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Abstract 

 
In modern computer disk drives, tolerances for flow-induced vibrations of the read-write 

head are getting smaller and smaller. For this reason, significant experimental and 

computational research is focused on studying the airflow turbulence in such disk drives. 

Three large eddy simulation models, the Smagorinsky model (Smagorinsky (1963)), the 

dynamic model (Germano et al (1991)), the localized dynamic model (Menon et al 

(1997)), and a direct simulation are used to simulate the airflow in hard disk drive 

enclosures with a single e-block arm as an obstruction. The objective of this work is to 

compare the performance of these large eddy simulation models and determine which 

model is best capable of representing the essential physics of the flow. Since very little 

experimental or direct numerical simulation (DNS) data is available, the scope of this 

work is limited to comparing LES with a direct simulation on the same grid, which 

cannot resolve up to the Kolmogorov scale. We provide comparisons in the total kinetic 

energy, the viscous dissipation at the rotating disks, the energy spectra and some 

turbulence statistics on the velocity and pressure. It is observed that the total kinetic 

energies of the simulations asymptote to the same level in spite of differences in the rate 

of energy input. This indicates that the different mechanisms of production and 

dissipation of kinetic energy compensate for each other. It is also observed that there is 

better correlation in turbulence statistics between the direct simulation, the dynamic 

model and the localized dynamic model, than with the Smagorinsky model. We find the 

Smagorinsky model is consistently over-diffusive and the direct simulation manifests 

excessive energy in the small scales. The consequences of this are observable in the 

deflection of the arm also. Although it is impossible from our data sets to state which, if 
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any, model generated the “true” behavior, we are able to highlight the important 

differences between them, which is expected to play a crucial role in the future numerical 

investigation of airflows in disk drives.  
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Introduction 
The air flow generated due to high speed rotating disks in modern computer disk 

drives is complicated and contains a range of attributes that require careful attention in a 

simulation. In today’s hard disk drives, there is a trend towards increasing disk rotation 

speeds and data track density. Current magnetic storage drives operate with speeds of 

rotation ranging from 7,200 rpm to 15,000 rpm. Unfortunately, the difficulties associated 

with positioning of read-write heads get compounded with increasing disk rotation 

speeds. In particular, flow induced vibration of flexible structures get amplified, leading 

to lesser accuracy in positioning the read-write head (which is flying on a hydrodynamic 

bearing). For this reason, there has recently been increased interest in both experimental 

and numerical investigation of the fluid dynamics of disk drives (Shimizu et al (2003), 

Tsuda et al (2003)). 

Large eddy simulation (LES) is an important technique for simulatinge turbulent 

flows. In LES the large scale motions of the flow are calculated, while the effect of the 

smaller universal scales (the so called sub-grid scales) are modeled using a sub-grid scale 

model. LES requires less computational effort than a direct numerical simulation (DNS) 

but more than Reynolds Averaged Navier Stokes (RANS) methods. Recent studies by the 

authors (Kirpekar et al (2004)) using the dynamic model to characterize the turbulence 

field in a disk drive have shown good agreement between experiment and simulation. 

This paper presents an in-depth comparison of LES models, with an emphasis on accurate 

simulation of airflows in disk drives.  

For disk rotation speeds of 10,000 rpm, the linear velocity U of the outer radius of 

a 3.5 inch disk is 46.54 m/s. Such high speeds generate high shear stresses at the disks, 

 5



causing large amounts of viscous dissipation. If the disk–to-disk spacing h is 3 mm, the 

Reynolds number based on the disk spacing, at standard atmospheric conditions (density 

ρ = 1.1614 kg/m3, dynamic viscosity µ = 1.864e-05 kg/m s), calculated by, 

µ
ρUh

=Re  
(1) 

is 8700. The shroud surrounding the rotating disks is also a cause of shear. As has been 

identified by others (Humphrey et al (1992)) the boundary layer regions immediately 

adjacent to the rotating disks and shroud are the regions where viscous dissipation is 

maximum. Typically the read-write heads in disk drives are attached to arms that form an 

obstruction to the flow. The flow field upstream of the arm (after one complete turn 

around), has a turbulence intensity of nearly 5-10%. Any change in the upstream 

turbulence will lead to changes in the pressure fluctuations at the e-block arm, 

corresponding to a different structural excitation. For this reason, it is important to model 

the turbulence dissipation (by subgrid transfer and by viscous action) correctly, i.e. the 

numerical differencing method and sub-grid scale turbulence model should be relatively 

free of artificial dissipation.  

The flow field is also characterized by separation and vortex shedding at the 

trailing edges of blunt bodies in the flow. This random unsteady shedding of vortices 

leads to random changes in circulation around these bodies, resulting in unsteady 

aerodynamic forces. The turbulence model should be able to capture the vortex shedding 

and the associated form drag.  

In modern computer simulations of disk drive enclosures very little attention is 

paid to the turbulence model used. This is often because, from a user’s perspective, the 

inclusion of a turbulence model in a fluid dynamics calculation can be done very easily in 
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commercially available CFD codes. On the other hand, there is very little experience in 

the use of LES models for disk drive airflow simulations. Usually the LES model is 

chosen indiscriminately, often resulting in less than accurate results. To build credibility 

into a set of results, it is customary to perform either a-priori or a-posteriori tests. In the 

former, experimental or DNS data can be filtered to observe the performance of the LES 

model and direct comparisons of the predicted SGS stresses can be made. In a-posteriori 

testing, statistics of computed LES solutions may be compared with those obtained by 

experiments or DNS. Unfortunately for flows in disk drives, limited experimental data 

Gross (2003) and no DNS data is currently available in the literature, which considerably 

limits the scope of this exploration. Therefore we are limited to comparing the 

performance of different LES models only, but this comparison leads to valuable insights 

about the behavior of these models. We are able to compare the flow fields using these 

different LES models and relate the properties of the field to the property of the model. 

Similar comparisons of LES models appear in other works, such as Vreman et al (1997) 

and Fureby et al (1997). Although these works deal with simple flows there is excellent 

qualitative agreement in the results. The authors believe this report presents the first such 

comparison applied to the complicated flows in disk drives. In this paper, we assume the 

reader is moderately familiar with the LES technique; for an introduction to the practice 

of LES, we refer the reader to Ferziger (1983), Ferziger (1996) and Roggalo et al (1984). 

 

Mathematical Formulation 
Turbulent flows consist of a wide range of length and time scales. The larger 

scales are more energetic than the smaller scales, and they are responsible for the 
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transport of conserved quantities. The smaller scales are universal, self similar and are 

unaware of the mean flow because such information is lost through the energy cascade 

procedure (Pope (2000)). Hence large eddy simulation uses a filtering approach to 

resolve only the larger scales of motion and uses a sub-grid scale (SGS) model to model 

the unresolved scales. For an incompressible flow, the filtered Navier Stokes equations 

are, 
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(3) 

where the over bar indicates the filtering operation1. The quantity jiji uuuu ≠  on 

the left side of Eqn. 3 is unknown and is replaced by ji uu . The difference between the 

terms is modeled by an approximation.  

( )jijiij uuuu −=τ  (4) 

Here ijτ  is called the sub-grid scale (SGS) stress, and it represents the interaction of the 

filtered field with the unresolved field. Different LES models seek to provide an 

approximation to the SGS stress term, either through an algebraic equation, or by the 

solution of a differential equation. 

 

The Smagorinsky model 
The Smagorinsky model is an algebraic SGS model based on the eddy viscosity 

hypothesis (gradient diffusion hypothesis) of Boussinesq (1877). The SGS stress is 

                                                 
1 Filtering involves convolving a quantity with a “filtering kernel” to produce the filtered variable.  
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related to the filtered strain rate through a single constant called the eddy viscosity, just as 

the shear stress is related to the strain rate linearly in a Newtonian fluid. If the filtered 

strain rate is defined as, 
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and the mean strain rate as,  

ijij SSS 2=  (6) 

the SGS stress (most often only the anisotropic part of the SGS stress) is given by,  

ijTij Sντ 2−= , (7) 

where the eddy viscosity Tν  is evaluated in a way similar to Prandtl’s mixing length 

hypothesis, 

SlmT
2=ν  

∆= sm Cl  

(8) 

(9) 

in which Cs is the Smagorinsky constant. This gives the final expression for the SGS 

stress as: 

ijsij SSC 222∆−=τ . (10) 

Thus the Smagorinsky model implies that the SGS stress tensor and the filtered strain rate 

tensor are aligned and can be related through a single constant Cs. We note that no 

explicit filtering is needed to implement the SGS model. In our code variable values on 

the grid are taken as filtered values, which implies the application of a box filter with a 

(variable) width equal to the cell size. Thus, it is not possible for us to determine an exact 

filter function to compare our results with DNS, as would be the case with any complex 

 9



geometrical simulations. We also note that the turbulence production term, which is the 

inner product of the SGS stress and the filtered strain, is negative definite implying that 

energy is being transferred from the large scales to the small scales. This is only 

qualitatively correct, and it does not allow reverse energy cascades or backscatter. By 

studying the behavior of the model in the inertial range, various authors have made 

predictions to estimate the constant Cs. Lilly (1967) first predicted a value of 0.17, others 

have predicted lower values ranging from 0.065 to 0.1. In our simulation we use Cs = 0.1, 

as predicted by Piomelli et al (1988). 

The dynamic model 
The dynamic model, originally due to Germano et al (1991), is also an algebraic 

SGS model. Here, in addition to the subgrid filtering, another filter called the subtest 

filter is applied to the flow field. Typically, the width of the subtest filter is chosen to be 

twice the width of the subgrid filter. Our code uses implicit filtering for the subgrid level, 

and explicit filtering using a top-hat filter (in all three directions) for the subtest level. We 

denote the subgrid filtering with a tilde and the subtest filtering with an overbar. Then, 

using the eddy viscosity hypothesis and a Smagorinsky-type model for the subgrid and 

subtest stresses, we obtain, 

ijjijiij SSCuuuu ~~~2~~ 2∆−=−=τ  

ijjijiij SSCuuuuT ~~~2~~ 2
∆−=−= , 

(11) 

(12) 

where we denote the subgrid scale stress by ijτ  and the subtest level stress by . Here 

we have replaced the Cs

ijT

2 (in Eqn. 10) by C to allow for the variation of sign. It is easy to 

see that the Leonard stress tensor defined by, 
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jijiijijij uuuuTL ~~~~ −=−= τ  (13) 

is a known quantity, and it can be used to evaluate the model constant. The Leonard 

stress tensor may also be written as, 

⎥⎦
⎤

⎢⎣
⎡ ∆−∆−= ijijij SSSSCL ~~~~~~2 2

2
. (14) 

This equation may be used to evaluate C, but a single constant C is needed from the 5 

independent components of the anisotropic part of L. To overcome this, Lilly (1992) 

minimized the error using a least square technique. This procedure, however, leads to 

numerical instabilities, hence most implementations average the coefficient in the 

homogenous direction, as proposed by Piomelli (1993). 

There are several advantages of using the dynamic model compared to the 

Smagorinsky model. Firstly, the model coefficient is neither prescribed nor remains 

constant, rather it is determined as a part of the solution. Secondly, the Leonard tensor is 

zero in laminar flow, giving the correct zero SGS stress. Thirdly, the model predicts a 

cubic behavior of the SGS stress near the wall, which agrees well with experimental 

results. Also, the model can do away with ad hoc modifications to the SGS near the wall, 

as is commonly done in the Smagorinsky model. Lastly, the model constant C can take 

negative values, and hence the model can account for energy transfer in both directions.   

The localized dynamic model 
The localized dynamic model first proposed by Kim et al (1995) is a one-equation 

SGS model based on a method of first solving a transport equation for the subgrid scale 

kinetic energy k. 
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The three terms on the right hand side of Eqn. 16 represent the production, dissipation 

and transport of SGS kinetic energy. Here, the SGS stress is modeled using the eddy 

viscosity hypothesis, the eddy viscosity is modeled using the SGS kinetic energy and 

dissipation is also modeled using the SGS kinetic energy on dimensional grounds. This 

procedure is similar to that used in the one-equation Reynolds Averaged methods. 

ijTij Sντ 2−=   

∆= 2/1kcT νν   

∆
=

2/1kcεε  
 

in which the model constants  and  are evaluated by applying the dynamic modeling 

method (as described above) to the kinetic energy equation. 

νc εc

This SGS model removes the mathematical inconsistency of the algebraic 

dynamic model (having to approximate one constant from five equations), and because 

the model computes the evolution of SGS kinetic energy, it is capable of capturing non-

local and history effects of the turbulence. This is the central advantage of the model over 

other algebraic models. 

Test case used for comparison 
For this work we used a computational model consisting of 2 disks, rotating at 

10,000 rpm, separated from each other by a gap of 3 mm. A top view of the 
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computational volume is shown in Figure 1. The gap between the disk outer edge and the 

enclosing wall (shroud) is 1 mm. A single obstruction in the form of an e-block arm was 

used. The thickness of the arm is 1 mm, and it was placed symmetrically at the midplane 

between the disks. The horizontal boundary surfaces of the computational volume at the 

top and bottom (except the rotating disks), were modeled as an inviscid wall (symmetry 

plane boundary conditions). The structure was fixed at its back face and thus modeled as 

a cantilever. Each simulation was started from the same initial conditions, which were 

obtained from a steady state k-epsilon solution of the average flow. 

An unstructured grid, with quadrilateral dominant cells (90% quadrilateral 

elements, 10% triangular elements) was used. The total number of cells was 245,745, the 

smallest volume was 6.13e-12 m3 and the largest volume was 5.41e-10 m3. A 

representative grid size of 0.408 mm may be calculated by averaging over all the control 

volumes as, 
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(17) 

It is important to compare our grid size with the Kolmogorov scale and the Taylor 

micro-scale. The Kolmogorov scale gives an estimate of the length scale at which 

dissipation takes place. Ideally, direct numerical simulations resolve the Kolmogorov 

scale and require no artificial SGS-type dissipation. Using the k-ε  method we are able to 

approximate the dissipation,ε , in our computational volume. Dissipation is obviously a 

function of position, but when averaged over the entire domain, it is found to be 

approximately 9.78 x 104.  We note that this value is in good agreement with the 
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dissipation predicted by the large eddy simulations (see Table 2). The upper bound on 

dissipation was 5.64 x 105. 

We used this average estimate of dissipation to approximate the Kolmogorov 

length scale, and the velocity and time scales, 
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This calculation indicates that our grid size is one order larger than what is needed 

to resolve the Kolmogorov scale. Hence the direct simulation cannot represent all of the 

dissipating motions, and therefore we should observe a build up of excessive small 

scales. This prediction is later confirmed. 

Another method to estimate a length scale is the Taylor’s microscale,λ . Although 

it does not have a clear physical meaning (Pope (2000)), the Taylor scale may be used as 

an estimate of intermediate size eddies (at sufficiently high Reynolds numbers). For 

calculating the Taylor scale, the size of the largest eddies (L) is taken as the separation 

distance between the disks, i.e. 3 mm. To approximate the velocity scale of the largest 

eddies, we use 5% of the disk linear velocity, to obtain, 

( ) mm  0.455Re10 2/1 == −
LLλ  (21) 
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This calculation shows that our grid resolution is sufficient to resolve the Taylor 

scale. There is excellent agreement of the above length, time and velocity scales with the  

recent work of Kazemi (2005).   

Our study uses a commercial finite volume based code (ESI Software) that uses 

the SIMPLEC method for solving the Navier Stokes equations. At every time step it 

integrates the pressure and shear stress on the e-block arm to determine the resultant 

loading. This is used to determine the dynamic response of the e-block arm as the 

calculation progresses. Thus a coupled fluid-structure problem is solved. No information 

about the displacements of the arm (typically less than 10 nanometers) is fed back to the 

flow solver.  

We used second order central differencing in our calculations, with the intention 

of avoiding the well known dissipative errors of upwind-based methods (Mittal et al 

(1997)). A time step of 2e-05 was chosen, which allows us to resolve a frequency range 

up to 25 kHz, which is the range of the essential physics. Implicit Euler’s method was 

used for time advancement.  

In order to compare the results from different turbulence models we used the 

same grid in each simulation. Each simulation was integrated for 2400 time steps, which 

at 10,000 rpm, corresponds to 8 revolutions of the disks. A conjugate gradient method 

was used to solve the elliptic Poisson equation for pressure (in the SIMPLE procedure) in 

all the simulations, and the over-relaxation parameters for each dependant variable 

(which control the speed of convergence) were the same.  
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Results and Discussion 

Kinetic energy 
We define the resolved kinetic energy as, 

iif uuE
2
1

=  
(22) 

and a conservation equation for this quantity may be easily derived as: 
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When integrated over the entire volume, the second term on the left hand side of 

Eqn. 23 should be zero. Numerically, however, this term is not zero, and its value is a 

measure of the numerical dissipation of the simulation. The first term on the right of Eqn. 

23 is the viscous dissipation (which is always negative by the second law of 

thermodynamics) and the second term is the loss of kinetic energy to the residual scales 

(i.e. production of residual kinetic energy k). This term is always negative for the 

Smagorinsky model, but it can change sign in the other two models. A positive SGS 

dissipation term implies the backscatter of energy from small scales to large ones. Direct 

simulations that do not calculate the SGS stress tensor ijτ  have zero SGS dissipation. 

Finally, the last term on the right hand side, W, is a source term for the kinetic energy, 

which represents the work done by the rotating disks on the fluid volume. This rate of 

energy input is equal to the power loss at the disks, which we refer to as windage.  

Windage 
There is no general agreement on the definition of the term “windage”. Some 

authors (Tsuda et al (2003)) use the term to imply the disk power loss (in watts), while 

others use it more generally to refer to “the fluctuating aerodynamic force” (Shimizu et al 
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(2003)) and some others (Hirono et al (2004)) use “windage” to refer to the flow-induced 

displacements of the arm. We prefer to use windage to refer strictly to the power loss at 

the rotating disks due to viscous action. This quantity may be calculated (for each disk) 

using the expression 

drrW
R

z
2

0

2 ∫= φτπω  
(24) 

where W is the windage, ω  is the angular velocity of the disk, φτ z  is the component of 

the shear stress tensor with the associated force that produces a resultant viscous torque, 

and R is the disk outer radius. 

Discussion 
Plotted in Figure 2 is the resolved kinetic energy integrated over the entire 

volume, and Figure 3 shows the windage. A legend for all of the plots in this paper is 

given in Table 1. We note that there is very little difference in the global kinetic energy 

between the different turbulence models. This implies that the main features of the 

resolved flow are reasonably independent of the SGS model. This is in good agreement 

with Fureby et al (1997). However, the direct simulation predicts approximately 1-5% 

lesser kinetic energy. On the other hand, as seen in Figure 3, the energy input into the 

system (i.e. the windage) is about 20% more for the dynamic model and localized 

dynamic model, and about 15% more for the Smagorinsky model, as compared to the 

direct simulation. This indicates that there are significant differences in the energy 

transfer mechanisms of these simulations. Clearly, the direct simulation has the least 

amount of energy input from the disks (W), but it exhibits kinetic energy comparable to 

the LES simulations. This is because the direct simulation lacks a mechanism to transfer 
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energy to the unresolved scales ( ijτ  is zero) which leads to the accumulation of too many 

small resolved scales. On the other hand, there is less than 1% difference in the kinetic 

energy between the dynamic model, the localized dynamic model and the Smagorinsky 

model, but an approximate 5% difference in their energy input rates. This indicates that 

although the Smagorinsky model has lesser energy input per unit time, it bears almost the 

same kinetic energy as the dynamic model. More insight into this discrepancy can be 

obtained by considering the way each model resolves the wall layer. 

For practical considerations the first grid point from the wall in our simulations 

was maintained at 8 < y+ < 20. This ensures that the first grid point is between the viscous 

sublayer and the inertial sublayer. In our code the Smagorinsky constant is damped near 

the wall using the well known van Driest damping function (van Driest (1956)). 

)1( A
y

ss eCC
+

−= , 
(25) 

where A is taken to be 26, as customary. The dynamic models do not use any damping 

functions and are known to display the correct asymptotic behavior at the wall (Germano 

et al (1991)). This indicates that the Smagorinsky model’s wall functions (which have no 

physical grounds, and are implemented only to agree with experimental results) are 

inaccurate in representing the velocity field close to the disks (hence the shear stress at 

the disks, and correspondingly the windage). Thus more confidence may be placed in the 

results due to the dynamic models, and we conclude that the Smagorinsky model is not 

accurate in representing the energy flow into the system, and this may have serious 

consequences on the physics of the flow. 

Finally, we observe that the global kinetic energy of all simulations asymptote to 

the same value, which indicates that our simulations have a tendency to equilibrate to the 
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same energy level although there exist differences between the amount of energy inputted 

per unit time. This is a surprising result, and it suggests that different energy production 

(windage) and dissipation (SGS dissipation, viscous dissipation and numerical 

dissipation) mechanisms have compensated each other. For this reason, the physics of 

these flows are reasonably similar in the mean.  

Mean and RMS fluctuations of azimuthal velocity and pressure 
The azimuthal and radial velocities can be decomposed into their mean and 

fluctuating components. Turbulence intensity is a non-dimensional quantity representing 

the ratio of the root mean square (rms) of the fluctuation to the mean flow speed. We 

calculate the mean and rms components of the azimuthal velocity, starting the averaging 

at 2 revolutions and ending it at 8 revolutions of the disk, i.e. averaging over 6 

revolutions, or 1800 time steps. 

We plot these turbulence statistics along four radial chords in the flow domain, 

each of them located midway between the disks (see Figure 4). The chord 1 lies in the 

turbulent wake formed behind the arm, and the chords 2, 3 and 4 are at successively 

increasing angular positions along the direction of rotation of the disk. Mean flows are 

plotted for each chord in Figure 5-8. RMS values of fluctuations are plotted in Figure 9-

12. Finally, the ratio of the two, i.e. turbulence intensity is plotted in Figure 13-16. To 

generate these figures, we used data at 10 points (12 points for chord 1) along the chord 

and a shape preserving spline interpolant was fit through the points. For all chords, zero 

represents the inner boundary at the hub, and one represents the other boundary at the 

shroud. 
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We note that the regions close to the disk hub in Figure 16 representing chord 4 

should be neglected from this analysis. The mean flow speed is small near the hub (often 

the flow reverses direction) resulting in large turbulence intensity (which is calculated 

using the mean flow in the denominator). Such turbulence intensity values (of the order 

of 100%) are unphysical. 

For chord 1 we see that there is better agreement in the mean velocities and the 

rms fluctuations predicted by the direct simulation and the dynamic models, than with 

those predicted by the Smagorinsky model. We observe that the Smagorinsky model 

predicts significantly smaller fluctuations, which is an indication of its diffusive nature. 

The same observations apply to chords #2, 3 while at chord #4 the difference 

between the mean velocities predicted by the models becomes insignificant. From all the 

figures illustrating the rms fluctuations of velocity we can conclude that the Smagorinsky 

model has a tendency to predict lower fluctuations than the other turbulence models. This 

is evidence of the well known fact that the Smagorinsky model is overly diffusive and 

delays the transition of laminar to turbulent flow. 

The above analysis is also consistent with our global kinetic energy diagram in 

Figure 2. The smaller fluctuations of the Smagorinsky model do not affect the total 

kinetic energy too much – fluctuations which are 5% of the mean contribute only 0.25% 

to the total kinetic energy. 

Finally, plotted in Figure 17-20 are the mean pressures along the chords 1-4 and 

in Figure 21-24 the rms values of pressure fluctuation are plotted along chords 1-4. Very 

little variation in the mean pressure is consistently observable. Also, the Smagorinsky 

model shows smaller fluctuations in the wake (chord 1), and the direct simulation shows 
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larger fluctuations in the other three locations (chords 2, 3 and 4). This has an effect on 

the vibrations of the e-block arm, as will be discussed subsequently. 

Energy Spectra 
The spectrum of kinetic energy is useful in demonstrating the distribution of 

energy among the various scales of motion. For flows with simple geometries and/or 

periodic domains, obtaining a kinetic energy spectrum is straightforward. However, in 

our test case, the turbulence is inhomogeneous, and the mean flow is hard to define. In 

general, the problem does not lend itself to theoretical analysis. To obtain a turbulence 

spectrum we measure the azimuthal velocity at a particular point in the domain as a 

function of time. Using Taylor’s frozen field hypothesis2, we convert this time history to 

a spatial history, and use this data to obtain a (one dimensional, scalar) spatial auto-

correlation function, 

)()()( 00 xxuxuxR += θθ  (26) 

where the brackets indicate averaging over all . The Fourier transform of this function 

represents the one dimensional kinetic energy spectrum as a function of wavenumber (k). 

To the authors’ knowledge, this is the first instance where a turbulence spectrum of the 

airflow in a disk drive has been studied, and it provides valuable confirmation of the 

existence of an inertial cascade. 

0x

According to Kolmogorov’s law of universal equilibrium the energy spectrum 

E(k) should scale as, 

                                                 
2 Taylor’s hypothesis is based on the assumption that the time scale of turbulent evolution is much slower 
than the time scale of the mean flow. This is valid if the fluctuations are comparably smaller than the mean 
flow. We can then assume that the turbulent field is “frozen” and is simply advected by the mean flow. In 
this analysis, we ensure that the standard deviation of the velocity is not more than 10% of the mean. The 
error in the kinetic energy spectrum associated with such an approximation is not easy to quantify. 
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(27) 

where C is a constant of order unity, ε  is the dissipation rate (rate of energy transfer 

through the cascade process) and k is the wavenumber. In our case the dissipation ε  

(which traditionally has units of [length2/time3]) may be taken to be the windage per unit 

mass. It is hypothesized to be independent of wavenumber k, hence we use the average 

value of windage for estimatingε . These values of ε  are in good agreement with our 

preliminary k-ε  calculation. The values of ε  calculated by different SGS models are 

listed in table 2. 

Figure 25 shows the kinetic energy spectra obtained using the different models. 

These have been constructed by using velocity data at a single point in the wake of the 

arm. Spectra based velocity data at other points in the drive do not show significant 

differences from those in Figure 25. Firstly, all spectra show rough agreement with the -

5/3rd law (see thick line in Figure 25) demonstrating the existence of an inertial sub-

range. We observe that the Smagorinsky model curve drops off faster than those of the 

dynamic model and the localized dynamic model indicating the dissipation of energy at 

higher wavenumbers. Also, the energy spectrum corresponding to the direct simulation 

contains the most energy at high wavenumbers, indicating that there is an excessive build 

up of small scales due to the lack of an SGS model.  

Theoretically, a more logical comparison can be made between LES and DNS 

energy spectra. If the filter function is known in wavenumber space an LES spectrum 

may be divided by the square of this function, to obtain the equivalent “unfiltered” 

spectrum. In our simulations, however, the top-hat filter is anisotropic and 
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inhomogeneous in all three directions. The use of a one dimensional function to represent 

such a filter is not accurate and hence we refrain from making such a comparison. 

There is also very little difference in the spectra predicted by the localized 

dynamic model and the dynamic model. The localized dynamic model has the advantage 

of computing a transport equation for SGS-k, which should include non-local and history 

effects. However, on a sufficiently fine grid such as ours the assumption of equality 

between production and dissipation appears to be valid, and very little difference is 

observed in the flow fields of the dynamic model and the localized dynamic model. 

Finally, we observe that there is significant variation in the model coefficients both in 

space and time, for the dynamic model (C) and the localized dynamic model (  and ). 

The Smagorinsky model is unable to capture this local variation. However, this spatial 

and temporal variation cannot be interpreted easily; hence we refrain from plotting it. 

νc εc

Vibrations 
Often the off-track vibrations of the e-block arm or the slider are the most desired 

results of such a coupled fluid-structure simulation. Hence we compare the vibrations 

predicted by the simulations. The off track vibrations of the tip of the e-block arm are 

plotted in Figure 26 as a function of time. The mean and peak-to-peak amplitudes of 

vibrations are given in Table 3. The mean is calculated by averaging over the final 6 

revolutions of the disk, and the peak-to-peak is defined as the difference between the 

maximum and minimum deflection during this period. We observe that the Smagorinsky 

model, which predicts a slightly higher mean displacement also predicts the least peak to 

peak oscillations. Clearly, this is a direct result of the reduced pressure fluctuations. On 

the other hand, the direct simulation, due to its excessive fluctuations, records a smaller 
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mean displacement and larger peak-to-peak oscillations. Although the difference in 

vibration values predicted by the simulations are small (less than 1 nm), we note that 

these trends will get amplified several times when more realistic structures such as 

suspensions and sliders are included in the simulation and the sliders off-track vibrations 

are compared. 

Figure 27 shows the frequency spectra of the off-track vibrations shown in Figure 

26. In all 4 cases we see the same modes (which correspond to sway and torsion) are 

excited in the structure. (Peaks are observed at 6.6 kHz, 7.5 kHz, 10 kHz, 1.12 kHz and 

1.195 kHz.)  

Comparison of computational cost 
Large eddy simulations of disk drive airflows need to be computed until the 

turbulence field achieves a statistically steady state and sufficient time has elapsed for the 

important modes of the structure to be excited. This typically requires that the 

computations be carried out for 6-10 revolutions of the drive. Additionally the dynamics 

of interest lies in the 0-25 kHz range, which limits the size of the time step. As a result, 

such calculations take a substantial length of time on desktop workstations, ranging from 

a couple of weeks to more than a month. In this context, the cost of each turbulence 

model becomes important. In Table 4 we compare the normalized cost per time step of 

each turbulence model with a Navier Stokes solution on the same grid. This data has been 

obtained on a desktop Pentium 4 computer running at 3.2 GHz with 2 GB of RAM. The 

dynamic model is 33% more expensive than the Smagorinsky model and the localized 

dynamic model is 25% more expensive than the dynamic model.  

 

 24



Conclusions 
 
The study of large eddy simulation SGS models is of considerable interest to the future 

research in airflow simulations in disk drives. We have presented an investigation of 

three SGS models, under the limitations of a commercial CFD code. These models occur 

almost invariably in popular CFD software and their inclusion in a calculation is very 

easy. We provide a posteriori   tests of the Smagorinsky model, the dynamic model and 

the localized dynamic model. By examining various turbulence statistics and measures 

like the kinetic energy and the energy spectrum, we are able to draw useful conclusions 

about the performance of each model. 

We conclude that the Smagorinsky model does not correlate well with the direct 

simulations in terms of mean and fluctuating velocities and pressures. We see a better 

correlation between the dynamic model, the localized dynamic model and the direct 

simulation. We also observe that there is very little difference between the results 

predicted by the dynamic model and the localized dynamic model. The Smagorinsky 

model has a tendency to predict the highest dissipation at small scales, and this leads to 

smaller fluctuations in velocity and pressure. This extra dissipation leads to smaller peak-

to-peak oscillations of the e-block arm, and we anticipate that the errors in vibration 

results of the structure would be amplified by the addition of slender and more flexible 

structures like the suspension and the slider. The direct simulation does not resolve up to 

the Kolmogorov scale, and hence it lacks a mechanism to dissipate energy, which would 

have ideally taken place at the Kolmogorov scale. This leads to excessive energy at small 

scales and results in larger fluctuations. Due to this unphysical feature the structure 

displays more peak to peak oscillations. 
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The best choice for turbulence modeling appears to be either the dynamic model or 

the localized dynamic model since they agree well with the direct simulation in the mean 

and do not show the over dissipation of the Smagorinsky model at the small scales. 

However, the localized dynamic model requires the computation of SGS-k, which makes 

it the most expensive choice. This cost is not justified when compared to the results of the 

dynamic model, and hence we advocate the use of the dynamic model in future. As 

mentioned earlier, we cannot say which model delivers the “true” physical behavior, but 

our effort to compare the models has revealed significant differences between them. 

Future disk drive simulations will need to deal with systems that have high speeds and 

small scale physics and turbulence models shall play a crucial role in them.   
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Tables 
 
SGS Model  Line Type in figures 

Smagorinsky model Full line 

Dynamic model Dashed line 

Localized dynamic model Dotted line 

Direct simulation Dash-dotted line 

Table 1: Legend for figures 

 

SGS Model ε  

Smagorinsky model 101212.701 

Dynamic model 104219.471 

Localized dynamic model 104448.123 

Direct simulation 88461.554 

Table 2: Average dissipation predicted by different SGS models 

 

SGS Model Mean (nm) Peak-to-Peak (nm) 

Smagorinsky model 3.3838 1.2138 

Dynamic model 3.1425 1.4965 

Localized dynamic model 3.2445 1.5947 

Direct simulation 2.9156 1.7805 

Table 3: Mean and peak-to-peak vibrations of e-block arm tip as predicted by different SGS models 
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Method  Normalized cost per time step 

Direct simulation (same grid) 1 

Smagorinsky model 1.253 

Dynamic model 1.677 

Localized dynamic model 2.1 

Table 4: Normalized cost of different SGS models per time step 
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Figures 
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Figure 1. Top view of compuational model 
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Figure 2. Resolved scale kinetic energy (see table 1 for legend) 

 
Figure 3. Windage (Watts) (see table 1 for legend) 
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Figure 4. Location of radial lines (chords) for plotting turbulence intensity 
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Figure 5. Mean azimuthal flow velocity along chord 1 (m/s) (see table 1 for legend) 

 
Figure 6. Mean azimuthal flow velocity along chord 2 (m/s) (see table 1 for legend) 
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Figure 7. Mean azimuthal flow velocity along chord 3 (m/s) (see table 1 for legend) 

 
Figure 8. Mean azimuthal flow velocity along chord 4 (m/s) (see table 1 for legend) 
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Figure 9. RMS fluctuating azimuthal velocity along chord 1 (m/s) (see table 1 for legend) 

 
Figure 10. RMS fluctuating azimuthal velocity along chord 2 (m/s) (see table 1 for legend) 
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Figure 11. RMS fluctuating azimuthal velocity along chord 3 (m/s) (see table 1 for legend) 

 
Figure 12. RMS fluctuating azimuthal velocity along chord 4 (m/s) (see table 1 for legend) 
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Figure 13. Turbulence Intensity along chord 1 (see table 1 for legend) 

 
Figure 14. Turbulence Intensity along chord 2 (see table 1 for legend) 
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Figure 15. Turbulence Intensity along chord 3 (see table 1 for legend) 

 
Figure 16. Turbulence Intensity along chord 4 (see table 1 for legend) 
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Figure 17. Mean pressure along chord 1 (Pa) (see table 1 for legend) 

 
Figure 18. Mean pressure along chord 2 (Pa) (see table 1 for legend) 
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Figure 19. Mean pressure along chord 3 (Pa) (see table 1 for legend) 

 
Figure 20. Mean pressure along chord 4 (Pa) (see table 1 for legend) 
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Figure 21. RMS of pressure fluctuation along chord 1 (Pa) (see table 1 for legend) 

 
Figure 22. RMS of pressure fluctuation along chord 2 (Pa) (see table 1 for legend) 
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Figure 23. RMS of pressure fluctuation along chord 3 (Pa) (see table 1 for legend) 

 
Figure 24. RMS of pressure fluctuation along chord 4 (Pa) (see table 1 for legend) 
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Figure 25. Kinetic energy spectra (see table 1 for legend) 
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Figure 26. Off-Track vibrations of e-block arm tip 
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Figure 27. Frequency spectra of e-block arm off-track vibration 
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