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ABSTRACT 

As the slider flying height (FH) continues to be reduced in hard disk drives, the flying height 

modulation (FHM) due to disk morphology and interface instability caused by highly 

nonlinear attractive forces becomes significant. Based on the concept that the FH of a portion 

of the slider that carries the read/write element can be adjusted by a piezoelectric actuator 

located between the slider and suspension and that the FH can be measured by use of a 

magnetic signal, a new 3-DOF analytic model and an observer-based nonlinear compensator 

are proposed to achieve ultra-low FH with minimum modulation under short range attractive 

forces. Numerical simulations show that the FHM due to disk waviness is effectively 

controlled and reduced. 

1 



1. INTRODUCTION 

The areal density of magnetic recording in hard disk drives has been increasing at a rate 

of 1.6 times per year since the late 90’s. This achievement has been enabled mechanically by 

decreasing the distance between the read/write transducer and the rotating disks. According 

to the Wallace spacing loss equation, the magnetic signal increases exponentially as the 

distance decreases between the magnetic media and the transducer. Therefore, the maximum 

magnetic signal can be potentially obtained at a spacing of zero, resulting in a contact 

recording scheme. However, when the slider comes into contact with the disk, other 

considerations must be addressed to assure a stable contact interface with minimum wear and 

contact bouncing vibration. Yanagisawa et al. [1] used a 0.3 mm diameter glass ball to study 

contact sliding experimentally and they showed that the wear of the spherical contact slider 

decreased as the gram load decreased, but the bouncing vibrations increased. In other words, 

there was a trade-off between reducing the bouncing and wear. 

Ono et al. [2] numerically studied the effects of several parameters on the bouncing 

vibrations of a 1-DOF slider model and found that bouncing vibrations can be reduced by 

decreasing the contact stiffness and increasing the contact damping as well as applied load. 

Ono and Takahashi [3, 4] used a 2-DOF model for a tri-pad contact slider and showed that in 

order to achieve minimum bouncing it is necessary to design the contact pad such that its 

penetration depth is greater than the amplitude of the disk surface waviness. Such high 

penetration implies a relatively severe wear of the disk or slider. The effects of the front and 

rear air bearing stiffnesses, and the friction coefficient on the contact force and bouncing 

vibrations were analyzed numerically with a 2-DOF tri-pad slider model in Iida et al. [5]. It 

was found that the rear air bearing stiffness should be larger than the front air bearing 
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stiffness in order to reduce the vibration. However, contact forces may be increased if the 

rear air bearing is too stiff. Accordingly, there is an optimum rear air bearing stiffness in 

terms of both stable contact and wear durability.  

In [6, 7], Ono and Iida used a 1-DOF model to investigate the design condition of a 

contact slider over a random wavy disk surface. Assuming a uniform contact pressure their 

simulation results showed that a larger contact pad area is better for wear durability because 

the contact stiffness and applied load necessary to attain contact sliding increases in 

proportion to the square root of the contact area. Asperity contact and bulk deformation were 

considered in Yamane et al. [8] to evaluate contact forces, contact stiffness, and contact 

pressure in the near-contact regime as a function of separation between the contact pad and 

disk surface. They showed that the mean contact force and spacing variation increased with 

an increase in the rms value of micro-waviness of the disk surface. The short range attractive 

forces between the slider and disk in the proximity regime have to be considered in both 

flying and contact sliders. These forces are strongly related to lubricant thickness, surface 

roughness, and slider/disk materials. More significant bouncing vibrations and flying height 

hysteresis have been observed experimentally when smoother disks or disks with a thicker 

lubricant are used.  

Additionally, Iida and Ono [4, 5] included the meniscus attractive force in the random 

asperity contact simulations. They observed similar touch-down and take-off hysteresis as 

observed in experiments and showed that the attractive force could be significantly reduced if 

the rms value of asperity heights was increased or the asperity density was reduced. 

However, the attractive force increased with an increase in lubricant thickness. Yamane et al. 

[8] studied the bouncing vibration experimentally and by numerical simulation using a 2-
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DOF dynamic model considering the adhesive force of the lubricant as well as the friction 

force. The frequency spectra of the trailing edge bouncing vibrations after touch-down and 

before take-off showed some similarity between experimental and numerical results but the 

vibration amplitudes had considerable disagreement between the two cases. The bouncing 

vibrations observed in the numerical simulations were self-excited vibrations caused by the 

combination effect of a relatively large short range attractive force and the friction force 

between the disk and slider when the contact occurred. These self-excited vibrations were 

negligible if the friction coefficient or the attractive force was small. The authors concluded 

that a contact slider with minimum self-excited bouncing can be achieved by use of a stiffer 

air bearing and with minimum friction coefficient and attractive force. Even though several 

design considerations have been proposed to design a contact slider in the literature, it is still 

unclear how those designs can be implemented into a real system, namely the design of the 

air bearing surface (ABS) and the selection of lubricants.  

As the flying height (FH) is reduced in a flying head slider to the sub 3-nm regime in 

ultra-high density hard disk systems, the flying height modulation (FHM) induced by the disk 

morphology and dynamic instability due to short range attractive forces become more 

significant. Gupta and Bogy [9] conducted a numerical study on the effect of intermolecular 

and electrostatic forces on the stability of the HDI, and they showed that those short range 

attractive forces may cause an instability of the HDI at such low flying heights. This effect 

must be considered in the design of the ABS. 

 In order to achieve reliable reading and writing of magnetic data, it is required that the 

transducer location on the slider vibrate less than ±10% of the nominal FH, or about ±0.3 nm 

in future systems for 1 Tbit/in2 areal density. Furthermore, considerable FHM may cause 
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instability of the interface due to adhesive forces. The concept of FH adjustment by 

piezoelectric material has been proposed in [10-12], but the main purpose was to decrease the 

effects of manufacturing tolerances and environmental variations on the FH. The authors 

utilized silicon microfabrication technology to fabricate the sliders. However, the use of 

silicon as the slider material may cause other issues in slider fabrication and HDI tribology. 

Li et al. [13] presented a real-time FH detection method by using readback or thermal signals 

and in [14] they developed a real-time feedback control method to suppress the FHM. In this 

case, the actuator was a piezoelectric film attached to the suspension. The actuation 

bandwidth was limited by the suspension dynamics. The effect of short range attractive 

forces was not taken into consideration in their study. 

 In this report, a novel controlled flying proximity (CFP) slider is presented. A new 3-

DOF analytic model is proposed to describe the dynamics of the piezoelectric actuated slider. 

The air bearing parameters, such as stiffness and damping, are identified by a modal analysis 

method developed in the Computer Mechanics Laboratory (CML) [15, 16]. Then, an 

observer-based nonlinear sliding mode controller [17] is designed to compensate the short 

range attractive forces and to suppress the FHM of ultra-low flying height air-bearing sliders 

in proximity, in which the magnetic signal is used for real-time FHM measurement. The 

attractive forces are included in the model as a highly nonlinear term and the effect of disk 

morphology is modeled as unknown but bounded disturbances.  The performance of the 

controller is investigated by numerical simulations.  
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2. NONLINEAR 3-DOF LUMPED PARAMETER MODEL OF CONTROLLED 

FLYING PROXIMITY (CFP) SLIDERS 

The schematic diagram of the controlled flying proximity slider is shown in Fig. 1. 

The FH is about 20nm in the off duty cycle and is reduced to about 3nm during reading and 

writing. Figure 2 shows the five-pad ABS design example used in this report. The gap FH is 

adjusted by the deflection of the cantilever actuator. The deflection is achieved by grounding 

the slider and applying a negative voltage to the top electrode of the central piezoelectric 

material. 

There are two modes of operation. In the passive mode, there is no external voltage 

applied to the piezoelectric material so the active cantilever rests in the original position. The 

gap flying height in this case may be designed to be anywhere between 10 and 20 nm, 

depending on the ABS design. In the active mode, the cantilever is bent into close proximity 

of the disk with the application of a negative DC voltage to the middle portion of the 

piezoelectric material. Meanwhile, an AC computed control voltage is superposed on the DC 

voltage so that the FHM is minimized. The active mode is used only when the read/write 

head is in operation. The duty cycle for a practical head is rather low. Most of the time of the 

head is spent on non-read/write actions, such as latency, seeking, or idle. Thus the wear and 

power consumption can be greatly reduced by simply operating the CFP in the passive mode. 

The air bearing pressure distributions in both modes are shown in Fig. 3, where the additional 

pressure peak is seen when the central pad is deflected into close proximity to the disk. 

The CFP slider is modeled as a nonlinear 3-DOF lumped model in which the 

cantilever actuator and the air bearing dynamics are modeled as 1-DOF and 2-DOF, 

respectively. 
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2.1 1-DOF Lumped Model of the Piezoelectric Cantilever Actuator 

The cantilever actuator, composed of a piece of piezoelectric material and a portion of 

the slider, deflects under an electric voltage V and an external vertical force F exerted on the 

tip as shown in Fig. 4 (a). V and F are the control voltage and air bearing force in our 

application. The constitutive equation of the tip deflection subject to a voltage and a force 

can be described as follows [18]: 
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where the subscripts s and p stand for the slider and piezoelectric materials, respectively. E 

and t are the Young’s modulus and beam thickness, respectively. L and w represent the 

length and width of the composite beam. kc is the bending stiffness of the cantilever. d31 is 

the piezoelectric coefficient. 

The deflections of the cantilever of three different slider thicknesses (0.3, 0.23, and 

0.2 mm) under one volt (without external force) were calculated according to Eq. (1) and 

were simulated by finite element analysis (FEA) with the results as shown in Fig. 5. It was 

found that there exists an optimal thickness of the PZT for which the deflection is maximized 

for a given voltage and slider thickness. 
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According to Eq. (1), the cantilever is modeled as a single DOF mass-damper-spring 

system with (bending) stiffness kc and damping cc as shown in Fig. 4 (b). kc is determined by 

Eq. (1) and cc is assumed to be zero in the calculation. The equivalent mass meq is calculated 

by the following equation, 

2
n

c
eq

km
ω

=        (2) 

where ωn is the first natural frequency of the cantilever obtained by finite element analysis. 

ωn is about 3380 rad/s for a pico-sized CFP slider with 300 µm thickness and 80 µm PZT 

plate as shown in Fig. 6. Since the bandwidth of the PZT itself is very high, the bandwidth of 

cantilever actuator is primarily limited by the first resonant frequency of the structure, i.e. 

about 500 kHz in this case.  

2.2 2-DOF Lumped Model of the Air Bearing and Its Parameter Identification 

In this section, we focus on the air bearing dynamics while the cantilever is fixed 

without moving relative to the rest of slider. For symmetric ABS designs and flying at 0° 

skew, the motion of the slider in the roll direction makes little contribution to the system 

response. However, the two pitch modes contribute to the slider’s dynamics at the R/W 

transducer. This can be modeled as a 2-DOF system as shown in Fig. 7 (a). The equation of 

motion of this model for free vibration can be expressed in the following form, 
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in which zM and θ are the displacement of the slider’s mass center and the pitch angle of the 

slider with zero mean values, respectively. The slider’s mass M and moment of inertia Iθ  are 

1.6x10-6 kg and 2.2x10-13 kg.m2, respectively. The parameters that need to be identified are 

described as follows: kl and k* are the air bearing stiffness. cl and c* are the air bearing 

damping. dl and dt  are the distance from the resultant air bearing force to the mass center of 

the slider. Index l or * represents the value at the leading (two pads) or trailing edge (three 

pads). 

A linear modal analysis program developed by CML [15, 16] is used to identify the 

parameters. The method uses impulse responses of the slider to obtain the air bearing modal 

parameters, such as modal frequencies, damping ratios, mode shapes, and physical matrices 

(mass, stiffness, and damping). The impulse response is calculated by the constrained CML 

Dynamic Simulator, in which the slider’s moment of inertia in the roll direction Iϕ is 

increased to prohibit the slider from rolling and the linear disk velocity is 15 m/s. The initial 

impulse has to be extremely small to avoid any nonlinearity. The deflection of the cantilever 

is implemented in the CML Dynamic Simulator by setting the relative heights of the center 

trailing pad and the other four pads. 

Figure 8 shows the dynamic characteristics of the CFP slider at a gap FH of 3 nm 

(with the cantilever actuator deflection of 24 nm). It shows the nodal lines of the two mode 

shapes, two modal frequencies, and two damping ratios. The frequencies and damping ratios 
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at several different FH’s are shown in Table 1.  The six parameters k*, kl, c*, cl, dt, and dl 

were determined algebraically by equating the six elements in the matrices [c] and [k] and 

those identified by the linear modal analysis approach. The calculated results are shown in 

Table 2. It is observed that only k* and c* exhibit significant nonlinearities. For the other 

four parameters, the linearized values about FHpt= 2.35 nm are used in the following 

sections. 

In the active mode of operation the cantilever actuator is expected to deflect 

dynamically. Hence, the center trailing pad, located at the end of the cantilever, has relative 

motion with respect to the other two trailing pads. A more realistic model is shown in Fig. 7 

(b), where k* and c* are decomposed into two parts, resulting in four parameters kt, ct, k, and 

c. kt and ct are the air bearing stiffness and damping coefficient at the two side trailing pads 

of the slider body. k and c are the stiffness and damping of the center trailing pad, which is 

located at the end of the cantilever actuator. l (= 0.595 mm) is the distance from the slider 

mass center to the read/write transducer. Since the FH at the two side trailing pads is usually 

more than 40 nm, the linearized values of kt and ct are used. Table 3 shows the set of 

parameters for the 2-DOF model shown in Fig. 7 (b). k and c are the only nonlinear elements 

and ct is set to zero for simplicity. Figures 9 (a) and (b) show plots of k and c as functions of 

FH at the pole tip (PT). Among the three curve fitting laws, a natural logarithm curve is 

found to be the best fit to the stiffness within the range of interest, giving a k(FHpt) in units of 

N/m as a function of FH at the PT (FHpt) in units of nm 

kptkpt FHFHk αβ +⋅= )ln()(      (4) 

The coefficients βk and αk for this fit are determined to be -211456 and 460671, respectively. 
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The damping coefficient c is almost constant for FHpt between 3 and 9. A linear curve 

fit is applied to c for FHpt less than 3 nm, giving a c(FHpt) in units of N.sec/m as a function of 

FH at the PT (FHpt) in units of nm 

cptcpt FHFHc αβ +⋅=)(      (5) 

The coefficients βc and αc for this fit are determined to be 0.0044 and 0.005, respectively. 

 This nonlinear 2-DOF model was compared to the CML Dynamic Simulator by 

looking at impulse responses of the slider. The results for FHpt of 2.35nm are shown in Figs. 

10 and 11 in both the time and frequency (FFT) domains. H11 and H21 are the responses in 

the zM and θ directions due to an impulse in the zM direction, respectively. The results for 

FHpt of 3 nm are also shown in Figs. 12 and 13. In both cases, there is good agreement 

between the 2-DOF model and the CML Simulator.      

2.3 Intermolecular Forces and Electrostatic forces 

Due to the reduction in the spacing between the slider and the disk, the threshold for 

new nanoscale phenomena will be crossed.  In particular, new forces between the slider and 

disk come into play, such as intermolecular and electrostatic forces. A study of the effects of 

intermolecular forces and electrostatic forces was presented in Gupta and Bogy [9]. The 

intermolecular and electrostatic forces do not have a significant effect on the flying 

characteristics of high flying sliders (spacings greater than 10 nm), but they become 

increasingly important at low spacings (below 5 nm). These forces are attractive in nature 

and hence result in a reduction in fly height as compared to what would be the case without 

them. Experimental investigations have indicated that these short range forces are one of the 

major instability factors in ultra low HDI. 
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These short range attractive forces are considered to act on the cantilever tip, i.e., the 

1-DOF cantilever actuator. 

elecimfact FFF +=  

where 
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and where the constants α’ and β’ depend on the ABS design while A’ (1.8x10-30) and B’ 

(2.7x10-88) are related to the material properties of the slider and disk. In this paper, the 

values in Thornton [19] are used. The electrostatic force due to the electrical potential across 

the slider and disk is shown in Eq. (7). εo, ke and V are the permittivity constant (8.85 x 10-12 

farad/m), dielectric constant of the medium (1 for air) and the potential difference between 

the slider and the disk. The constant Aeq in Eq. (7) is chosen such that the force agrees with 

that simulated by the CML Static Simulator. A comparison of the electrostatic forces 

between the CML Simulator and the model is shown in Fig. 14. 

2.4 Nonlinear 3-DOF Lumped Model of CFP Sliders 

Based on the analysis in the previous sections, a nonlinear 3-DOF model is 

constructed as shown in Fig. 15 and the equation of motion is written as follows: 

}{}]{[}]{[}]{[ Fxkxcxm =++ &&&     (8) 

where 
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Note that the disk profile quantities zdt, zdl, and zd are assumed unknown but bounded. 

Numerical simulations were conducted to calculate the responses of the system over a 

harmonic wavy disk. The cantilever actuator is deflected at the FHpt of 2.35nm. The peak-to-

peak amplitude of the waviness is assumed to be 2 nm, and three wavelengths are simulated: 

1mm, 0.5mm, and 0.2mm, corresponding to frequencies of 15, 30, and 75 kHz at a linear 

disk velocity of 15 m/s. The FHM is obtained by subtracting zd from zm. Figure 16 shows the 

responses without including the short range forces. However, when the forces are included in 

the model, severe contacts were indicated and the slider could not fly stably.   

3. DESIGN OF NONLINEAR COMPENSATORS 

The short range forces and disk waviness cause instability of the HDI and increase the 

FHM. It is desirable to compensate the forces and to suppress the modulation by feedback 
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control. Because of the nonlinear components and uncertain disturbance in the air bearing 

systems, an observer-based nonlinear control or nonlinear compensator design approach is 

used [17]. The schematic diagram of the controller is shown in Fig. 17. Assuming that the 

real-time FH can be measured, we first built an observer for the state estimation and designed 

a sliding control law using the observer as the plant.  

Equation (8) is transformed into a state-space representation as follows: 
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The control goal is to push the FHM to zero. If zm is used as a state, this will be a 

tracking problem, zm  zd. However, the future zd is unknown. In order to resolve this, a new 
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The observer is designed as 

)ˆ()ˆ(ˆˆ xCyLxfBuxAx −+++=&     (10) 

The error dynamic is obtained by subtracting   from  x& x&̂

dfxLCAxxx −−=−= ~)(ˆ~ &&&      (11) 

Note that f(.) and fd represent the nonlinear components and disturbances, respectively. The 

observer gain matrix L is chosen as in a Luenberger observer [20] so as to place the poles of 

(A-LC) at desired locations.  

The sliding surface is defined as 

55 ˆˆ xxs λ+= &
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The control law is designed as 
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such that 

02 <−= sss η&       (15) 

 Eq. (15) guarantees that s approaches zero based on Lyapunov theory and drives the 

estimated FHM  to zero exponentially according to Eq. (12). 5x̂

To investigate the controller’s performance, we conducted a large number of 

numerical simulation experiments. Figure 18 shows the results of FHM suppression with the 

same conditions as used in Fig. 16. The required AC control voltages are shown in Fig. 19. It 

is seen that the FHM is reduced almost to zero. The effects of intermolecular and electrostatic 

forces (0.5V) are then included in the model. The histories of the cantilever deflection and 

short range attractive forces are shown in Fig. 21 and Fig. 22, respectively. Figure 20 shows 

that the FHM can be effectively suppressed even with an electrostatic potential of 0.5 V 

between the disk and slider (which is an unstable system without control). The applied 

control voltage is also shown in Fig. 20 (b). The observer performance is demonstrated by 

the comparison of the estimated and true FHM in Fig. 23 where it is seen that the error 

between the true and estimated values is very small. 

When the electrostatic potential between the slider and disk increases from 0V to 1V 

(i.e. electrostatic forces increase), the mean control voltage shifts from 0 to about 3.3V to 

compensate the increased electrostatic forces, as shown in Fig. 24. This DC shift can actually 

decrease the applied DC control voltage required to bring the cantilever into the active 

operational mode.  
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4. CONCLUSIONS 

Due to the effects of short range forces and disk morphology it is unlikely that a 

passive air bearing slider will be able to form a reliable head-disk interface at a spacing much 

less than 5 nm. Substantial research has been carried out on contact recording, in which the 

slider is expected to be in full contact with the disk. Several design considerations have been 

given in the literature, but it is still unclear how to implement such systems, namely ABS 

design, lubricant, and protective overcoat. 

In this report, a new 3-DOF dynamic model is proposed to model a controlled flying 

proximity (CFP) slider, which is actuated by a layer of piezoelectric material. A linear modal 

analysis is used to identify the air bearing parameters. Good agreement is obtained for the air 

bearing dynamics between the model and the CML Dynamic Simulator. An observer-based 

nonlinear sliding mode controller is designed based on the model. Numerical studies show 

that a FH below 3 nm is achieved and the FHM due to disk waviness is effectively reduced in 

the presence of short range attractive forces. 
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FHpt 
(nm) 

Deflectio
n (nm) 

pitch 
(µrad) 

Frequency 1 
(kHz) 

Frequency 2 
(kHz) 

Damping 
ratio 1 (%) 

Damping 
ratio 2 (%) 

0.41 35 209.52 70 232 4.7817 0.4452
0.70 33 212.32 70 217 4.7304 0.6563
2.35 26 221.19 69 175 4.8100 1.4600
3.07 24 223.34 69 165 4.8500 1.7500

20.22 0 235.10 68 112 5.2300 2.6800
 
Table 1. The results of parameter identification of 2-DOF air bearing at five flying heights. 
 
 

FHpt 
(nm) 

Deflection 
(nm) 

k* 
(MN/m) 

kl  
(MN/m) 

c* 
(N.sec/m) 

cl  
(N.sec/m) 

dl  
(mm) 

dt  
(mm) 

0.41 35 1.080 0.214400 0.00648 0.0462 0.2418 0.5440
0.70 33 0.960 0.203172 0.0075 0.0443 0.2650 0.5415
2.35 26 0.625 0.194725 0.01554 0.04386 0.2717 0.5358
3.07 24 0.590 0.182977 0.01767 0.0393 0.2966 0.5126

20.22 0 0.310 0.180145 0.025 0.055 0.2872 0.4610
 
Table 2. The results of parameter identification of 2-DOF air bearing at five flying heights. 
 

 
FHpt 
(nm) 

Deflection 
(nm) 

k 
(MN/m) 

c 
(N.sec/m)

kt 
(MN/m) 

kl  
(MN/m) 

cl  
(N.sec/m) 

dl  
(mm) 

dt  
(mm) 

0.41 35 0.69 0.00650 0.3 0.194725 0.04386 0.2717 0.5358
1.75 28 0.35 0.01300 0.3 0.194725 0.04386 0.2717 0.5358
2.35 26 0.28 0.01554 0.3 0.194725 0.04386 0.2717 0.5358
3.07 24 0.225 0.01800 0.3 0.194725 0.04386 0.2717 0.5358
5.75 18.5 0.105 0.01900 0.3 0.194725 0.04386 0.2717 0.5358
9.02 13.5 0.04 0.01900 0.3 0.194725 0.04386 0.2717 0.5358

 
Table 3. The identified k and c1 at several flying heights with other parameters as in the case 
of 2.35 nm. The value of c is set to be zero. 
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(a) Passive mode (no control algorithm is applied) 

 

 

(b) Active mode (control algorithm is applied) 

Fig. 1. Two operational modes of a controlled flying proximity slider with PZT actuation. 
The R/W transducer is not shown in this diagram. 
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Fig. 2 An ABS design of CFP sliders 
 
 
 
 
 

  
(a)      (b) 

 
Fig. 3. Air pressure distributions of the ABS in Fig. 2. (a) passive mode and (b) active mode. 
The gap flying height has been reduced from 20 nm to 2.35 nm.
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Fig. 4. Schematic diagram of a piezoelectric composite beam actuator (a) and the 1-DOF 
model.  
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Fig. 5. The deflection of the cantilever tip under 1V. The solid line is for a pico-slider 
thickness, the dash line is for the femto slider thickness. FEA shows the results carried out by 
finite element analysis. Ep=62GPa, Ec=398GPa, d31=-360x10-12m/V. 
 
 
 

 
(a) the first mode (in-plane)   (b) the second mode (out-of-plane) 

Fig. 6. The first two modes of a pico-sized CFP slider simulated by finite element analysis 
(COSMOSDesignSTAR®). The natural frequencies are 538 and 550 kHz. (Slider 
thickness=300 µm, PZT thickness=80 µm). 
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kl cl k*(FH)

zM 

θ M, Iθ 

LE 

TE

c*(FH)

dl 
dt 

 
(a) 

 
(b) 

Fig. 7. Schematic diagram of 2-DOF dynamic model of CFP sliders. The cantilever is fixed 
such that there is no relative motion between the slider and the cantilever.  
 

kl cl kt ct 

zM 

θ M, Iθ 

dl l 
LE 

dt 

TE

c (FHpt)  k (FHpt) 

26 



 
Fig. 8. Dynamic characteristics of the CFP slider at FHpt = 3.07 nm.  
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Nonlinear Spring k

k(FH) = -211456Ln(FHpt) + 460671
R2 = 0.9935
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(b) 

Fig. 9. (a) Nonlinear stiffness k and (b) nonlinear damping c1 as a function of FH at the PT.  
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(a) 

 

(b) 

Fig. 10. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider simulated 
by the 2-DOF model and the CML Dynamic Simulator: (a) TEC FH modulation and (b) pitch 
modulation about the equilibrium of FHpt = 2.35nm  
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(a) 

 

(b) 

Fig. 11. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider simulated 
by the 2-DOF model and the CML Dynamic Simulator shown in the frequency (FFT) 
domains: (a) the response of TEC FH and (b) the response of pitch about the equilibrium of 
FHpt = 2.35nm 
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(a) 

 

(b) 

Fig. 12. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider simulated 
by the 2-DOF model and the CML Dynamic Simulator: (a) TEC FH modulation and (b) pitch 
modulation about the equilibrium of FHpt = 3.07nm  
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(a) 

 

(b) 

Fig. 13. Impulse responses (initial velocity 0.002 m/s in z direction) of CFP slider simulated 
by the 2-DOF model and the CML Dynamic Simulator shown in the frequency (FFT) 
domains: (a) the response of TEC FH and (b) the response of pitch about the equilibrium of 
FHpt = 3.07nm 
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Comparison of Electrostatic Forces Between CML and Model at 
FHpt=2.35nm
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Fig.14 . Comparison of electrostatic forces between CML Simulator and model. The forces 
are calculated when the slider is fixed at FHpt = 2.35 nm and pitch = 221 µrad. 
 

zM 

θ M, Iθ 

dl 

dt 

l 
LE 

TE

kl cl kt ct 

FHpt 

kc cc

m

zm 

u 

Fact 

c k 

 

 Fig. 15. Schematic diagram of 3-DOF dynamic model of CFP sliders.  
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(a) The wavelength of disk waviness: 1 mm 

 

(b) The wavelength of disk waviness: 0.5 mm 
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(c) The wavelength of disk waviness: 0.2 mm 

Fig. 16. FHM of 3-DOF over three disk wavelengths without short range forces. 
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Fig. 17. Schematic framework of observer-based sliding mode controller 
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(a) The wavelength of disk waviness : 1 mm 

 

(b) The wavelength of disk waviness: 0.5 mm 
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(c) The wavelength of disk waviness: 0.2 mm 

Fig. 18. The results of FHM suppression of the CFP slider. Simulations conditions are the 

same as those in Fig. (16). 

 

(a) 
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(b) 

 

(c) 

Fig. 19. The voltage determined by the control law for cases in Fig. (18) 
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(a) 

 

(b) 

Fig. 20. (a) The results of FHM suppression of the CFP slider in the presence of 

intermolecular and electrostatic forces (0.5 V). The disk waviness wavelength is 0.2 mm. (b) 

the control voltage.  
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Fig. 21. Deflection of the cantilever actuator. 

 

Fig. 22. The intermolecular and electrostatic forces  (0.5V) 
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Fig. 23. True and estimated FHM (x5). 
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(a) Electrostatic potential 0 V 

 
(b) Electrostatic potential 0.5 V 

 
(c) Electrostatic potential 1 V 
 
Fig. 24. Control voltages for different electrostatic potentials. The disk waviness wavelength 
is 0.2 mm. 
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