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Abstract 
An electrical contact resistance (ECR) theory is presented for conductive and rough (fractal) surfaces 

separated by a thin insulating film, which is treated as an energy barrier that impedes the current 

flow due to the electric-tunnel effect. The analysis yields insight into the effects of film properties, 

current flow, surface topography, mechanical properties, and contact load on the ECR. It is shown 

that the variation of the ECR with contact load is less pronounced than that observed in the absence 

of an insulating layer, due to the intrinsic voltage dependence of the tunnel resistance and the 

associated voltage compensation mechanism. The effect of the non-Ohmic behavior on the relations 

of the ECR with the contact load and the real contact area is discussed and results are compared with 

approximate analytical relations developed herein. The relation between the real contact area and the 

ECR depends on the current intensity and film properties and is independent of the surface 

topography and mechanical properties. Approaches for determining the surface roughness, 

mechanical properties, insulating film properties, and real contact area from ECR measurements are 

interpreted in light of the developed theory.  
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I. INTRODUCTION 

Thin insulating films formed at the contact interfaces of components consisting of conductive 

materials play an important role in the performance of various electromechanical devices,1-3 such as 

circuit breakers, connectors, relays, and switches. Significant advances in the development of 

reliable microrelays4 and microswitches5 that can be actuated electrostatically have been recorded 

recently. Although the contacting surfaces of these microdevices consist of structural polysilicon 

layers metallized with gold, there is a growing concern about the presence of contaminants and 

insulating films at contact interfaces that may greatly increase the ECR. For example, the formation 

of an insulating oxide layer on palladium, which is often used in small-size relays, has been reported 

to be the main cause for electrical contact deterioration.6 Thus, there is a great demand for new 

materials that can increase the device lifetime, while maintaining a low and stable contact resistance 

for a long period.7  

The high tunnel resistance due to an insulating thin film may degrade the performance of 

components produced with various bonding techniques, such as conductive adhesive joints,8,9 flip-

chip bonding and ball-grid array socket,10 and resistance spot welding.11 Moreover, the existence of 

native insulating oxides prevents the use of certain materials in joining applications.12 Despite the 

fact that in most applications a low ECR is desirable for better performance,13 there are also 

situations where a high ECR enhances the device lifetime.14 The strong effect of an insulating film 

on the ECR is beneficial in many applications, such as hydrogen detection,15 determination of the 

properties of surface oxides,16 and detection of film formation at sliding interfaces.17 Therefore, it is 

important to understand the role of a thin insulating film in ECR measurements. 

One of the early ECR models that takes into account the presence of a thin film adsorbed at the 

surfaces is attributed to Holm,18 who observed that the ECR is affected by both the constriction 
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resistance and the film resistance. A generalized ECR theory19 that uses fractal geometry for surface 

topography description,20 elastic-plastic deformation of the contacting asperities,21 and size-

dependent electrical constriction resistance of the microcontacts22 comprising the real contact area 

was recently developed for homogenous conductive surfaces. In general, theoretical predictions for 

homogenous conductive surfaces underestimate the measured ECR in the presence of thin insulating 

films at the surfaces.23 In a previous ECR study,24 a surface thin film was modeled as an ideal 

insulating material. However, when two surfaces are separated by a sufficiently thin insulating film, 

it is possible for current to flow due to the tunnel effect.25 A more recent ECR study that accounts for 

the presence of interfacial insulating thin layers26 was based on the general theory of the electric-

tunnel effect between similar electrodes separated by a thin insulating film.27 An equivalent electric 

circuit for the contact interface was proposed26 and the current intensity and voltage drop across the 

interface were found to be in good agreement with experimental results. However, although the 

equivalent electrical circuit proposed in Ref. 26 characterizes the global behavior at the contact 

interface, it does not account for the physical behavior of the microcontacts.   

Another shortcoming of a previous ECR model24 that was based on a detailed analysis at the asperity 

microcontact level is the use of a statistical approach to represent the surface topography.28 This 

approach is limited by the dependence of statistical roughness parameters on the sampling length and 

the resolution of the measuring instrument and, therefore, cannot yield unbiased information about 

the surface topography, which plays an important role in the ECR measurements. This deficiency 

can be overcome by using a fractal topography description that is based on scale-invariant 

parameters.29 Fractal geometry provides an effective means of modeling engineering surfaces 

exhibiting random, multi-scale topographies due to its intrinsic advantages of scale invariance and 

self-affinity.30 A fractal contact analysis that accounts for the elastic, elastic-plastic, and fully plastic 
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deformation of the asperity microcontacts at rough surfaces with fractal topography description was 

derived in a recent study.21    

Although the previous ECR studies have yielded valuable insight into the origins of the ECR, 

a general theory for conductive, elastic-plastic, and rough surfaces separated by a thin insulating film 

has not been developed yet. Thus, the main objective of this study was to produce a general ECR 

theory for conductive surfaces separated by a thin insulating film. The present ECR theory is based 

on fractal geometry for surface topography description,20 elastic, elastic-plastic, and fully plastic 

deformation of the asperity microcontacts,21 and quantum mechanics considerations for the electric-

tunnel effect through the thin insulating film.27 It is demonstrated that the constriction resistance is 

negligible with respect to the tunnel resistance. This means that the ECR behavior can be profoundly 

changed in the presence of an insulating thin film at the contact interface. Consequently, there is a 

marked difference with the theory derived for conductive rough surfaces,19 where the constriction 

resistance is the only mechanism that impairs the current flow.  

II. THEORETICAL TREATMENT 

A. Surface description 

Fractal geometry30 provides a means of overcoming limitations associated with the resolution 

of the instrument used to measure surface roughness parameters. Two important parameters in 

fractal topography description are the fractal roughness G and the fractal dimension D (2 < D < 3). 

The fractal roughness G is a height scaling parameter independent of frequency. A rougher surface is 

characterized by higher G values. The fractal dimension D determines the contribution of high- and 

low-frequency components in the surface profile. Hence, high values of D indicate that high-

frequency components are more dominant in the surface profile than low-frequency components. For 

fixed fractal roughness G, higher values of the fractal dimension D yield smoother topographies; 
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however, the amplitude ratio of high-to-low frequencies of the surface increases with D. Details 

about the characterization of the surface topography using fractal geometry can be found 

elsewhere19-21,29-31 and, therefore, are not repeated here for brevity.     

 

B. Mechanical contact model 

Contact of two rough surfaces [Fig. 1(a)] is equivalent to the contact of a smooth (flat) 

half-space with reduced elastic modulus ( ) ( )[ ] 1
2

2
21

2
1 /1/1 −

−+−= EEE νν , where ν1 , ν2 , and E1 , 

E2  are the Poisson's ratios and elastic moduli of the two surfaces, respectively, and a rigid 

rough surface with topography equivalent to those of the two rough surfaces32 [Fig. 1(b)]. For 

fractal surfaces, this implies that the power spectrum of the equivalent rough surface is equal 

to the sum of the power spectra of the two surfaces [Fig. 1(b)].31 The equivalent thickness t of 

an insulating film covering the surfaces is t = t1 + t2, where t1 and t2 denote the thickness of the 

film on each surface. For very thin films (i.e., <t  50 Å),16 where the electric-tunnel effect 

occurs, the contact mechanics of layered media is dominated by the mechanical properties of 

the substrate.21 Surface contact produces numerous circular asperity microcontacts [Fig. 1(b)], 

assumed to be sufficiently apart from each other in order for asperity interactions to be 

secondary. This assumption is reasonable for lightly loaded contacts where the real contact 

area A is a small fraction of the apparent contact area Aa.28 Based on these assumptions and 

the calculated mean contact pressure and contact area of the asperity microcontacts, the total 

contact load P and real contact area can be obtained using an integration procedure that 

accounts for the microcontact contributions to the previous contact parameters.20,21  

For the case of fully plastic deformation of all the microcontacts, an explicit relation between 

the real contact area and the contact load can be obtained because the mean contact pressure is equal 
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to the hardness of the softer surface H, assumed equal to cY, where Y is the yield strength and c is 

typically equal to 2.8.33 Hence, the following relation that is independent of surface topography is 

obtained34  

** )/( PHEA = ,                       (1) 

where the dimensionless real contact area and contact load are defined as A*=A/Aa and P*=P/(AaE), 

respectively.  

For the cases of elastic or fully plastic microcontact deformation, the total contact load 

and real contact area, determined analytically by integrating the contribution of the elastic and 

fully plastic microcontacts, are given by19 
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The dimensionless fractal roughness G* is defined as 2/1* / aAGG = , γ is a scaling parameter 

used in the fractal description of the surface topography (typically, γ = 1.5),20 and 'Sa  and 'La  

are the smallest and largest truncated microcontact areas, respectively.21 The critical 

truncated microcontact area 'ca  separating the elastic from the fully plastic deformation 

regime is given by19,20   
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where ( ) 2
1 ]2/41.0454.0[ νπ +=b , in which ν1  is the Poisson's ratio of the softer material. 

Microcontacts with truncated contact areas 'caa >′  and 'caa ≤′  are in the elastic and fully 

plastic deformation regimes, respectively.20 The above microcontact areas are normalized with 

respect to Aa and the dimensionless parameters are denoted by an asterisk. 

Relations for the mean contact pressure and contact area have been derived for a single 

asperity in the elastic, elastic-plastic, and fully plastic deformation regimes.21 However, 

because the constitutive relations for elastic-plastic deformation are more complex than those 

of the simpler elastic and fully plastic deformation,20 a numerical integration scheme was 

developed in order to calculate the total contact load and real contact area.21 Consequently, the 

total contact load and real contact area can be obtained as   

∑
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where )'( SaN  is the number of truncated asperities possessing areas greater than the smallest 

truncated contact area 'Sa . The contact load Fi and contact area ai of the ith microcontact are 

calculated using the appropriate constitutive relations.21 

C. Electrical contact resistance at a single microcontact 

The ECR at each microcontact Ri consists of the constriction resistance Rci due to the 

convergence and divergence of current flow18 and the tunnel resistance Rti due to the presence of an 

insulating film introducing a potential barrier that impedes the flow of electrons.27 An electrical 

analog of the total contact resistance due to the constriction resistance produced by the microcontacts 
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comprising the real contact area and the insulating film between the contacting surfaces is presented 

in Fig. 1(c). It has been shown19 that for lightly loaded surfaces, where the radius of each 

microcontact ri is smaller than the average electron mean-free path of the contacting surfaces, 

( ) 2/21 λλλ += , the constriction resistance is dominated by the Sharvin mechanism. According to 

this mechanism, the electrons travel through the microcontacts without undergoing any scattering, 

and the constriction resistance is given by35  

i
ci a

R λρ
= ,                                               (7) 

where ρ  is the average specific resistivity of the contacting surfaces, ( ) 2/21 ρρρ += . 

 For electrons to pass from one surface to the other in the presence of an insulating film they 

must have sufficient energy to surmount the barrier produced by the insulating film, i.e., they must 

enter the conduction band of the insulator, a process known as thermionic emission. According to 

classical physics, the electrons cannot penetrate through the barrier if the electron energy is less than 

the height of the interfacial barrier. However, according to quantum theory, a finite probability exists 

for the electrons to tunnel through the barrier, depending on the size and shape of the barrier 

encountered by the electrons. 

Simmons27 developed a formula for electric tunneling through a potential barrier of an 

arbitrary shape, existing in a thin insulating film that separates two similar electrodes. The formula 

was derived for a rectangular barrier including the image force. The effect of the image force is to 

reduce the area of the potential barrier by rounding off the corners of its distribution, thereby 

reducing the thickness of the barrier and, consequently, increase the current flow between the 

electrodes. The analysis presented in Ref. 27 is for low temperatures, where the thermal current can 

be neglected, thus restricting the electron transport between electrodes to the tunnel effect. However, 

it has been shown16 that the equations derived in Ref. 27 are also applicable at higher temperatures. 
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Consider a single microcontact of area ai [Fig. 1(b)] covered by a thin insulating film of thickness t, 

dielectric constant K, and energy height above the Fermi level of the conductive surfaces oϕ . The 

current intensity Ii through the microcontact and associated voltage drop Vi in three different voltage 

regimes are given by27 

( ) ( ) iiLLi aVSSI 2/12/110 025.1exp/1016.3 ϕϕ ∆−∆×= , for 0≅iV                             (8) 

where 
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where S1 and S2 are given by 
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and  
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The tunnel resistance Rti for 0≅iV  is derived from Eq. (8) as 
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Equation (11) shows that Rti is independent of the voltage or the current applied to the microcontact 

to measure the tunnel resistance and, therefore, is an Ohmic resistance. As can be seen from Eqs. (9) 

– (11), Rti is inversely proportional to ai and increases with t, K, and 0ϕ .27 

For a voltage drop across a microcontact Vi that is not very small,27 

( ) ( ) ( ) ( ){ } iiLiLLLi aVSVSSI ]025.1exp[025.1exp]/102.6[ 2/12/1210 +∆−+−∆−∆×= ϕϕϕϕ ,                 (12) 

where 
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( )[ ] ( )002 /62203/461 ϕϕ KKtVKttS i +−+−= , for 0ϕ<iV                       (15a) 

or 

( ) iKVKtS /2802 −= ϕ ,    for 0ϕ>iV .             (15b) 

As can be seen from Eq. (12) the relation between current and voltage is nonlinear. Therefore, it is 

not possible to derive an explicit relation for the tunnel resistance, such as that given by Eq. (11). 

Moreover, because Lϕ  and S∆  are functions of the voltage, the tunnel resistance is non-Ohmic and 

decreases with increasing voltage.27   

In Eqs. (8) – (15), and throughout this study, Ii is expressed in A, Vi and 0ϕ  in V, t, S1, and S2 

in Å, and ai (as well as all other areas) in cm2. 

III. APROXIMATE ANALYSIS 

To obtain insight into the contact electromechanics behavior, it is instructive to first consider 

the following analysis derived for the low-voltage regime ( 0≅iV ) and either elastic and fully plastic 

microcontacts or solely fully plastic microcontacts. Figure 1(c) shows that the constriction resistance 

and the tunnel resistance of a microcontact are in series. The ratio between the restriction resistance 

and the tunnel resistance in the low-voltage regime ( 0≅iV ) is obtained by dividing Eq. (7) by Eq. 

(11) 
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When Rci/Rti << 1, the constriction resistance can be neglected in favor of the tunnel resistance. The 

ratio Rci/Rti is examined for a conductive surface possessing a fairly high resistivity of 410−=ρ Ω cm 

and 6103 −×=λ cm, and a relatively low energy barrier with 10=t Å, 10 =ϕ  V, and 4=K . For this 

case, Eqs. (9), (10), and (16) yield 3107.2/ −×=tici RR , indicating that the constriction resistance can 

indeed be neglected as secondary; hence, the contact resistance at a microcontact is tii RR ≅ . This is 

a reasonable approximation for conductive surfaces separated by a thin insulating film, especially if 

the surfaces are very conductive and the energy barrier imposed by the insulating film is higher 

and/or wider. Equation (16) is valid when 0≅iV , i.e., when the tunnel resistance is Ohmic. For 

higher voltages, the tunnel resistance [Eqs. (12) – (15)] decreases with increasing voltage drop27 and, 

hence, the ratio Rci/Rti increases. As shown in Ref. 27, the tunnel resistance decreases by 

approximately an order of magnitude when the voltage increases from 0 to 1 V. However, despite 

this effect, the ratio Rci/Rti assumes values significantly less than one. 

As mentioned in Sec. IIB, the equivalent contact model of two rough surfaces consists of a 

smooth elastic-plastic medium in contact with a rigid rough surface. The corresponding real contact 

area is the summation of the discrete asperity microcontacts. The total ECR is assumed to be the sum 

of individual parallel resistances corresponding to the restriction resistances of individual 

microcontacts. 

The electrical conductivity Ci of a single microcontact in the low-voltage regime ( 0≅iV ) is 

obtained from Eq. (11) as 
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S
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Using an integration procedure for elastic and fully plastic microcontacts,19 the total electrical 

conductivity C is obtained as 
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where )'(an  is the size distribution function of truncated microcontacts,20 and the subscripts p and e 

denote plastic and elastic, respectively. The electrical conductivity of a single microcontact in the 

elastic and fully plastic deformation regimes, Cie and Cip, respectively, can be obtained by 

substituting the appropriate contact area relations20 into Eq. (17). After integration, Eq. (18) yields 
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The dimensionless electrical conductivity C* is defined as 
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and, thus, the dimensionless ECR can be expressed as 

( ) R
t

ACR a
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From Eqs. (4), (9), (10), (20), and (21) it can be seen that the dimensionless ECR depends on 

the fractal parameters D and G*, the mechanical properties E/Y and 1ν , the insulating film thickness t 

and properties K and 0ϕ , and the dimensionless smallest and largest truncated microcontact areas 

'*Sa  and '*La , respectively. For a continuum description, 'Sa  must be greater than the atomic 

dimensions, e.g., about six times the lattice dimension.21 For given surface roughness, mechanical 

properties, and insulating film properties, the only unknown parameter in Eq. (20) is '*La , which can 

be found implicitly from Eq. (2) as a function of the contact load P*. Substitution of the obtained 

value of '*La  into Eq. (3) yields the corresponding real contact area A*. Alternatively, the value of 



 38

'*La  obtained from ECR measurements and Eq. (20) can be substituted into Eq. (2) to estimate the 

corresponding contact load and, in turn, the adhesion force and adhesion energy. This approach was 

adopted in a recent theoretical treatment of adhesion of homogenous conductive surfaces.34 Because 

the determination of the real contact area as a function of contact load using Eqs. (2) and (3) 

involves the surface topography parameters D and G*, the analysis is applicable for static contact 

conditions. Estimation of the real contact area using the previous approach in the case of dynamic 

contacts can be accomplished by using the fractal parameters of the evolved (current) surface 

topography. This applies also to the alternative approach used to obtain the contact load as a function 

of the ECR from Eqs. (2), (20), and (21). 

Dividing Eq. (3) by Eq. (20) yields 
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In view of Eq. (22), the real contact area can be directly obtained from simple ECR measurements 

that are independent of the surface topography and mechanical properties of the contacting surfaces 

and the applied load, provided the voltage drop is very small. The relation between the real contact 

area and the ECR in the low-voltage regime [Eq. (22)] reveals a dependence only on the properties 

of the thin insulating film. This is expected due to the dependence of the ECR on the microcontact 

area and film properties [Eq. (11)]. Although Eq. (22) was derived for either elastic or fully plastic 

microcontacts, it is applicable to the entire deformation range because of the intrinsic relation 

between the contact area and the ECR existing at the single asperity level [Eq. (11)].  

 For the simple case of fully plastic microcontacts, an explicit relation between the ECR and 

the contact load that is independent of surface topography can be obtained for the low-voltage 

regime by using Eqs. (1) and (22), 
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Equation (23) can be used to determine the adhesion energy and adhesion force in dynamic contacts, 

where the surface topography may change during operation due to deformation of the asperity 

microcontacts, similar to the method proposed for homogenous conductive surfaces.34  

IV. NUMERICAL ANALYSIS 

To obtain a general theory, it is necessary to account for the elastic-plastic deformation of the 

asperity microcontacts21 and the voltage-dependence of the tunnel resistance [(Eqs. (12), (13), and 

(15)].27 However, the complex constitutive relations of the contact parameters in the elastic-plastic 

deformation regime and the non-Ohmic behavior of the tunnel resistance [Eqs. (12) – (15)], i.e., the 

dependence of the tunnel resistance of a microcontact on the voltage drop, inhibit the derivation of 

closed form solutions. Therefore, a numerical scheme21 was used to obtain results for the various 

contact parameters. The previous numerical scheme was updated in the present study to include an 

iterative procedure for the tunnel resistance. The procedure involves assuming an initial value of the 

voltage drop V across the contact interface [Fig. 1(c)] and because all the microcontacts are 

connected in parallel and Rci is negligible compared to Rti, this is also the value of the voltage drop Vi 

across each microcontact due to the tunnel effect. The current Ii that flows through each 

microcontact is then calculated according to the appropriate voltage range  [i.e., Eq. (8) or Eq. (12)]. 

Then, the total contact load and real contact area are obtained using Eqs. (5) and (6), respectively, 

and the total current I is calculated by 

∑
=

=
)'(

1

SaN

i
iII ,                                   (24) 

Subsequently, the calculated total current is compared with the applied current and the assumed 

value of the voltage drop is adjusted accordingly. This procedure is repeated until the variation of the 
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total current converges to a specified small tolerance value (e.g., 1%). Then, the total ECR is 

determined from the definition of the electrical resistance IVR /= .   

V. RESULTS AND DISCUSSION 

In this section, numerical results are presented for three-dimensional surfaces, generated 

using fractal geometry for 1=aA  �m2, 5.22 << D ,36 1710− m 1310−≤≤ G m (i.e., 7*11 1010 −− ≤≤ G ), 

1'=Sa nm2, and 2*4 1010 −− ≤≤ A , separated by a thin insulating film. The upper and lower limits of 

*A  are selected to yield a small average size of microcontacts relative to their average spacing in 

order for interaction effects to be secondary and extremely small real contact areas with 

unrealistically small number of asperity microcontacts do not occur. Thus, the curves shown in the 

following figures are bounded by the contact loads corresponding to 2* 10−=A  and 410− . Unless 

otherwise stated, the results presented below are for conductive surfaces with 3.2=D , 7* 10−=G , 

106/ =YE , and 3.01 =ν , insulating film with 10=t  Å, 6=K , and 20 =ϕ  eV, and applied current 

5=I  �A. 

Figure 2 shows the effect of fractal parameters and mechanical properties on the variation of 

the contact resistance R* with contact load P*. For given fractal parameters (i.e., fixed topography) 

and mechanical properties, the ECR decreases with increasing contact load due to the corresponding 

increase of the real contact area and the inverse dependence of the ECR on the real contact area [Eq. 

(22)]. Although for homogenous conductive surfaces the ECR decreases by about two orders of 

magnitude with the increase of the contact load,19 for conductive surfaces separated by an insulating 

thin film the ECR decreases by less than an order of magnitude over the same load range. This is due 

to the inherent non-Ohmic behavior in the presence of an insulating thin film, where the tunnel 

resistance of each microcontact increases with decreasing voltage drop across the microcontact.27 

Increasing the contact load results in a lower ECR, which for a fixed current flow I, yields a lower 
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voltage drop. This, in turn, increases the microcontact tunnel resistances, thus compensating the 

decrease of the total ECR. This phenomenon is observed in the following figures showing the ECR 

as a function of contact load and, hereafter, will be referred to as the voltage compensation 

mechanism. The fact that for a given contact load the ECR increases with the fractal roughness G* 

[Fig. 2(a)] is attributed to the smaller real contact area obtained with higher G* values (rougher 

surfaces). As discussed for isotropic conductive surfaces,19 Fig. 2(a) can be used to determine G* 

from simple measurements of R*, provided all other parameters are known. Also, the ratio t/2/1
0ϕ  

can be determined from Fig. 2(a), Eq. (21), the given load, and the measured ECR. The value of P* 

determined from the measured ECR can be used to evaluate the adhesion force and interfacial 

adhesion energy following the method for homogenous conductive surfaces described elsewhere.34 

The last two approaches can also be carried out by using any of the Figs. 2, 4, and 6 presented 

below. 

Figure 2(b) shows the variation of the ECR with contact load and fractal dimension. For a 

fixed load, increasing the fractal dimension causes the ECR to decrease. This is because larger D 

values correspond to smoother (denser) surface topographies producing larger real contact areas,19 

which decreases the ECR. The almost identical ECR results obtained for D = 2.1 and 2.2 are due to 

the very large critical truncated contact area 'ca  [Eq. (4)] obtained with such small values of D, 

resulting in fully plastic deformation of the majority of the microcontacts. In this case the relation 

between the ECR and the contact load is independent of the surface topography [Eq. (23)]. 

Therefore, the performance of electrical contacts operating in the fully plastic deformation regime is 

insensitive to the surface topography, which may exhibit variations depending on the fabrication 

process and/or the evolution of wear. As for Fig. 2(a), the results shown in Fig. 2(b) can be used to 

determine the fractal dimension D from the measured ECR and the applied contact load.  
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Figure 2(c) shows the effect of the mechanical properties of the contacting surfaces on the 

variation of the ECR with contact load. For a given dimensionless contact load, increasing E/Y 

decreases the ECR. Since the reduced elastic modulus affects both E/Y and P*, it is difficult to draw 

a general conclusion about the effect of the mechanical properties on the ECR. However, if the 

reduced elastic modulus is assumed to remain constant, the results shown in Fig. 2(c) can be used to 

obtain insight into the effect of the yield strength on the ECR. Because the mean contact pressure 

decreases with yield strength,21 a larger contact area is required to support a given contact load, 

resulting in a lower ECR. Figure 2(c) can also be used to determine the yield strength of the softer 

material or the reduced elastic modulus (through an iterative procedure19 necessitated by the 

dependence of E/Y and P* on E) from ECR measurements.   

As discussed in Ref. 19 for homogenous conductive surfaces, it is advantageous to obtain the 

real contact area in terms of the ECR because of the independence of this relation on the surface 

topography and mechanical properties. This is also the case for conductive surfaces separated by a 

thin insulating film, as can be deduced from Eq. (22) for the low-voltage regime ( 0≅iV ). Figure 3 

shows the real contact area as a function of the ECR for the entire range of fractal parameters and 

mechanical properties used to obtain the results shown in Fig. 2. The results were obtained by cross 

plotting data of *R  (shown in Fig. 2) and *A  (not shown here for brevity) obtained for the same 

contact load. It is interesting to note that all the data closely follow the same curve even for the 

general case of 0>iV . This implies that the surface topography and mechanical properties do not 

influence the dependence of A* on R*. This is of great importance in dynamic systems where surface 

deformation may change the topography. 

According to the approximate analysis (Sec. III), the relation between A* and R* [Eq. (22)] is 

a function of t, K, and 0ϕ  and is independent of surface topography, mechanical properties, and 
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contact load, in accord with the results shown in Fig. 3. However, significant differences exist 

between the results obtained from Eq. (22) and those shown in Fig. 3 due to the assumption of 

0≅iV  invoked in the approximate analysis. According to this analysis, the relation between A* and 

R* is independent of the current used to obtain the ECR measurements, while the accurate solution 

depends on the applied current through the voltage drop that affects S∆  and Lϕ  [Eqs. (13) and (15), 

respectively]. By curve fitting the numerical results shown in Fig. 3, the following empirical relation 

was obtained: 

( )*72* 1091.2exp1021.3 RA −− ×−×= .                   (25) 

The proportionality factor and exponent in Eq. (25) are both functions of t, K, 0ϕ , and the voltage 

drop across the interface V, i.e., the current I used in the ECR measurements.  

Figure 4 shows the effects of the dielectric constant, film thickness, and energy barrier height 

on the variation of the ECR with contact load. For a fixed contact load, the ECR decreases with K, t, 

and 0ϕ , because Rti decreases with these parameters (Sec. IIC). For a given current, a smaller ECR 

produces a smaller voltage drop across the interface, where the tunnel resistance is Ohmic and, 

therefore, independent of the voltage drop. This may explain the pronounced variation of the ECR 

with contact load in these cases, resembling the behavior of homogenous conductive surfaces 

possessing Ohmic behavior.19 The results shown in Fig. 4 can be used to determine the dielectric 

constant, thickness, and energy barrier height of the insulating film from ECR measurements. 

However, because the dimensionless ECR is also a function of t and 0ϕ  [Eq. (21)], an iterative 

procedure is required to determine these parameters. Hence, assuming an initial value of the 

unknown parameter (t or 0ϕ ), the dimensionless ECR can be calculated from the measured ECR 

using Eq. (21). Then Fig. 4(b) or Fig. 4(c) can be used to determine whether the dimensionless ECR 
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(based on the ECR measurements) coincides with the curve corresponding to the assumed value of 

the unknown parameter. This procedure can be repeated until eventually a convergence to a 

specified tolerance value is obtained.  

The dependence of the real contact area on the ECR is shown in Fig. 5 for the ranges of 

dielectric constant, film thickness, energy barrier height, and contact load used to obtain the results 

presented in Fig. 4. The results were obtained using the same method with that used to obtain the 

results shown in Fig. 3. As shown in Fig. 5, the relation of *A  versus R* depends on the insulating 

film properties. Equation (25) can be written in the general form 

( )** exp RA βα −= ,                                           (26) 

where α  and β  assume positive values that depend on K, t, 0ϕ , and the current I used in the 

ECR measurements. The values of α  and β  can be determined by curve fitting the numerical 

results obtained for the particular film properties, as shown in Fig. 5. The variation of the 

ECR with real contact area is more pronounced for smaller values of K, t, and 0ϕ , due to the 

absence of the voltage compensation mechanism in these cases (see discussion of Figs. 2 and 4). 

Therefore, greater accuracy in the determination of the real contact area based on ECR 

measurements is expected for surfaces covered by relatively thin insulating films possessing 

both low dielectric constant and energy barrier. As for Fig. 3, the results shown in Fig. 5 are 

independent of mechanical properties, fractal parameters, and contact load.  

Figure 6 shows the effect of the current used in the ECR measurements on the variation of 

the ECR with contact load. For a fixed contact load, the ECR decreases with increasing current 

because the tunnel resistance of a microcontact decreases with increasing voltage drop, as discussed 

in Sec. IIC. This implies that different applied currents may bias the ECR measurements due to the 

voltage compensation mechanism. Another consequence of this effect could be the inaccurate 
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estimation of the contact load. The results corresponding to 0≅I  (also shown in Fig. 7) were 

obtained from Eq. (11). For current equal to 0.1 �A, the results obtained by using the voltage-

dependent tunnel resistance relations [Eqs. (12) – (15)] are in good agreement with the approximate 

results corresponding to 0≅I . Relatively small differences occur at very light loads where the ECR 

assumes high values. In these light load cases, the high voltage drop invalidates the assumption 

0≅iV , even though the current is very low ( 1.0=I  �A). The results for 0≅I  and 1.0  �A were 

also found to be in good agreement with the approximate solution for fully plastic contacts [Eq. 

(23)], indicating the dominance of fully plastic microcontacts in lightly loaded contact interfaces. 

With such small currents, the ECR decreases by about two orders of magnitude due to the Ohmic 

behavior of the tunnel resistance [Eq. (11)], while for higher currents the decrease of the ECR is 

significantly less (for the same load range) due to the inherent dependence of the ECR on the voltage 

and the associated compensation mechanism. The results shown in Figs. 4 and 6 suggest that greater 

accuracy in the determination of the contact load from ECR measurements can be obtained for thin 

insulating films possessing both low dielectric constant and energy barrier and by applying a low 

current.  

The dependence of the real contact area on the ECR is shown in Fig. 7 for the entire range of 

electric current used to obtain the results presented in Fig. 6. The results were obtained with the 

same method used to obtain results shown in Fig. 3. It is noted that the relation between *A  and R* 

depends on the current used in the ECR measurements and follows Eq. (26). For current equal to or 

less than 0.1 �A, the results for the voltage-dependent tunnel resistance [Eqs. (12) – (15)] are in 

good agreement with the approximate results for the voltage-independent tunnel resistance, i.e., 

0≅I  [Eq. (11)], except for high ECR values, in agreement with Fig. 6. The results corresponding to 

0≅I  (and 1.0=I  �A for low ECR values) are also in good agreement with the approximate 
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solution for fully plastic contacts [Eq. (22)] (not shown here for clarity), confirming the dominance 

of fully plastic microcontacts in lightly loaded contacts. Figure 7 shows that it is advantageous to 

determine the real contact area from ECR measurements using low currents due to the more 

pronounced variation of the ECR with real contact area at lower currents, a consequence of the 

Ohmic behavior of the ECR at low voltages. 

 

VI. CONCLUSIONS 

 An ECR theory was introduced for conductive and rough (fractal) surfaces separated by a 

thin insulating film. Results illustrate the importance of an intervening film consisting of an 

insulating material, contact load, mechanical properties, surface topography, and current intensity in 

electrical contacts. The analysis accounts for current flow between the surfaces by electron tunneling 

through a rectangular energy barrier including image forces. Based on the presented results and 

discussion, the following main conclusions can be drawn. 

(1) The constriction resistance plays a secondary role compared to the tunnel resistance and, 

therefore, the ECR is dominated by the tunnel effect. 

(2) The ECR decreases with increasing contact load, fractal dimension D, and current flow, and 

decreasing fractal roughness G, film thickness, dielectric constant, and energy barrier height. 

(3) The variation of the ECR with contact load (or real contact area) is less pronounced than that 

observed in the absence of the insulating layer due to the intrinsic voltage dependence of the 

tunnel resistance (non-Ohmic behavior). For the same reason, this variation becomes less 

pronounced with the increase of the applied current.  
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(4) For contacting surfaces with small D values (i.e., D ≤  2.2) the majority of the microcontacts are 

in the fully plastic deformation regime and the ECR is independent of surface topography 

parameters.  

(5) For low currents (i.e., I ≤  0.1 �A), the numerical solutions for the ECR versus contact load and 

the real contact area versus ECR are in good agreement with closed-form analytical solutions 

obtained under the assumption of Ohmic contacts and fully plastic deformation of the 

microcontacts.  

(6) The relation between the real contact area and the ECR depends on the current, insulating film 

thickness, dielectric constant, and energy barrier height and is independent of the contact load 

and the surface topography and mechanical properties of the contacting surfaces.    
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List of Figures 

FIG. 1. (a) Rough surfaces in normal contact separated by an insulating thin film, (b) equivalent 

contact model, and (c) electrical analog of contact resistance.  

FIG. 2. Dimensionless electrical contact resistance R* versus dimensionless contact load *P  for 

contacting rough surfaces: (a) G* = 10-7, 10-9, and 10-11, D = 2.3, and E/Y = 106, (b) D = 2.1, 

2.2, 2.3, and 2.4, G* = 10-7, and E/Y = 106, and (c) E/Y = 106, 288, and 391, G* = 10-7, and 

D = 2.3 (K = 6, t = 10 Å, 0ϕ  = 2 eV, and I = 5 �A). 

FIG. 3. Dimensionless contact area *A  versus dimensionless electrical contact resistance R* for 

contacting rough surfaces with different mechanical properties and fractal parameters        

(K = 6, t = 10 Å, 0ϕ  = 2 eV, and I = 5 �A). 

FIG. 4. Dimensionless electrical contact resistance R* versus dimensionless contact load *P  for  

contacting rough surfaces: (a) K = 4, 6, and 8, t = 10 Å, and 0ϕ  = 2 eV, (b) t = 8, 10, and   

12 Å, K = 6, and 0ϕ  = 2 eV, and (c) 0ϕ  = 1, 2, and 3 eV, K = 6, and t = 10 Å (D = 2.3,           

G* = 10-7, E/Y = 106, and I = 5 �A). 

FIG. 5. Dimensionless contact area *A  versus dimensionless electrical contact resistance R* for 

contacting rough surfaces with various values of K, t, and 0ϕ  (D = 2.3, G* = 10-7,             

E/Y = 106, and I = 5 �A). 

FIG. 6. Dimensionless electrical contact resistance R* versus dimensionless contact load *P  for 

contacting rough surfaces and various values of applied current I (D = 2.3, G* = 10-7,     

E/Y = 106, K = 6, t = 10 Å, and 0ϕ  = 2 eV).  
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FIG. 7. Dimensionless contact area *A  versus dimensionless electrical contact resistance R* for    

contacting rough surfaces with different mechanical properties and fractal parameters, and 

various values of applied current I (K = 6, t = 10 Å, and 0ϕ  = 2 eV).  
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