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Abstract

This paper presents track-following control design, with a new sensitivity

shaping technique, for dual-stage servo systems in hard disk drives. The shap-

ing technique simultaneously takes care of both complexity of controllers and

robustness, important issues for controller implementation. As dual-stage servo

systems, in addition to the conventional voice coil motor, a microactuator at the

slider is adopted. Using these actuators, two types of feedback structures are to

be considered; one is the structure for the sensitivity decoupling method, and

the other is for the PQ method. After controller design, robust stability and

robust performance against parametric uncertainties are evaluated. The simu-

lation results show that, with the new shaping technique, nominal performance

of track-following can be improved without losing robust stability.

Key Words: Dual-stage servo system, sensitivity shaping, controller complex-

ity, robustness.
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1 Introduction

Track-following control of the magnetic head is of great importance in increasing

the track density in hard disk drives (HDDs) [1]. Traditionally, for the servo control

in HDDs, the voice coil motor (VCM) and the position error signal (PES) have

been used as an actuator and a feedback signal of the control system. However,

this structure has severe limitations on achievable tracking performance, especially

caused by the low sampling-rate of the PES [16] and mechanical resonance modes

of the actuator [4]. To push forward the limitations and to improve the tracking

performance, dual-stage servo systems, which utilizes a secondary actuator, have

been developed and intensively investigated; see e.g. [1, 6, 14]. Multi-sensing has

also been exploited for further performance improvement [4, 6].

With auxiliary information available, controller design for dual-stage servo sys-

tems is essentially a multivariable control problem, and there are roughly two kinds

of approaches to such design, i.e., an approach based on classical SISO control tech-

niques such as PID and lead-lag controllers [11, 5, 13], and an approach based on

modern robust control theories such as H∞ and µ controllers [2, 6]. The former

approach confines feedback structures so that the whole design can be divided into

a series of scalar control problems, while the latter approach directly solves the mul-

tivariable problem. In this paper, we take the former approach, but with a method

different from classical methods.

Mathematically, the performance of track-following in HDDs is evaluated in

terms of the RMS value of the PES against all the modeled exogenous signals (track

runout, measurement noises, windage, etc.). The RMS value has to be small for

good track-following. For robust track-following, that value should be small even

with the plant perturbation. In addition, this must be achieved without violating

the stability. Such robustness issues are critical to practical implementation since

the plant dynamics varies from disk to disk during batch fabrication. Including all
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these requirements at once makes the controller design quite complicated and hard

to solve. To make matters worse, the controller order is likely to become too high

to implement in HDDs.

In this paper, we propose an alternative design approach to solve the robust

track-following problem in HDDs. The design consists of two stages. In the first

stage, we design a “preliminary” controller by the conventional lead-lag compen-

sations. In the second stage, we modify the closed-loop performance given by this

controller. There are several modifications that can be considered. For example, we

can improve the nominal performance at the expense of less robust stability margin.

On the other hand, we can also enhance robust performance by sacrificing nominal

performance. For these modifications, we try to change the shape of the sensitivity

frequency response. This is reasonable since the sensitivity function captures, to a

large extent, essential properties of the closed-loop system, such as tracking, noise

rejection and robust stability. For the design in the second stage, we will employ

the shaping technique of the sensitivity frequency response, recently developed in

[7]. The controller order designed in the second stage is bounded by a certain order

similar to that of the plant used for the design.

This paper is organized as follows. In Section 2, a dual-stage servo system

considered in this paper is briefly explained. The system is the same as the one

treated in [3]. A robust track-following problem is also formulated in Section 2.

To solve this control problem, a novel technique to sensitivity shaping is utilized,

and it is reviewed in Section 3. Using the shaping technique, in Section 4, track-

following controllers are synthesized for the dual-stage servo system, that is the main

contribution of this paper. Two types of feedback structures are considered, that is,

the structures for the sensitivity decoupling method and for the PQ method. For

the designed controllers, nominal performance is computed, and robust stability and

robust performance are analyzed with respect to parametric uncertainties.

3



2 Dual-stage servo system

In this section, we will briefly explain the dual-stage servo system considered in this

paper. See [3] for complete descriptions of the system and the mathematical model.

The dual-stage servo system has two actuators, i.e., a voice coil motor and a sec-

ondary microactuator fabricated using MEMS techniques (MEMS microactuator).

After describing the dual-stage servo system, we will pose the robust track-following

control problem to be considered in this paper.

2.1 Voice coil motor

The first actuator to be used for track-following is a conventional one, i.e., the voice

coil motor (VCM). A mathematical model for the VCM, whose input is the current

in VCM and the output is the generated head motion, can be modeled as a sum of

seven resonance modes:

Gv(s) :=
6∑

k=0

Kvk
ω2

k

s2 + 2ζkωk + ω2
k

, (1)

where the nominal values of the parameters {(Kvk, ζk, ωk)}6
k=0 are shown in Table 1.

The Bode plot of Gv is depicted in Figure 1.

mode 0 1 2 3 4 5 6

ωk/2π (Hz) 60 5275 7400 9144 10698 13002 15197

ζk 0.5 0.015 0.015 0.015 0.015 0.015 0.015

Kvk 14000 -0.0024 -0.0102 -0.8400 -0.3000 -0.0360 0.0102

Table 1: Nominal values of parameters in the VCM model Gv.

There exist some resonance modes in Gv in the high frequency range. Further

increase of the servo bandwidth is thus limited by the presence of these modes. Fur-

thermore, they may be excited by airflow turbulence and are difficult to suppress
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Figure 1: Bode plots of Gv (left) and Ĝv (right).

due to the limited sampling rate of the PES. To solve this problem, an instrumented

suspension with PZT sensors attached on it is used. Using the signal from PZT sen-

sors, we design an inner-loop damping controller by means of the LQG technique; see

the control structure in Figure 2. The sampling frequency is assumed to be 50kHz.

The damped VCM plant is of order 18. We can reduce the order to 14 without

any significant change of the frequency response. We will denote this reduced-order

plant by Ĝv, and its input and output by uv and yv, respectively. In Section 4,

for the controller design, we shall use this reduced model Ĝv, while the robustness

analysis after the design will be done with the original (not reduced) model, taking

into account parametric uncertainties in ζk and ωk. The Bode plot of Ĝv is shown

in Figure 1.

2.2 Microactuator

As a secondary actuator, we will utilize a microactuator (MA) fabricated using

MEMS techniques, which is placed between the suspension tip and the slider and

actuates the slider relative to the suspension. Regarding the voltage to MA as an
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Figure 2: The structure of inner-loop damping control for VCM. GPZT is the trans-

fer function from the current uv to the PZT sensor output, and w is the airflow

turbulence.

input and the generated head motion as an output, a mathematical model of MA

can be expressed as

Gm(s) := Km
ω2

m

s2 + 2ζmωm + ω2
m

, (2)

where the nominal values of (Km, ζm, ωm) are shown in Table 2. The Bode plot of

Gm is shown in Figure 4.

mode MA

ωm/2π (Hz) 2250

ζm 0.2

Km 0.2

Table 2: Nominal values of parameters in the MA model Gm.

The resonance mode of MA is also undesirable for achieving high performance.

A damping controller is designed using pole-placement [3], and closed around the

MA, as shown in Figure 3. We denote the damped MA by Ĝm, whose Bode plot is

depicted in Figure 4. Again, the sampling frequency is set to 50kHz in the damping

design.
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Figure 4: Bode plots of Gm (left) and Ĝm (right).

2.3 Interconnection of VCM and MA

Using the damped VCM plant Ĝv and the damped MA plant Ĝm, we now intercon-

nect these plants to construct a dual-stage servo system for track-following control.

The interconnection depends on the type of MA, that is, on whether the MA is

rotational [15] or translational [8].

If we consider a rotational MA, the transfer function from uv to yh (head position)

is simply Ĝv, and is independent of MA; see the left figure in Figure 5. On the other

hand, if we consider a translational MA, the transfer function from uv to yh does

depend on some parameters in the MA. This dependence is shown in the right figure

7



of Figure 5, where

GmTr :=
s2

s2 + 2ξmωms + ω2
m

. (3)

Notice that taking GmTr = 0 in Figure 5 reduces the structure of the dual-stage

servo system with a translational MA to the one with a rotational MA. In the case

with a translational MA, we can simply write

yh = G̃vuv + Ĝmum, (4)

with an appropriate transfer function G̃v. We denote systems surrounded by dashed

lines in Figure 5 by GR and GT , where “R” and “T” stand for “Rotational” and

“Translational,” respectively.
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Figure 5: Dual-stage servo systems for track-following control in the case of a rota-

tional MA (left figure) and a translational MA (right figure).

In Figure 5, the PES is denoted by ypes, and the runout, denoted by r, is a signal

after a white noise has passed through a shaping filter

Wr(s) :=
200ω2

r

s2 + 1.6ωr + ω2
r

+
5000

s + 2ωr
, ωr := 300π. (5)

2.4 Robust track-following control problem

Now, using the dual-stage servo system constructed in the previous subsection, we

shall pose the robust track-following control problem to be tackled in Section 4 as
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follows.

Given the dual-stage servo system in Figure 5, design a controller whose inputs are

ypes and ym and outputs are uv and um, such that the closed-loop system maintains

stability even with uncertainties in Gv and Gm, and has a small RMS value of ypes

against all the disturbances (windage, measurement noise and runout). The RMS

value should not increase so much with perturbations of parameters in Gv and Gm.

This should be achieved with controllers of low order for implementation.

This is a multivariable control problem. There are generally two approaches to

the problem. One is to treat a multivariable problem as a series of scalar problems,

and the other is to directly solve the multivariable problem. In this paper, we take

the former approach in order to use a controller design technique recently developed

for scalar problems. In the next section, we will briefly review the technique which

will be used in Section 4. For complete expositions of the design technique, see [7].

3 Sensitivity shaping with degree constraint

Consider a feedback system in Figure 6. Here, G is a given scalar real rational

transfer function in discrete-time and C is a scalar controller to be designed. The

transfer function from r to y is called the sensitivity function, and given by

S :=
1

1 + GC
. (6)

Notice that designing C and designing S are equivalent. In our approach, we focus

on designing S, and after the design of S, we compute C := (1− S)/GS.

In this technique, it is assumed that a “desired” frequency response {sk}N
k=1 ⊂ C

is given at a finite number of frequencies {θk}N
k=1 ⊂ [0, π], and we try to find an S

which fits well to the desired frequency response. This curve fitting problem can be

depicted as in Figure 7. The distance between the desired frequency response and

an S is measured by a squares sum. Mathematically, we need to solve a nonlinear
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least-squares optimization problem:

min
S∈S

N∑

k=1

w2
k

∣∣∣S(eiθk)− sk

∣∣∣
2
,

where the scalars wk, k = 1, . . . , N , are frequency weights to be adjusted by the

designer. The domain S of the optimization problem is a set of sensitivity functions

stabilizing the feedback system and satisfying a certain degree constraint. By this

approach, we can search for appropriate controllers whose degrees are bounded by a

degree similar to deg G; see [7, Proposition 2.1]. Algorithms to solve the optimization

problem have been provided in [7], and a user-friendly interface in Matlab has been

developed.
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Figure 7: The frequency response of S (solid curve) and a desired frequency response

{sk}N
k=1 (circles) at frequencies {θk}N

k=1 (black dots on θ-axis).

4 Controller designs by sensitivity shaping

In this section, we shall apply the sensitivity shaping technique in the previous

section to robust track-following controller design for the dual-stage servo system
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presented in Section 2. Two types of feedback structures are considered, that is,

the structures for the sensitivity decoupling method and for the PQ method. In

both design, we down-sample the model of the dual-stage servo system presented in

Section 2 from 50kHz to 25kHz.

4.1 Sensitivity decoupling method

First, we will design track-following controllers using the feedback structure in Fig-

ure 8, where we consider a rotational MA. Control design using this structure is

called the sensitivity decoupling method, since the sensitivity function S from the

runout r to PES ypes can be decoupled as a product of two sensitivity functions:

S = SmSv, Sm :=
1

1 + ĜmCm

, Sv :=
1

1 + ĜvCv

. (7)

See also Figure 9 illustrating the transfer function from runout to PES. This struc-

ture simplifies the design of controllers Cv and Cm, since a multivariable controller

design problem can be transformed into two scalar problems, for which a number

of simple design techniques are available. We shall apply the sensitivity shaping

technique in Section 3 to the design of Cv and Cm.

Cv

Cm

-uv

-
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?

nPZT
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-
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ym

h

h- h?

-
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6
nm

Figure 8: A structure for the sensitivity decoupling design.

To obtain a desired sensitivity function, as “initial” controllers, we use con-

11



- h
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Figure 9: The transfer function from r to ypes.

trollers, with sampling frequency 25kHz, designed via a classical control technique:

C0
v =

0.01251z2 − 0.02437z + 0.01186
z2 − 1.668z + 0.6687

, C0
m =

27.56z − 17.21
z + 0.5715

. (8)

The corresponding sensitivity functions are denoted by S0
v and S0

m, respectively.

For the initial controllers above, the closed-loop performance has been examined.

Nominal performance, which is the RMS (or σ-) value of PES against all exogenous

signals (windage, noise and runout), is calculated as 6.6757. For robust stability , we

assume real parametric uncertainties in Gv (see (1)) and Gm (see (2)) as in Table 3.

Robust stability has been verified with µ-analysis [9]; see the µ-plot in Figure 10.

parameter
uncertainty (%)

of nominal values

Gv

ωk, k = 1, . . . , 6 8

ζk, k = 1, . . . , 6 20

Gm

ωm 12

ζm 25

Table 3: Parametric uncertainties in Gv and Gm.

Now, we modify the Bode plots of S0
v and S0

m, in order to improve nominal

performance without violating robust stability. To this end, we extract desired fre-

quency responses {sk}N
k=1 for both S0

v and S0
m, and modify them appropriately. The

Bode plots for the designed Sv, Sm and S are drawn in Figure 11, and the perfor-

mances are summarized in Table 4. Nominal performance and robust performance

12
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Figure 10: µ plot for parametric uncertainties (initial design).

have been improved by about 6% and 5.4%, respectively. Robust stability of the

closed-loop system is also maintained as shown in Figure 12. The controller degrees

are deg Cv = 15 and deg Cm = 5, which are much higher than the initial design, but

they are considered to be acceptable for implementation by means of digital signal

processors.

NP RP BW (Hz) LFG (dB) deg Cv deg Cm

initial design 6.6757 12.1916 2663.8 -84.25 2 1

final design 6.2740 11.5316 2344.2 -78.85 15 5

Table 4: Summary of performances: NP, RP, BW and LFG stand for nominal

performance and robust performance of the feedback system, and bandwidth and

low frequency gain of sensitivity functions, respectively.

4.2 PQ method

Next, for robust track-following controller design, we will combine the so-called PQ

method proposed in [12] with the sensitivity shaping technique in Section 3. The

13
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Figure 11: Bode plots of Sv (left-upper), Sm (right-upper) and S = SvSm (lower).

control structure is depicted in Figure 14, where we consider a translational MA.

In Figure 14, GT is given in (5). The transfer function from r to ypes is depicted

in Figure 15, where G̃v and Ĝm are given in (4). The controllers P and Q have

been designed by the PQ methods, avoiding the conflict of control between P and

Q; see [12]. The system G := G̃vQ + ĜmP , the part surrounded by the dashed line

in Figure 15, has become of order 25. With model reduction, we have reduced the

order of G to 15 without changing its frequency response so much.

Now, we design a controller C in Figure 14. The first attempt is a lead-lag

14
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2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

Frequency [Hz]

A
m
p
l
i
t
u
d
e

Robust Performance

Figure 13: Frequency dependent curves to compute RMS values. The means of

the areas below the curves are RMS values (log10-scaled). The dashed line is a

corresponding curve for nominal performance.

controller, C0, of order 6. The corresponding sensitivity function is

S0(z) :=
1

1 + G(z)C0(z)
, (9)

This controller gives the nominal performance (i.e., the RMS value of ypes) as 5.1589.

Robust stability against parametric uncertainties in Gv in (1) and Gm in (2), same

15



as in Table 3, has been verified by means of µ analysis [9]; see the µ plot in Figure 16.

Since robust stability is sufficiently satisfied by the lead-lag controller C0, we

may be able to improve the nominal performance without losing robust stability. To

this end, we shall modify slightly the frequency response of S0 using the sensitivity

shaping technique. The main idea in the design is to push forward the bandwidth,

with a care of not losing robust stability. By the design, we have obtained a controller

of order 16. The Bode plots of a designed sensitivity function S and the original

sensitivity function S0 are shown in Figure 17. Nominal performance is 4.5884,

about 11% better than the original design.

Now, for the obtained controller, we will study robust stability and robust per-

formance, assuming parametric uncertainties in Gv and Gm as in Table 3. For robust

stability, the µ plot is drawn in Figure 18, from which it can be verified that the

new design still maintains robust stability.

Next, we compute robust performance, which is the upper bound of RMS value

of ypes for the worst uncertainty combination. We use the result in [10] for the

computation, the result of which is provided in Figure 19. Robust performance is

the square root of the mean of the area below the curve in Figure 19, and is calculated

as 10.3803. Slightly larger robust performance than that of the initial design and
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Figure 14: A structure for the PQ design.
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Figure 16: µ plot for parametric uncertainties (initial design).

higher order of the controller are the prices that we pay for achieving smaller nominal

performance; see Table 5, where performances of the feedback system with each

controller are summarized.

NP RP BW (Hz) LFG (dB) deg C

initial design 5.1589 10.2859 14655 -81.2 6

final design 4.5884 10.3803 15649 -80.5 16

Table 5: Summary of performances.
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Figure 17: Bode plots of S (left figures) and T (right figures) for the final design

(solid) and the initial design (dashed).
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Figure 18: µ plot for parametric uncertainties.

5 Conclusions and discussions

In this paper, we have designed track-following controllers for dual-stage servo sys-

tems, using a recently developed technique for sensitivity shaping. Two types of con-

trol structures have been considered; one is for the sensitivity decoupling method
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corresponding curve for nominal performance.

and the other is for the PQ method. In both cases, we have demonstrated that,

by modifying the sensitivity frequency response with the new shaping technique,

we can improve nominal performance at a moderate cost of robust stability and

performance.

Currently, an overestimating runout model Wr is being used, leading to a con-

servative result. If we have a more exact/tight runout model, we can take more

advantage of the sensitivity shaping technique, especially to obtain a controller of

low degree. This can be done by the following procedure. First, we make an LQG

controller for the complete model. The LQG controller would be of high order be-

cause of the high complexity of the model. This controller gives the best achievable

nominal performance. Next, we use the sensitivity function as a reference sensi-

tivity function, and apply our sensitivity shaping technique, with a reduced-order

plant. Then, we can bound the degree of controllers, and still try to match the LQG

sensitivity, and consequently, to maintain good nominal performance.

In addition, the formulated track-following problem is originally a multivariable
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control problem. It would be an interesting topic to apply a multivariable sensitivity

shaping technique, which is under investigation, to this control problem directly.
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