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1. ABSTRACT 

This report addresses a new optimization method in which the DIRECT algorithm is 

used in conjunction with a surrogate model. The DIRECT algorithm itself can find the global 

optimum with a high convergence rate. However the convergence rate can be much improved 

by coupling DIRECT with a surrogate model. The surrogate model known as the Kriging 

model is used in this research. It is determined by using sampling points generated by the 

DIRECT algorithm. This model expresses the shape of a hyper surface approximation of the 

cost function over the entire search space. Finding the optimum point on this hyper surface is 

very fast because it is not necessary to solve the time consuming air bearing equations. But 

the optimum point on the hyper surface only determines an area where the true optimum 

point may exist. By using this optimum candidate as one of the DIRECT sampling points, we 



can eliminate many cost function evaluations. To illustrate the power of this approach we 

first present some simple optimization examples using known difficult functions. Then we 

determine the optimum design of a slider with 5nm flying height (FH) starting with a design 

that has a 7nm FH. Finally in order to find a feasible design we present an optimization 

method that takes into account the sensitivity of the design to design variable variations. 

2. INTRODUCTION 

In order to achieve a recording areal density of 1Tbit/in2 in hard disk drives (HDD), 

the magnetic spacing between the read/write transducer and the magnetic medium must be 

reduced to approximately 5-6nm. As the FH of the air bearing slider is decreased, the ratio of 

the fly height modulation to the total fly height increases and degrades the read/write signal 

quality. Air bearing surface (ABS) designers have mainly focused on the static characteristics 

of the slider, such as FH, pitch and roll. However in order to design an ABS with small fly 

height modulation (FHM), the designer must consider the dynamic characteristics of the ABS. 

Dynamic simulation is much more expensive than static evaluation so the optimization of a 

slider design based on its dynamic characteristics becomes very expensive. Therefore we 

need to develop a searching algorithm that can find the global optimum design with a 

relatively small number of cost function evaluations.  

In this report, we first show how the searching process works, and then we introduce 

the Kriging model, which is used as a surrogate model of the cost function. After a brief 

discussion of these concepts, we show some simple optimization examples. Using these 

examples we show a comparison of the convergence rate of the proposed surrogate method 

and the DIRECT algorithm, which has been previously studied and implemented in the CML 
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ABS optimization program.  Finally we present an example of ABS optimization with 

sensitivity considerations. 

3. PROPOSED SEARCHING METHOD 

3.1 Combination of DIRECT and DACE 

In optimization research in the field of DACE (design and analysis of computer 

experiments) [1] [2], the Kriging model is used as a surrogate model for the time consuming 

cost function. Usually a data sampling method is employed to construct the surrogate model. 

Some examples of data sampling methods for DACE are Monte Carlo sampling, Latin 

hypercube sampling [3], and orthogonal array sampling [4].   The data sampling method 

itself is unrelated to the function that is to be searched for the optimum. It just generates 

sampling points that are supposed to be suitable for constructing the surrogate model.  

All of these data sampling methods are different from the classical design of 

experiments (DOE) methods, such as the central composite design, in how the sampling 

points are spread in the search space. Data sampling methods for DACE tend to cover the 

entire search space whereas DOE methods tend to locate points at the boundary of the search 

space [5].  

Since the DIRECT algorithm is a global optimization algorithm, it generates sampling 

points, as cost function evaluation points, that are spread over the entire search space. So we 

can use the DIRECT algorithm not only as the optimization algorithm but also as the data 

sampling algorithm.  
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3.2 Process configuration 

Figure 1 shows a diagram of the process configuration. There are two processes. One 

is the DIRECT process and the other is the Kriging process. 

DIRECT works as the optimization process using the ordinary DIRECT algorithm, 

except this process uses optimum candidates obtained from the Kriging process.  

The Kriging process forms a Kriging model using sample points at which the cost 

function is evaluated in the DIRECT process, in other words, in our case, an air bearing 

simulation is performed using the program CMLAir. It is formed after each iteration of 

DIRECT. After forming the Kriging model, the optimum point on the Kriging model is 

searched for using the DIRECT algorithm version III (DIRECTIII), which is one of the 

locally biased DIRECT algorithms proposed by Zhu in 2002 [5]. It uses fewer sampling 

points and divides the search area twice in one iteration. Its convergence speed is fastest 

among the several versions of the DIRECT algorithm. After an optimum candidate is 

obtained in the Kriging process, this design is passed on the DIRECT process for further 

investigation.  

3.3 Insertion of the predicted optimum into the DIRECT process 

An optimum candidate obtained from the Kriging model is inserted into the line of 

samples, called link lists, generated by the DIRECT algorithm.  As this optimum candidate is 

obtained from the Kriging process, it does not have the cell information needed by the 

DIRECT algorithm for grouping and dividing cells. To create these data, the cell that has the 

closest cost function value to the optimum candidate is searched for from the top of the line 

of the samples. The cell information of this closest cell is used as the cell information of the 
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optimum candidate cell. After this cell is inserted, it is treated as a cell generated by 

DIRECT. 

From the numerical experiments performed we found that this optimum candidate can 

be the best among the samples in the early stages of the search. But the optimum candidate 

obtained from the Kriging process cannot be a best design among the samples as the dividing 

proceeds farther. The DIRECT algorithm can find more precise candidates than those 

provided by the Kriging process if DIRECT uses many samples. There are several ways to 

resolve this problem. One typical way that is often used in optimization methods using a 

surrogate model is to limit the search area around the optimum candidate when the  

convergence rate becomes low. Then the surrogate model is formed in the limited area. By 

doing this, the surrogate model becomes more accurate since it is not disturbed by the sample 

points far from the candidate point. We don't consider these techniques any further in this 

report.  

4. CONSTRUCTING A SURROGATE MODEL 

4.1 Summary of the Kriging model 

The Kriging model consists of two parts, a regression model and a correlation model. 

A polynomial of any order can be used as a regression model. However, a polynomial cannot 

be fit well enough to many sample points since the shape of the cost function is usually very 

complex. On the other hand the shape of a polynomial is very simple, even one of high order. 

In the Kriging model, a correlation model also works well to fit the sample points. Figure 

2(a) shows examples of a Kriging model. We first tried to form a Kriging model for the 

Branin function using just five sample points. The black dots are sample points on the Branin 
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function. Off course five sample points are too few to accurately fit the Branin function. But 

one can see the structure of the Kriging model very well. The flat part of the surface is 

formed by a 1st order regression model, and the peaks and dimples are formed by the 

correlation model. The function values at the points in the area where samples do not exist 

are interpolated according to the distances from the existing sample points. As the number of 

sample points is increased, the shape of the Kriging model becomes closer to the Branin 

function, as shown in Fig. 2(b). 

4.2 Formulation 

The MATLAB Kriging Toolbox [6] was used to form the Kriging model.  The 

purpose is to form a linear predictor at the location  using the sample points                    

 , which are obtained by the DIRECT algorithm. In other words,  

represents the predicted cost function at a certain value of the design parameter 

)(ˆ xy nx ℜ∈

{ } mis n
i ,,2,1, L=ℜ⊂ )(ˆ xy

x  of the 

slider, where x  could be, for example, a dimension of the rail or some other parameter such 

as the recess depth. We assume a linear predictor  defined as follows.  )(ˆ xy

s
T yxcxy )()(ˆ =                                                           (1) 

where is the column vector of the function values at the sample points, 

namely .  Also,  is the vector of weights applied to 

. We will determine  in the remainder of this section. 

sy

[ ]Tms sysysyy )()()( 21 L= mxc ℜ∈)(

sy )(xc

Kriging, also called DACE (design and analysis of computer experiments), is a 

statistical method originating from the field of geostatistics, which is based on the use of 

spatial correlation functions [7]. In the probabilistic model, the total search area is assumed to 
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be an infinite family of random functions [8]. The Kriging model is comprised of a 

regression function and a random function described as follows 

)()()( xZxfxY T += β                                                    (2) 

The deterministic response is a realization of a random function . 

is a regression term, where 

)(ˆ xy )(xY

)(xfTβ [ ]Tkββββ L21= and 

. The number of terms of the regression part is k and [ T
k xfxfxfxf )()()()( 21 L= ] β  

is a coefficient of the regression terms. For example, if a 2nd order polynomial is chosen as a 

regression model in the two dimensional case,  is written as )(xf

[ ]Txxxxxxxf 21
2
2

2
1211)( = .                                      (3) 

)(xZ  is a random function, which is assumed to have a zero mean, variance , and 

correlation  between 

2σ

),( xwR x  and any other point .  w

To describe the cost function with fidelity, Kriging weights are determined by 

minimizing the mean squared error of the predicted value .  The error between the 

predicted value and the actual value  at the location 

)(ˆ xy

)(xY x  is described as follows, 

β

ββ
TTT

TT
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where  and [ ] kmT
msfsfF ×ℜ∈= )(),...,( 1 [ ]TmzzZ ,...,1= .  are realizations of 

 and  is a realization of . To keep the predictor unbiased, we need to 

have 

mzz ,...,1

misZ i ,...,2,1),( = z )(xZ

0)()( =− xfxcF T                                                      (5) 

Under this condition, the mean squared error (MSE) of the predicted value is, 
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Because the random function  is assumed to have zero mean, variance  and 

correlation , it follows that

)(xZ 2σ
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is a correlation vector between the known sample points and an unexplored point, and 

is the correlation matrix between samples. Therefore the MSE becomes 
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The Lagrangian function is used to minimize [ ])(ˆ xyMSE  with respect to  and 

subject to the constraint (5). 

Txc )(

))()(()1)(2)()(()),(( 2 xfxcFrxcxRcxcxcL TTTT −−+−= λσλ            (8) 

where  is the Lagrange multiplier. By taking the gradient of this Lagrangian with 

respect to and setting the gradient to zero, we obtain the following results. 
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Inserting (10) into (1) we obtain, 
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As can be seen in equation (4),  depends on the kind of polynomial chosen. On the 

other hand, there are several correlation functions available in the MATLAB Kriging 

Toolbox. Here we used a cubic type function as follows. 
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where  and are the jth components of a known sample point  and the unexplored point ijs jx is

x , respectively.  

Now Tr  is the correlation between the known sample points and the unexplored point, 

and  can be described as: )(xr

T
m xsRxsRxr ]),,(),,([)( 1 θθ L= .                                  (12) 

In the same way, the element of matrix can be described as, mmR ×ℜ∈

.,...,1,     ),,,( mjissRR jiij == θ                                         (13) 

The optimal value θ  is determined by using a maximum likelihood estimation in 

each dimension so that 

}ˆ)({min 2
1

σθϕ
θ

mR≡ ,                                              (14) 

where R is the determinant of R, and 
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5. SOME OPTIMIZATION EXAMPLES 

5.1 Test functions 

To verify the proposed algorithm we used three simple functions as cost functions, 

which are defined as follows: 

2-D:  F(x1, x2) = 100 (x1 – x2
2)2 + (1 – x2)2,  where x1, x2∈[-2.048, 2.048]. 

10-D:  F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 – 0.1)2 + (x2 – 0.2)2 + 

(x3 – 0.3)2 + (x4 – 0.4)2 + 

(x5 – 0.5)2 + (x6 – 0.6)2 + 

(x7 – 0.7)2 + (x8 – 0.8)2 +  

(x9 – 0.9)2 + (x10 – 1.0)2.  

where xi∈[0,1],  i = 1,…10. 

20-D:  F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20) =  

                          (x1 – 0.05)2 + (x2 – 0.1)2  +  (x3 – 0.15)2 +   (x4 – 0.2)2 + 

                          (x5 – 0.25)2 + (x6 – 0.3)2  +  (x7 – 0.35)2  +  (x8 – 0.4)2 +  

                          (x9 – 0.45)2 + (x10 – 0.5)2 + (x11 – 0.55)2 +  (x12 – 0.6)2 + 

                          (x13 – 0.65)2 + (x14 – 0.7)2 + (x15 – 0.75)2 +  (x16 – 0.8)2 +  

                          (x17 – 0.85)2 + (x18 – 0.9)2 + (x19 – 0.95)2 +  (x20 – 1.0)2.   

where  xi∈[0,1],  i = 1,…20. 

 

The first one, called the Rosenbrock function, is known as a “tough” function for 

optimization algorithms even though its dimension is just 2. The global minimum of this 
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function is located at the bottom of wide spread flat valley. This characteristic makes 

optimization algorithms likely to get trapped at a local minimum [5].  The other two 

functions are used to show if the algorithm can handle multi-dimensional cases. All of these 

functions have only one global minimum. 

 

5.2 Results 

Figures 3 ~ 5 show the optimization results. The solid marks represent the proposed 

method. We tried the proposed method with four different versions of the DIRECT algorithm, 

DIRECT, DIRECTI, DIRECTII and DIRECTIII. Detailed definitions of these are given in 

Zhu [5]. The hollow marks represent the results using the various DIRECT algorithms. All of 

these figures show that all four versions of the DIRECT algorithm combined with Kriging 

model are faster than the corresponding versions of the DIRECT algorithm alone. We see the 

remarkable advantage in the 20-D case. The proposed method is 5 times faster than 

DIRECTIII, which is the fastest version of the DIRECT algorithms. 

6. SLIDER ABS DESIGN OPTIMIZATION 

6.1 Problem 

We chose the Information Storage Industry Consortium (INSIC) 7nm fly height Pico 

slider as the prototype slider (Pico refers to a certain set of overall dimensions of the slider).  

Its rail shape and constraint conditions are shown in Fig. 6.  

The optimization problem defined here is to optimize the rail shape so that the flying 

height is 5nm and the roll profile is as flat as possible across the disk.  

11 



6.2 Constraints and Weights 

We used relative constraints to reduce the dimension of the problem. These relative 

constraints are reasonable from a manufacturing point of view. The resulting number of 

design variables is eight.  

The disk rotation speed is 7600rpm. The air bearing simulations are performed at 

three radius positions designated OD, MD and ID. We want to find a design that predicts the 

target flying height, i.e. 5nm at all three radii.  

The weights of the cost function are chosen as, 

1(FH Max Difference term) + 9(FH term) + 1(Roll term) + 

1(Roll Cutoff term) + 1(Pitch Cutoff term) + 1(Vertical Sensitivity term) + 

1(Pitch Sensitivity term) + 1(Roll Sensitivity term) + 1(Negative Force term) . 

6.3 Results 

Figure 7 shows the convergence rate of the proposed method and the DIRECT 

method. The convergence rate of the combination of DIRECT and Kriging is faster than that 

of the combination of DIRECTIII and Kriging in the example optimization cases. However, 

in the slider optimization case, the convergence tendency is different. The combination of 

DIRECTIII and Kriging converged faster than the others and the combination of DIRECT 

and Kriging converged only slightly faster than DIRECTIII alone.  

7. DISCUSSION 

In the Figs 3 ~ 5, the DIRECT algorithms combined with the Kriging model show 

faster convergence rate than the DIRECT algorithms alone. And there are no remarkable 
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differences among these. The slight difference of the convergence speed was caused by the 

difference of the number of samples in an iteration.  

The Kriging model is a hyper-surface interpolated among the sample points. 

Therefore unexplored regions can be searched using the Kriging model without system 

analysis. Namely, a local-searching around a candidate region is done by using the Kriging 

model without fly height calculations. This is the main reason why the DIRECT algorithms 

combined with the Kriging model can get optimum designs faster than the DIRECT 

algorithms alone. However, the Kriging model does not have enough spatial resolution as the 

sample points generated by DIRECT algorithms. There is no way other than to wait until the 

DIRECT algorithm generates more samples to find a better design. We can see that the 

convergence rate suddenly improves after not improving after several iterations. It is 

conceivable that the DIRECT algorithms generated samples in the region where a better 

design might exist. By using these sample points the Kriging model could be formed with 

enough fidelity and a better design could be found without fly height calculations. 

Different from the test function, the result of the slider optimization shows that 

DIRECTIII combined with the Kriging model shows a faster convergence rate than the 

standard DIRECT combined with the Kriging model. The reason that the DIRECT algorithm 

combined with the Kriging model did not converge well is that the fidelity of the Kriging 

model after approximately 75 samples were generated was not good, and the Kriging model 

could not find a good optimum candidate. 
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8. SENSITIVITY OPTIMIZATION 

8.1 Cost function for sensitivity optimization 

Every dimension of the slider has some tolerance range. It is important to design a 

slider that is robust against the modulation of these dimensions. Even if the slider is designed 

with remarkably good characteristics at the nominal dimensions, it is not a feasible design if 

this characteristic degrades when the dimensions change within a tolerance range. Therefore 

it is very important to design a slider that is insensitive to slight modulations of the 

dimensions as well as being close to the target slider design 

Both DIRECT and the combination of DIRECT and Kriging search for the optimum 

design based on the cost function values. The smallest function value corresponds to the best 

design of the whole design set. However, as already mentioned, actual designers not only 

want the design whose function value is smallest but also the design that is robust against 

manufacturing error.  

The variation of the cost function caused by the fluctuation of the design variables 

does not represent directly the variation of the characteristics of the slider caused by 

manufacturing error. But we tried to minimize the sensitivity of the characteristics of the 

slider against the fluctuation of the design variables using worst-case analysis [9][10] for the 

first step.  A Modified cost function enables the algorithm to find the best design for actual 

designers. This cost function can be described as, 

 

)}(),(),({)( HXfXfHXfMaxXf orgorgorgnew +−= ,                               (16) 
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where X is the vector whose elements are the nominal design variables and H is the vector 

whose elements are the tolerance ranges. In this work, the tolerance ranges are the same 

across all dimensions. 

8.2 Test function 

To validate that this cost function works as expected we used the following test cost 

function (Fig. 8).  

( ) ( ){ } ( ) ( ){ } ]1,0[, ,
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      (17) 

The surface defined by this function has one local minimum, point A, and one global 

minimum, point B. The differential coefficient around point A (0.2, 0.2) is smaller than that 

around point B (0.8, 0.8). The cost function value around point B is slightly smaller than that 

of point A. It means that point B has the lowest function value, however, it is more sensitive 

to the modulation of the parameters than point A. Therefore, if the optimum point on this 

surface is sought without consideration of sensitivity, the optimization algorithm will find 

point B as the optimum.  

In Fig. 9, the modified cost function value is shown. The cost function value at the 

point A directly represents the value at point A. However, if the parameter modulates within 

the range ha, the cost function value should take the range of values between A+ ha or A- ha. 

Therefore, the cost function value at point A should be represented by the maximum value 

within the tolerance range ±ha.  
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8.3 Relation between tolerance range and optimum design 

Since the cost function value is represented by the maximum value within the 

tolerance range, the optimum design is strongly related to the tolerance range. Figure 10 

shows how the optimum design could change as the tolerance range changes. Figure 10(a) 

shows the relation of the cost function at points A and B with a wide tolerance range. Figure 

10(b) shows the case of a narrow tolerance range. In case of the wide tolerance range, the 

function value at point B becomes greater than that at point A because the differential 

coefficient around point B is greater than at point A. However, if the tolerance range is set 

smaller, point B could be the optimum design. Such inversion of the design could easily 

occur when the function values at the local minimum and global minimum are close. 

8.4 Optimization result 

Figure 11(a) shows the wide tolerance (5%) case and Fig. 11(b) shows the narrow 

tolerance (1%) case. In the wide tolerance case, the DIRECT algorithm can find the 

insensitive design. And in the narrow tolerance case, the point that has the lowest function 

value and wide differential coefficient becomes an optimum design, as intended. 

8.5 Summary 

By using a modified cost function value, the DIRECT algorithm can find an 

insensitive design. Because the surface used as a cost function has one local minimum and 

one global minimum, and these function values are close, the sensitive design could be an 

optimum design when the tolerance is small. High differential coefficients around the 

optimum design does not become a problem because the tolerance is narrow enough and the 
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maximum function value around this design within the tolerance range is low enough 

compared with the insensitive design.  

9. SUMMARY AND CONCLUSION 

(1) We combined the DIRECT algorithm and the Kriging model. This method 

enables us to find the global minimum with a reduced number of cost function 

evaluations. The DIRECTIII algorithm is the fastest version among the DIRECT 

algorithms, however, the combination of DIRECT and Kriging is faster than 

DIRECTIII. 

(2) We tried a worst-case analysis to find a robust design against the fluctuation of 

the design variables. By using it, we can get not only a low value of the cost 

function but also an insensitive design. However, because of the relation 

between the tolerance range and cost function value, the optimum design can 

change with tolerance. Namely, if a designer sets a narrow tolerance range the 

optimum design could be a sensitive one, but because the tolerance range is 

narrow, degradation of the slider’s performance characteristics does not occur. 

Even if a designer must accept the wide tolerance range, it may be possible to 

get a design whose cost function value is small enough and is also insensitive 

against the design parameter changes. 
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(a) 5 points                                                         (b) 53 points 

Fig. 2 Example of Kriging model for Branin function 

0 50 100 150 200 250 300 350 400

10
-4

10
-3

10
-2

10
-1

10
0

Number of samples

C
os
t 
fu
nc
tio
n 
va
lu
e

Rosenbrock 1stOrder Polynominal, CubicType, Cell insert by fval

DIRECT  alone
DIRECT  & Kriging Coupling
DIRECT1 alone
DIRECT1 & Kriging Coupling
DIRECT2 alone
DIRECT2 & Kriging Coupling
DIRECT3 alone
DIRECT3 & Kriging Coupling

 

C
os

t f
un

ct
io

n 
va

lu
e

Fig. 3 2-D case (Rosenbrock function) 
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Fig. 4 10-D case  
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Fig. 6 INSIC 7nm flying height slider and constraint
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