-

ply advanced robust control theories such as mixed H2/H∞, mixed H2/µ, and robust H2

syntheses, to the present multivariable control problem.

In order to enhance performance, we should exploit the freedom of using different

sampling/hold rates in the DSMS system. In HDDs, the sampling rate of the position error

signal (PES) is determined by the disk spinning speed and the number of servo sectors,

while the sampling/hold rates of other sensors, such as a sensor measuring the head relative

to the suspension tip, or a vibration sensor in the suspension, are flexible. It is natural to

presume that the increase of these rates will improve track-following performance. In this

paper, we will assume arbitrary sampling/hold rates.
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The paper is organized as follows. In Section 2, a multirate robust track-following

problem is formulated mathematically. Section 3 reviews the method in [4, 11] for the

reduction of multirate control problems to time-invariant control ones. Section 4 presents

three robust control design methods that solve the formulated robust track-following prob-

lem approximately. Section 5 gives a simple example for dual-stage control with the robust

H2 synthesis technique. The linear matrix inequalities (LMIs) used in this paper are pre-

sented in the Appendices.

This paper plays a role in theoretically supporting the paper [6], even though this paper

assumes a general structure of a DSMS system. Since this paper will focus on presenting

design techniques for track-following control in HDDs, readers are referred to [6] for more

background on track-following control and simulation results.

2 A robust track-following control problem

In this section, we will formulate a multirate robust track-following control problem to

be tackled in this paper. The formulation is general enough to cover most of the track-

following control problems encountered in the magnetic disk drive industry, such as single-

stage and dual-stage control, irrespective of the type of the secondary actuator, and the

locations/number of sensors. Practical example of track-following control which reduces

to the formulation given below will be presented in Section 5, as well as in [6].

Let us consider a discrete-time1 linear time-invariant generalized plant with an uncer-

tainty block (see Fig. 1):




z∆

z2

y




=




A B∆ B2 Bu

C∆ D∆∆ D∆2 D∆u

C2 D2∆ D22 D2u

Cy Dy∆ Dy2 0







w∆

w2

u




, (1)

w∆ = ∆z∆, (2)
1Throughout this paper, we assume that, if a plant model is originally given in continuous-time, it has

been discretized with the fastest sampling/hold rate.
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where we have used the standard notation:


A B

C D


 := D + C(zI −A)−1B. (3)

Here, u is the input vector of length 2, which consists of signals to the voice coil motor

(VCM) and an auxiliary mini- or micro-actuator. y is the measurement vector (of any

length), typically consisting of the PES, the suspension vibration signal measured by

PZT sensors, the position of the magnetic head relative to the gimbal, as measured by

a microactuator relative position sensor, and so on. z2 is the control output vector,

typically consisting of the PES and input amplitudes, and w2 is the disturbance vector

of all undesirable signals, such as track runout, windage, and measurement noise. All the

matrices in (1) are constant and assumed to have compatible dimensions. The generalized

plant is comprised of the VCM and secondary actuator dynamics, as well as weighting

functions. ∆
Generalizedplant ∆ w2w
KKKKSSSS HHHHMulti-rate controller

∆zz 2 uy

Figure 1: A generalized plant with an uncertainty block ∆ and a multirate controller

HKS

The uncertainty block ∆ is assumed to be a diagonal matrix in the set:

B :=





∆ := diag [δ1, . . . , δp,∆V , ∆M ]

δj ∈ BR, j = 1, . . . , p

∆V ∈ BH∞, ∆M ∈ BH∞





. (4)

where p is the number of parametric uncertainties, and

BR := {r ∈ R : |r| ≤ 1} ,
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BH∞ := {f ∈ H∞ : ||f ||∞ ≤ 1} .

The real uncertainty δj is interpreted as a parameter variation in the dynamics of the VCM

and the auxiliary actuator, such as gain, damping ratio and resonance frequency. Dynamic

uncertainties ∆V and ∆M are typically due to high-frequency unmodeled dynamics in the

VCM and the secondary microactuator, respectively.

Remark 2.1 It may happen that some parametric uncertainties appear repeatedly as

δjI. However, since the subsequent discussions are almost unchanged even in such cases,

we just consider the case of non-repeated parametric uncertainties.

Denote the operator from w2 to z2 by Tz2w2 . This operator depends on the uncertainty

∆ and a multirate controller HKS, where S and H mean a multirate sampler and a multi-

rate hold, respectively. Thus, we show the dependence explicitly as Tz2w2(HKS,∆). Note

that the operator Tz2w2(HKS,∆) is time-varying in general due to the multirate sampler

and hold. Then, a multirate robust track-following control problem can be formulated as

follows.

Problem 2.2 For given multirate sampler S and hold H with fixed sampling and hold

rates, design a controller K that stabilizes exponentially the closed-loop system for all

∆ ∈ B, and minimizes the worst-case RMS value of z2 against Gaussian white noise w2,

or equivalently, solve the optimization problem

min
K∈K(B)

max
∆∈B

‖Tz2w2(HKS,∆)‖2 , (5)

where K(B) is the set of all controllers that exponentially stabilize the closed-loop system

for all ∆ ∈ B, and ‖·‖2 denotes the `2 semi-norm defined for time-varying systems in [16,

p. 73].

This is a multirate robust performance synthesis problem, with parametric and dy-

namic uncertainties. We remark that this problem is general in that it contains, as special

cases, single-stage single-sensing cases, as well as single-rate cases.
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Unfortunately, the formulated problem is difficult to solve exactly with existing control

theory and computational tools, because of the nonconvexity and relatively large size of

the typical track-following control problem. Therefore, in Section 4, we will present design

methods to solve this problem in certain approximate cases.

3 Multirate control

Before proceeding with the exposition of control design techniques for the formulated

robust performance synthesis problem, in this section, we will review a way to transform

a multirate control problem into a time-invariant one, for which there are many useful

theories and numerical algorithms available. To this end, we follow the technique used in

[11, 4, 16]. For the ease of notation, only in this section, we remove the uncertainty block

∆, as well as signals z∆ and w∆, and consider a simplified generalized plant:




z2

y


 =




A B2 Bu

C2 D22 D2u

Cy Dy2 0







w2

u


 . (6)

However, even with the uncertainty block ∆ and corresponding channels w∆ and z∆, the

argument in this section remains analogous.

3.1 Reduction to time-varying control

First, by combining the generalized plant with the multirate sampler and hold, we will

obtain a periodic time-varying system (See Fig. 2). The explicit form of such a system

will be derived next.

A multirate sampler S is expressed mathematically as

S : ỹ(k) = Γ(k)y(k), k = 0, 1, 2, . . . , (7)

where Γ(k) is a diagonal matrix with diagonal entries of 0 or 1. If the i-th measurement

is sampled at time k, the (i, i)-entry of Γ(k) is set to 1; otherwise, it is set to 0. In the

single-rate case, Γ(k) = I for any k = 0, 1, 2, . . . . We assume that the sampler is periodic
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Generalizedplant w2
KKKK

SSSS HHHHz2 uy u~~y
A periodic time-varying system

Figure 2: A periodic time-varying system consisting of a time-invariant generalized plant,

a multirate sampler S and a multirate hold H

with a period Ts, i.e.,

Γ(k + Ts) = Γ(k), k = 0, 1, 2, . . . . (8)

To represent a multirate hold H mathematically, we decompose the input vector u into

vectors with fastest and slower hold rates as follows:

u =:




us

uf


 , (9)

where the subscripts “s” and “f” stand for slower and fastest respectively, and channels

with slower sampling rates are gathered at the top of the vector u without loss of generality.

Here, the term “fastest rate” refers to the fastest rate among not only hold rates, but also

sampling rates. Thus, if the fastest sampling rate is faster than any hold rate, u consists

of only us. Then, the hold is a mapping:

H : ũ :=




ũs

ũf


 →




us

uf


 , (10)

which can be described as a dynamic linear time-varying system:



xh(k + 1)


us(k)

uf (k)







=




Ah(k) Bh(k)

Ch(k) Dh(k)







xh(k)


ũs(k)

ũf (k)







, (11)
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where xh is the state vector of H, and for k = 0, 1, 2, . . . ,

Ah(k) := Ins − Ω(k), Bh(k) := [Ω(k), 0] ,

Ch(k) :=




Ins − Ω(k)

0


 , Dh(k) :=




Ω(k) 0

0 Inf


 .

(12)

Here, the dimensions of us and uf are denoted by ns and nf respectively, Ω(k) ∈ Rns×ns

is a diagonal matrix with diagonal entries of 0 or 1, and plays a similar role to Γ(k) in

(8). If we feed the i-th input signal of ũs from the controller at time k, then (i, i)-entry of

Ω(k) is set to 1; otherwise, it is set to 0, resulting in the i-th input at time k equal to the

i-th input at time k − 1. In the single-rate case, the hold degenerates to a static system

u(k) = ũ(k). We assume that the hold is periodic with a period Th, i.e.,

Ω(k + Th) = Ω(k), k = 0, 1, 2, . . . . (13)

Now, we suppose that the periods Ts and Th are rationally related, that is, their least

common multiple

T := l.c.m.(Ts, Th) (14)

is an integer. Then, by combining (6), (7) and (11), we obtain a linear periodic time-

varying system with the period T :



x̃(k + 1)

z2(k)

ỹ(k)




=




Ã(k) B̃2(k) B̃u(k)

C̃2(k) D̃22(k) D̃2u(k)

C̃y(k) D̃y2(k) 0







x̃(k)

w2(k)

ũ(k)




, (15)

for k = 0, 1, 2, . . . , where the matrices in (15) are obtained by straightforward calculation
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as follows:

Ã(k) :=




A BuCh(k)

0 Ah(k)


 ,

B̃2(k) :=




B2

0


 , B̃u(k) :=




BuDh(k)

Bh(k)


 ,

C̃2(k) :=
[

C2 D2uCh(k)

]
,

C̃y(k) := Γ(k)
[

Cy 0

]
,

D̃22(k) := D22, D̃2u(k) := D2uDh(k),

D̃y2(k) := Γ(k)Dy2.

(16)

Note that the system (15) includes all the information about the multirate sampler and

hold.

3.2 Reduction to time-invariant control

Next, we will apply known controller design methods for time-varying systems to the

system (15), thereby we can obtain a multirate controller.

It is proven in [16, 4, 11] that many important control synthesis problems for time-

varying systems can be solved in a very similar way to those for time-invariant systems.

Moreover, for periodic time-varying systems, these problems can be reduced to finite-

dimensional convex optimization problems, which can be solved by using efficient numer-

ical techniques for linear matrix inequalities (LMIs).

To be more concrete, using the matrices in the periodic time-varying plant (15) with

its period T , let us consider an auxiliary linear time-invariant system:




z2

y


 =




ZA ZB2 ZBu

C2 D22 D2u

Cy Dy2 0







w2

u


 , (17)

Here, matrices with bold capital letters are block-diagonal2 consisting of the matrices in
2Throughout this paper, we use bold capital letters to denote block-diagonal matrices.
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(15); for example,

A :=




Ã(0)
. . .

Ã(T − 1)




, (18)

and Z is a “shift” matrix which is of compatible size with A and defined by

Z :=




0 · · · 0 I

I 0
. . .

...

I 0




. (19)

The vectors z2, w2, y and u are considered as “lifted” signals of z2, w2, ỹ and ũ in (15),

respectively.

By a combination of the theories in [16, 4, 11], we can deduce the following equivalence:

• A time-invariant controller

u =




ZKA ZKB

KC KD


y (20)

stabilizes the time-invariant system (17), and satisfies an H2 or H∞ norm condition:

‖Tz2w2‖i <





√
Tγ2, if i = 2,

γ, if i = ∞,
(21)

where T is defined in (14). Here, the matrices in (20) are block-diagonal, and we

denote them as

KM :=




KM (0)
. . .

KM (T − 1)




, (22)

where “M” can be A, B, C or D. and the block sizes in Z are compatible with the

block sizes in KA.

• A periodic time-varying controller



xK(k + 1)

ũ(k)


 =




KA(k) KB(k)

KC(k) KD(k)







xK(k)

ỹ(k)


 , (23)
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of the period T stabilizes exponentially the time-varying system (15), and satisfies

a norm condition

‖Tz2w2‖i < γ, i = 2 or `2-induced. (24)

In this way, the `2 semi-norm or `2-induced norm suboptimal control problem for a

periodic time-varying system can be transformed into a standard H2 or H∞ suboptimal

control problem for a time-invariant system, with a controller structure (20) and (22). The

controller structure can be guaranteed by solving the suboptimal control problems with

numerical tools for LMIs.

To summarize, our procedure to solve a multirate control problem is:

1. Derive a time-invariant system (17).

2. Design a controller (20) for (17).

3. Obtain a periodic time-varying controller (23) by decomposing controller matrices

as (22).

4 Robust controller design

In this section, we will present three robust controller design methods useful for robust

track-following: mixed H2/H∞, mixed H2/µ and robust H2 syntheses. These methods

are based on convex optimization involving LMIs, to which there are numerically efficient

algorithms [14] and software [19, 5, 12] available. Some of the LMIs which are neces-

sary to solve optimization problems will be given in the Appendices. Advantages and

disadvantages of each method will be summarized.

4.1 Mixed H2/H∞ synthesis

The mixed H2/H∞ synthesis is a well-known design method for reconciling performance

and robustness [2, 10]. Since this approach can deal with only unstructured dynamic

uncertainties, we will ignore parametric uncertainties in ∆. In this approach, we can

guarantee only robust stability for individual, not simultaneous, perturbations of ∆V and

∆M . See Fig. 3.
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z
z 2 uy

∆∆V VM wMzV
M

Figure 3: Uncertainty structure for mixed H2/H∞ synthesis

Denote the set of all controllers that stabilize the closed-loop system in Fig. 3 for

∆V ∈ BH∞ and for ∆M ∈ BH∞ by KV and KM , respectively. Then, the control problem

in this approach is formally stated as follows.

Problem 4.1 For given multirate sampler S and hold H with fixed sampling and hold

rates, design a controller K that exponentially stabilizes the closed-loop system for all

∆V ∈ BH∞ and ∆M ∈ BH∞, and minimizes the nominal RMS value of z2 against

Gaussian white noise w2, or equivalently, solve the optimization problem

min
K∈KV ∩KM

‖Tz2w2(HKS, 0)‖2 . (25)

This problem can be rewritten as follows:

min
K

γ, subject to





||Tz2w2(HKS, 0)||2 < γ,

||TzV wV (HKS)||`2 < 1,

||TzMwM (HKS)||`2 < 1,

(26)

where zV , zM , wV and wM are signals shown in Fig. 3, and || · ||`2 means the `2-induced

norm. We can solve the optimization (26) by following the procedure given at the end of

Section 3. An auxiliary time-invariant system corresponding to (17) can be expressed in
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this case as

G :




wV

wM

w2

u




→




zV

zM

z2

y




,

G(z) :=




ZA ZBV ZBM ZB2 ZBu

CV DV V DV M DV 2 DV u

CM DMV DMM DM2 DMu

C2 D2V D2M D22 D2u

Cy DyV DyM Dy2 0




,

(27)

where all the block matrices are obtained by the transformation process from multirate

control to time-invariant control presented in Section 3. Using the system matrices, the

inequality conditions in (26) can be expressed as LMI conditions [18, 13], which are given

in Appendix A.

Main advantages of the mixed H2/H∞ method in track-following control are that the

computational cost involved in finding a solution to (26) is relatively low, and that an

optimal solution is guaranteed to be obtained given a feasible condition. While the robust

H2 synthesis methodology which will be presented later involves the iterative solution

of convex optimization problems in order to solve a nonconvex one, the mixed H2/H∞

method requires the solution of just one convex problem. However, a disadvantage of

this method is that it can neither deal with structured uncertainties, nor guarantee robust

performance. In other words, there is no guarantee that robustness in our original problem

(Problem 2.2) is indeed satisfied by the mixed H2/H∞ design.

4.2 Mixed H2/µ synthesis

The µ-theory is a powerful tool to deal with various types of uncertainties in robust control

[15]. If the performance is evaluated with the `2-induced (or H∞) norm, one can design

a controller for robust performance via the so-called D-K iterations in the µ-synthesis

theory. However, since the performance measure in the present problem is the `2 semi-
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norm (or H2 norm), we cannot use the µ-synthesis theory as it is. Here, we combine

the D-K iteration with the mixed H2/H∞ synthesis to design a controller to achieve

nominal performance optimization with guaranteed robust stability. To be more precise,

we consider the following problem.

Problem 4.2 For given multirate sampler S and hold H with fixed sampling and hold

rates, design a controller K that stabilizes the closed-loop system for all ∆ ∈ B, and

minimizes the nominal RMS value of z2 against Gaussian white noise w2, i.e., solve the

optimization problem

min
K∈K(B)

‖Tz2w2(HKS, 0)‖2 . (28)

Notice that the only difference between (28) and (5) is that the term “max∆∈B” is not

taken into consideration in (28), and thus we optimize only nominal performance.

Let us first consider a simpler situation where K̃ is a single-rate controller. Then,

by µ-analysis theory [15, 22], the condition K̃ ∈ K(B) can be guaranteed by K̃ ∈ K(0)

(nominally stabilizing) and
∥∥∥DTz∆w∆(K̃)D−1

∥∥∥
∞

< 1, (29)

for some matrix function D ∈ D. Here, D is a set of matrix functions associated with B
in (4) and defined by

D :=





D := diag [d1, . . . , dp+2]

dj ∈ H∞, d−1
j ∈ H∞, j = 1, . . . , p + 2





. (30)

Therefore, problem (28) can be solved via mixed H2/H∞ optimization with D-scaling:

min
K̃∈K(0),D∈D

γ, subject to




||Tz2w2(K̃, 0)||2 < γ,
∥∥∥DTz∆w∆(K̃)D−1

∥∥∥
∞

< 1.
(31)

Using the single-rate result, it is possible to solve the above multirate control problem

approximately, with the following procedure.

1. Design a rational matrix D ∈ D, as well as a single-rate controller K̃ with the fastest

sampling/hold rate (or a continuous-time controller if a generalized plant is given in
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continuous-time), that solves the optimization

inf
D∈D,K̃∈K(0)

∥∥∥DTz∆w∆(K̃)D−1
∥∥∥
∞

. (32)

2. Using the D obtained in Step 1, solve a multirate mixed H2/H∞ problem:

min
K∈K(0)

γ, sub. to




||Tz2w2(HKS, 0)||2 < γ,

∥∥DTz∆w∆(HKS)D−1
∥∥

`2
< 1.

(33)

We remark that the constraint

∥∥DTz∆w∆(HKS)D−1
∥∥

`2
< 1 (34)

guarantees closed-loop stability for all ∆ ∈ B, due to the Small Gain Theorem. The

optimization problem (32) in Step 1 can be solved via D-K iteration with “µ-Analysis

and Synthesis Toolbox” (or the latest “Robust Control Toolbox”) in Matlab [1]. On the

other hand, since the optimization problem (33) is of the same type as (26), the technique

outlined in Section 4.1 can be used to solve the optimization in Step 2.

The main advantage of the proposed mixed H2/µ synthesis, as compared to the mixed

H2/H∞ synthesis, is the freedom in the selection of D. Notice that D = I corresponds

to the mixed H2/H∞ design. Because of this freedom, we can expect better nominal

performance and robust stability. However, one disadvantage is that the problem becomes

nonconvex, and therefore, the obtained solution may not be a global optimum. Moreover,

the solution may be computationally expensive to obtain, especially when we select a D of

high order. In addition, like the mixed H2/H∞ approach, there is no guarantee regarding

robust performance.

Remark 4.3 Since our uncertainty set B includes parametric uncertainties, we can have

a less conservative robust stability condition than (29) (see [22, 23, 20]). If we use the less

conservative condition, an extra “G-scaling” must be introduced. This will increase the

computational effort, as well as the final controller order.

Remark 4.4 It has been our experience that the mixed H2/µ controller performs better

if the performance channel is included in solution to Step 1, even though the measure in

µ-synthesis is not the H2 norm but rather the H∞ norm.
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4.3 Robust H2 synthesis

The previous two methods cannot handle robust performance, and therefore, plant per-

turbations may degrade the track-following performance to an unacceptable extent. The

third method, which is based on the result in [9], can guarantee robust performance for

parametric uncertainties, but not for dynamic ones.

Define a set Bp of parametric uncertainties as

Bp := {∆ := diag [δ1, . . . , δp] , δj ∈ BR, j = 1, . . . , p} . (35)

The design problem in this section is stated next.

Problem 4.5 For given multirate sampler S and hold H with fixed sampling and hold

rates, design a controller K that stabilizes the closed-loop system for all ∆ ∈ Bp, and

minimizes the worst-case RMS value of z2 against Gaussian white noise w2 for all ∆ ∈ Bp,

i.e., solve

min
K∈K(Bp)

max
∆∈Bp

‖Tz2w2(HKS,∆)‖2 . (36)

To use the result in [9], we need that the following assumptions are satisfied.

Assumption 4.6 D∆∆ = 0 and Dy∆ = 0 in (1).

The assumption D∆∆ = 0 guarantees that the closed-loop system matrices depend on ∆

affinely (see (38)), while Dy∆ = 0 ensures the well-posedness of the closed-loop system

by forcing the direct term from u to y to be zero (see (37)). These assumptions are not

restrictive, since they hold most of the track-following problems in HDDs.

In the case with only parametric uncertainties, the uncertain system from [wT
2 , uT ]T

to [zT
2 , yT ]T is obtained as




z2

y


 =




A∆ B∆
2 B∆

u

C∆
2 D∆

22 D∆
2u

Cy Dy2 0







w2

u


 , (37)

where the superscript “∆” means a “matrix with uncertainties”, and the system matrices
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are given by 


A∆ B∆
2 B∆

u

C∆
2 D∆

22 D∆
2u


 :=




A B2 Bu

C2 D22 D2u




+




B∆

D2∆


∆

[
C∆ D∆2 D∆u

]
.

(38)

In the robust H2 method that will be explained below, it is important that the system

matrices in (38) are affine in ∆, and that ∆ belongs to a convex polyhedron Bp (which is

a hypercube in the present setting).

To deal with the multirate characteristics of the controller, we use the procedure in

Section 3. Then, for an augmented time-invariant plant:




z2

y


 =




ZA∆ ZB∆
2 ZB∆

u

C∆
2 D∆

22 D∆
2u

Cy Dy2 0







w2

u


 , (39)

we need to design a linear time-invariant controller of the form:

u =




ZKA ZKB

KC KD


y. (40)

We remark that all the uncertain matrices in (39) are affine in ∆. The time-invariant

closed-loop system of (39) and (40) is expressed as

(Tcl(Θ, ∆))(z) :=




Acl(Θ, ∆) Bcl(Θ, ∆)

Ccl(Θ, ∆) Dcl(Θ, ∆)


 ,

:=




Z(A∆
0 + B∆ΘC) Z(B∆

0 + B∆ΘD21)

C∆
0 + D∆

12ΘC D∆
22 + D∆

12ΘD21


 ,
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where the matrices are defined by

Z :=




Z 0

0 Z


 , Θ :=




KA KB

KC KD


 ,

A∆
0 :=




A∆ 0

0 0


 ,

B∆ :=




0 B∆
u

I 0


 , B∆

0 :=




B∆
2

0


 ,

C :=




0 I

Cy 0


 , D21 :=




0

Dy2


 ,

C∆
0 :=

[
C∆

2 0

]
, D∆

12 :=
[

0 D∆
2u

]
.

Our problem is to find a robustly stabilizing controller matrix Θ that solves

min
Θ

max
∆∈Bp

||Tcl(Θ, ∆)||2.

This can be solved by the following optimization, which involves a finite number of matrix

inequalities:

min
W ,P ,Θ

γ, subject to




γ > traceW



W Ccl(Θ, ∆k) Dcl(Θ,∆k)

∗ P 0

∗ ∗ I




> 0,




P Z P ZAcl(Θ,∆k) P ZBcl(Θ, ∆k)

∗ P 0

∗ ∗ I




> 0,

(41)

for ∆k ∈ V(Bp). Here, the matrices P and W are block-diagonal of appropriate sizes,

P Z := ZT PZ, V(Bp) is the set of all vertices of a convex polyhedron Bp, and the “∗-
blocks” are the block matrices that make the total matrix symmetric. The replacement

of infinitely many inequality constraints for ∆ ∈ Bp with finitely many ones at vertices

∆k ∈ Bp is possible due to the facts that the closed-loop system matrices are affine in ∆,

and that the set Bp is a convex polyhedron.
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Unfortunately, this problem is nonconvex, since there are coupling terms between P

and Θ in (41). However, by using the coordinate descent method (see [8, 7] and references

therein), we can find a local optimum. The procedure is presented next.

[Initial design of Θ] This will be explained below, as well as in Ap-

pendix B. Set the result of the initial design to Θ0. Also, set i = 1.

[Design of P ] Fix Θ := Θi. Solve a convex optimization problem (41)

with respect to γ, W , and P . Set a solution P to P i.

[Design of Θ] Fix P := P i. Solve a convex optimization problem (41)

with respect to γ, W , and Θ. Set a solution Θ to Θi+1. Increment i by

one. Continue this iteration until convergence.

Remark 4.7 Theoretically, since the value γ is monotonically non-increasing during the

iterations and it has a lower bound (which is 0), it will converge to some positive number.

Numerically, we stop the iteration when the value of γ stops decreasing (within some

tolerance).

Generally speaking, in nonconvex optimization problems, the selection of an initial

point is critical. We follow the procedure given in [9] to derive a reasonable initial point,

which will be reviewed in Appendix B.

The advantage of the robust H2 synthesis over the other synthesis methodologies dis-

cussed in this paper is the ability to cope with robust performance in the design. However,

to utilize the proposed synthesis technique, it is necessary to ignore dynamic uncertain-

ties, which generally capture high frequency unmodeled dynamics, typically unavoidable

in modeling. In addition, the computation of a solution to the robust H2 problem is de-

manding, because we have to solve a series of convex optimization problems iteratively

in order to solve a nonconvex problem. Further, the number of inequality constraints

increases exponentially with the number of parametric uncertainties, since the constraints

are imposed at vertices of a hypercube Bp. Therefore, only a few parametric uncertainties

can be included in a practical design.
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5 A design example

In this section, we will demonstrate the usefulness of the robust H2 synthesis method

presented in Section 4.3 through one simple example of a dual-stage track-following control

problem. This example is taken from [3]. Other examples will be shown in [6]. The system

to be considered is a PZT-actuated dual-stage servo system, whose inputs are the VCM

input (uV ) and the input to PZT-microactuator (uM ), and whose output is the head

position (yLDV ) measured by LDV.

5.1 Continuous-time modeling

In order to use the robust H2 synthesis technique, we need a mathematical model with only

parametric uncertainties. To derive such a mathematical model, 36 frequency responses

of PV CM (from uV to yLDV ) and of PMA (from uM to yLDV ) have been taken in [3], as

shown in Figure. 4.
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Figure 4: Frequency responses from uV to yLDV (upper figure) and from uM to yLDV

(lower figure)

To reduce the computational burden in controller design, it is advantageous to build

a model with both order and the number of uncertain parameters as small as possible.

In Figure 4, since the sway mode (S) and the torsion modes (T1 and T2) can be seen in
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both frequency responses, these suspension modes Pma can be factored out as the block

diagram in Figure 5:

PE
PD PmauV

uM yLDV++
Figure 5: Block diagram

PV CM (s) = Pma(s)PE(s), PMA(s) = Pma(s)PD(s). (42)

Here, the E-block dynamics PE and suspension dynamics Pma are assumed to have struc-

tures as

PE(s) = PF (s)PB(s), (43)

Pma(s) = PT1(s)PS(s)PT2(s), (44)

where each term of the right-hand sides is of the form

Pj(s) =
bj
0s

2 + bj
1s + bj

2

s2 + aj
1s + aj

2

, j = F, B, T1, S, T2, (45)

with uncertain coefficients

bj
k = b̄j

k(1 + M j
bkδ

j), k = 1, 2, (46)

aj
k = āj

k(1 + M j
akδ

j), k = 1, 2. (47)

Here, the nominal values are denoted by āj
k and b̄j

k, and M j
ak and M j

bk are constant weight-

ings. It has been found that the experimental frequency responses can be reproduced

accurately enough by using only three uncertain parameters

δ1 = δF , δ2 = δB, δ3 = δT1 = δT2 = δS . (48)

PD is the piezoelectric actuator driver dynamics that is not observed in PV CM , and of the

form

PD(s) = bD
1 s + bD

2 . (49)
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mode j b̄j
0 b̄j

1 b̄j
2 āj

1 āj
2

F 0 0 4.206e8 51.175 2.365e4

B 0 0 1.003e9 569.8 1.003e9

T1 1 720 1.598e9 208.2 1.575e9

S 0 0 3.316e9 1015 3.316e9

T2 1 6300 1.079e10 2700 1.02e10

D – 4.0026e-4 47.3151 – –

mode j M j
b1 M j

b2 M j
a1 M j

a2

F 0 0.3 0 0

B 0 0.35 0 0.35

T1 -0.03 -0.03 0 0.05

S 0 0.12 0.1 0.12

T2 -0.01 -0.01 0 0.05

Table 1: Nominal parameters and weighting coefficients values

Assuming the structure of the model (42)–(49), the nominal values and the weighting

coefficients are identified as in Table 1. The validity of the modeling result will be examined

after the discretization of the model set in Section 5.2.

5.2 Discretization of a continuous-time model set

For digital controller design, the continuous-time uncertain model is transformed into a

discrete-time one. Although there are several ways to carry out such transformation, we

present only one method here.

The block diagram in Figure 5 can be expressed as an LFT form with uncertain

parameters as in Figure 6. We can represent the continuous-time model set from [uV , uM ]T

to yLDV as

Pc =





P (s) = D + C(sI −A(∆))−1B(∆)

∆ = diag[δ1, δ2I, δ3I], |δi| ≤ 1, ∀i





. (50)
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PnomuVuM yLDV
δ1 δ2Ιδ3Ι

Figure 6: Block diagram with parametric uncertainties

Since there are three uncertain parameters δi, the set Pc has 23 “extreme” cases denoted by

∆i, where each parameter δi takes the value of -1 or 1. For each extreme case, we transform

the continuous-time model into a discrete-one by zero-order hold, yielding discrete-time

(A,B)-matrices as follows:

Ai
d := eA(∆i)T , Bi

d :=
∫ T

0
eA(∆i)τdτ ·B(∆i),

where T = 25 · 10−6 (sec.) is a sampling period. For controller design, we use all the

convex combinations of these eight discrete-time (A,B)-matrices:

Pd :=
{
P (z) = D + C(zI −A)−1B, [A,B] ∈ B}

,

where

B :=

{
[A, B] =

8∑

i=1

αk[Ai
d, B

i
d], αi ≥ 0,

8∑

i=1

αi = 1

}
.

The comparisons between experimental frequency responses and those of sampled models

in the model set Pd have been shown in Figures 7 and 8. Both figures show that the

observed dynamic variation can be accurately represented by the parametric uncertainty

modeling technique.

5.3 Controller design via robust H2 synthesis

To determine a controller design problem, we need to specify the variables z2, w2, y and

u in (37). In this example, control inputs u are taken as

u := [uV , uM ]T .

As a disturbance, in this simple example, we consider only track runout r, modeled as

r = Wrw2,
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Figure 7: Comparisons between experimental and simulation frequency responses for

PV CM
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Figure 8: Comparisons between experimental and simulation frequency responses for PMA

where Wr is a shaping filter

Wr(s) =
3.162s + 1.987 · 105

s + 628.3
,

and w2 is white noise (This w2 corresponds to the one in (37)). The difference between r

and yLDV

e := r − yLDV
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is the PES, which is the measurement y in (37). As control outputs z, we use the vector

consisting of the PES and weighted input signals as

z := [e, QV uV , QMuM ]T ,

with the weights QV and QM are selected by trial-and-error as QV = 0.1 and QM = 5·10−5.

The designed controller was of order 13. In order to analyze the controller, the sen-

sitivity functions for 100 sampled models are shown in Figure 9. As can be seen in the

figure, the sensitivity functions do not disperse even in the face of parameter variations,

indicating that the obtained controller indeed satisfies its intended robust performance

property. This property was also verified during the experimental tests, as discussed in

[3].
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Figure 9: Sensitivity functions

6 Conclusions

In this paper, we have presented three multirate robust controller design methods for track-

following control in dual-stage multi-sensing servo systems. The procedures, advantages,

and disadvantages have been provided for each method. In addition, multirate control

problems have been shown to be reduced to time-invariant control problems. All of the

methods rely on numerically efficient solvers for LMIs. This paper can be seen as a
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collection of results from the robust control literature, including those in [4, 11, 9, 15],

which are specially useful for track-following controller design in dual-stage HDDs. One

track-following control example for a PZT actuated suspension dual-stage system was

given to illustrate that the robust H2 controller is useful in maintaining the track-following

performance under plant perturbations.

It is known that one major drawback of robust control theory is that the designed

controllers typically have high orders. Therefore, controller reduction should also be done

after all of the three proposed design procedures. Since a multirate controller is periodic

time-varying in general, we can utilize the existing balanced truncation techniques, e.g.,

those in [21, 17], for the reduction purpose. Some realistic examples in [6] show that our

design methods plus model reduction are quite promising in designing low order controllers

with robust track-following performance. Finally, fixed-order controller design such as the

one presented in [7] will be useful in this application, which is a future research topic.

A LMIs for mixed H2/H∞ synthesis

Here, we present LMIs used for our mixed H2/H∞ design in Section 4.1. These LMIs can

be derived by combining the ideas of congruent transformations in [18] and of synthesis

for time-varying systems in [4, 16]. We use the following notation: For a block-diagonal

matrix M and a shift matrix Z (see (19)) with appropriate block sizes, we define

MZ := ZT MZ. (51)

Note that MZ is also block-diagonal.

Using the system matrices in (27) and block diagonal decision variables W = W T ,

X = XT , Y = Y T , K̂A, K̂B, K̂C , and K̂D with appropriate sizes, the optimization

problem (26) is equivalent to

min traceW , (52)
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subject to 


W C2 + D2uK̂DCy C2Y + D2uK̂C

∗ X I

∗ ∗ Y

∗ ∗ ∗
D22 + D2uK̂DDy2

0

0

I




> 0,




XZ I XZA + K̂BCy K̂A

∗ Y Z A + BuK̂DCy AY + BuK̂C

∗ ∗ X I

∗ ∗ ∗ Y

∗ ∗ ∗ ∗
XZB2 + K̂BDy2

B2 + BuK̂DDy2

0

0

I




> 0,




XZ I XZA + K̂BCy K̂A

∗ Y Z A + BuK̂DCy AY + BuK̂C

∗ ∗ X I

∗ ∗ ∗ Y

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

XZBi + K̂BDyi 0

Bi + BuK̂DDyi 0

0 CT
i + CT

y K̂
T

DDT
iu

0 Y CT
i + K̂

T

CDT
iu

DT
ii + DT

yiK̂
T

DDT
iu

∗ I




> 0,

where i = V, M . Note that all the entries in the above LMIs are block-diagonal. For the

controller reconstruction, we first compute block-diagonal nonsingular matrices M and

N , having the same block structure as X and Y , and satisfying

MNT = I −XY . (53)
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The controller matrices are given by

KD = K̂D, (54)

KC = (K̂C − K̂DCyY )N−T , (55)

KB = M−1
Z (K̂B −XZB2K̂D), (56)

KA = M−1
Z

{
K̂A −XZ(A + BuK̂DCy)Y

−XZBuKCNT −MZKBCyY
}

N−T . (57)

Note that the block structures of KA, KB, KC and KD are guaranteed in the computa-

tions, since all the matrices in the right-hand sides of (54)–(57) are block-diagonal. The

corresponding periodic time-varying controller can be obtained by dividing these block

matrices as in (22).

B Initial controller design in robust H2 synthesis

As has been explained, the robust H2 controller is designed via nonconvex optimization

(41). For nonconvex optimization, selection of an initial point is of great importance.

Here, we review a reasonable method for such selection proposed in [9].

B.1 State feedback

First, for the uncertain system (39), we design a state feedback controller:

u = Kcx, (58)

that optimizes robust H2 performance:

max
∆∈Bp

||Tz2w2 ||2. (59)
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As given in Theorem 6 in [9], this problem can be solved by convex optimization with

LMIs:

min
W ,Q,L

traceW , subject to







W C∆
2 Q + D∆

2uL D∆
22

∗ Q 0

∗ ∗ I




> 0,




QZ A∆Q + B∆
u L B∆

2

∗ Q 0

∗ ∗ I




> 0,

(60)

where the constraints are imposed at the vertices of Bp, ∆ = ∆k ∈ V(Bp). Using the

solutions L and Q, the optimal state feedback is given by

KC := LQ−1. (61)

B.2 Output feedback

Next, by fixing KC in (61) and KD = 0, we design an output feedback

u =




ZKA ZKB

KC 0


y. (62)

that optimizes robust H2 performance (59). Define

A∆
F := A∆ + B∆

u KC . (63)
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Then, due to Theorem 8 in [9], this problem can be solved by convex optimization with

LMIs:

min
W ,X ,Y ,U ,V

traceW , subject to







W C∆
z + D∆

zuKC D∆
zuKC D∆

zw

∗ X 0 0

∗ ∗ Y 0

∗ ∗ ∗ I




> 0,




XZ 0 XZA∆
F

∗ Y Z Y ZA∆
F − V −UCy

∗ ∗ X

∗ ∗ ∗
∗ ∗ ∗
−XZB∆

u KC XZB∆
w

V − Y ZB∆
u KC Y ZB∆

w −UDyw

0 0

Y 0

∗ I




> 0,

(64)

where the constraints are again imposed at the vertices of Bp, ∆ = ∆k ∈ V(Bp). Using

the optimizers, KA and KB are obtained as

KA := Y −1
Z V , KB := Y −1

Z U . (65)
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[17] H. Sandberg and A. Rantzer. Balanced truncation of linear time-varying systems.

IEEE Trans. Automat. Control, 49(2):217–229, February 2004.

[18] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective Output-Feedback Control via

LMI Optimization. IEEE Trans. Automat. Control, 42(7):896–911, July 1997.

[19] J. F. Sturm. Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric

cones. Optimization Methods and Software, 11–12:625–653, 1999. Special issue on

Interior Point Methods.

[20] A. L. Tits and Y. S. Chou. On mixed-µ syntehsis. Automatica, 36:1077–1079, 2000.

[21] A. Varga. Balanced truncation model reduction of periodic systems. In Proceedings

of the 39th IEEE Conference on Decision and Control, pages 2379–2384, Sydney,

Australia, December 2000.

[22] P. M. Young. Controller design with real parametric uncertainty. Int. J. Control,

65(3):469–509, 1996.

[23] P. M. Young and J. C. Doyle. Properties of the mixed µ problem and its bounds.

IEEE Trans. Automat. Control, 41(1):155–159, January 1996.

32


