CML Particle Flow and Slider Contamination Program User's Manual

Xinjiang Shen and David B. Bogy
Computer Mechanics Laboratory
Department of Mechanical Engineering
University of California at Berkeley

1. Introduction

This manual describes the first version of the CML particle flow and slider contamination program with its Matlab user interface, as well as its input files, preprocessing and post processing.

The CML particle flow and slider contamination program requires Matlab installed on the computer, a commercial software from Mathworks Inc. The CML particle flow and slider contamination program interface integrates the preprocessing and post processing with two solvers: the CML air bearing solver and the CML particle flow solver. Both solvers are written in Fortran 77 and tested under the PC/windows environment. The unix/linux operating systems are currently unsupported.

System recommendations for running the CML particle flow and slider contamination program:

Hardware:
Intel based Pentium 4 systems above 2GHz
AMD based systems above AMD 2000+

512 Mb memory with 1 Gb virtual memory
Software:
Windows operating systems, Windows NT, 2000, XP. Matlab ver. 5.0 and above.

CMLAir Design Program 6.5

2. Installation

The installation package for Windows is a zipped file named cmlparticleflow.zip. Unpack the file into a working directory with an unzip utility such as winzip software. As an example, we will assume the directory is D:\cmltemp. When you are ready to run a simulation, copy your input files (rail.dat, run.dat, and Particles.dat) into the working directory D: \cmltemp.

The installation does not require any association with window's core and registry system. Therefore, it is very stable and robust.

To run the software, start Matlab from the windows start menu or desktop. Then change the directory in Matlab to the current working directiory, D: Icmltemp. Enter the command, ParticleGUI in the Matlab command window. The particle flow and slider contamination program interface will show up.

3. Interface Guide

The main interface is shown in Fig. 1. The menu bar includes File, Input Files, Slider, Preprocessing, Particle Solver, Particle Flow visualization, Results and Help.

The File submenu includes one option only. You can save the current work and exit from File -> Exit.

To run the particle flow simulation, three input files are needed. They are included in the Input Files submenu as shown in Fig. 2. They are rail.dat, run.dat and Particles.dat. You can open and edit them in the notepad program provided by Windows or other commercial text editor software.

In the Slider submenu, you can verify your slider design which is imported from CMLAir Design Program. Figure 3 shows the slider submenu. You can view the 2-D rails first. After you run the CML air bearing solver, you may view its 3-D profile, pressure profile, and the spacing map between the head and disk.

Figure 4 shows the Preprocessing submenu. You can run the CML air bearing solver by clicking on "Solve Reynolds equation". The preprocessing solver gets the necessary information for particle flow and slider contamination simulation, such as pressure and the spacing profiles where the particles will fly.

After running the CML air bearing solver, you can now run the particle solver by clicking on the "Solve particle flow" button as shown in Fig. 5. To run the particle flow, you need to make sure that Particles.dat is in the current directory. Also, to get a realistic simulation, you need to specify the particle source similar to what you expect in your experiments. The simulation will take several hours even for a modern PC, also it may take a lot of computer resources such as memory and storage spaces.

After simulating the particle flow in the head disk interface, you need to observe how the particles fly in your specific head disk interface design. The submenu "Particle Flow visualization" in Fig. 6 includes three methods of visualization. You can use the 2D particle flow animation to see how the particles fly in HDI from a top view. You can
also run the 3-D flow movie. However, this animation requires much more time and computer resources. The particle buildup history on the air bearing surface can also be visualized using the current software.

The Results submenu shown in Fig. 7 lets you see the result summary of the air bearing slider, particle contamination profile, and the contact force and moment history applied to the slider by these particles.

Figure 8 shows the Help menu. Before you run the simulation, it is recommended that you read the README file and this manual.

4. Input Data Files

There are three input data files in this version: rail.dat, run.dat and Particles.dat. The first file describes the slider geometry, while the second one prescribes the input parameters for the CML Airbearing Design Program. The third file specifies the particle properties and the environmental conditions for the particle flow simulation.

4.1 rail.dat

Sample rail.dat:

CML Version 4.020 RAIL.DAT
REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU
1.2500E-003 1.0000E-003 3.0000E-004

113
13 1
1.1009E-003 4.1500E-004 2
$1.2100 \mathrm{E}-003 \quad 4.1500 \mathrm{E}-004 \quad 0$
$1.2100 \mathrm{E}-003 \quad 5.8500 \mathrm{E}-0042$

$1.1009 \mathrm{E}-003$	$5.8500 \mathrm{E}-004$	2
$9.2772 \mathrm{E}-004$	$5.5000 \mathrm{E}-004$	2
$9.0872 \mathrm{E}-004$	$5.4600 \mathrm{E}-004$	2
$8.9272 \mathrm{E}-004$	$5.3500 \mathrm{E}-004$	2
$8.8172 \mathrm{E}-004$	$5.1900 \mathrm{E}-004$	2
$8.7772 \mathrm{E}-004$	$5.0000 \mathrm{E}-004$	2
$8.8172 \mathrm{E}-004$	$4.8100 \mathrm{E}-004$	2
$8.9272 \mathrm{E}-004$	$4.6500 \mathrm{E}-004$	2
$9.0872 \mathrm{E}-004$	$4.5400 \mathrm{E}-004$	2
$9.2772 \mathrm{E}-004$	$4.5000 \mathrm{E}-004$	2
$3.0000 \mathrm{E}-007$		
13	1	
$1.0516 \mathrm{E}-003$	$5.5000 \mathrm{E}-004$	3
$1.0326 \mathrm{E}-003$	$5.4600 \mathrm{E}-004$	3
$1.0166 \mathrm{E}-003$	$5.3500 \mathrm{E}-004$	3
$1.0056 \mathrm{E}-003$	$5.1900 \mathrm{E}-004$	3
$1.0016 \mathrm{E}-003$	$5.0000 \mathrm{E}-004$	3
$1.0056 \mathrm{E}-003$	$4.8100 \mathrm{E}-004$	3
$1.0166 \mathrm{E}-003$	$4.6500 \mathrm{E}-004$	3
$1.0326 \mathrm{E}-003$	$4.5400 \mathrm{E}-004$	3
$1.0516 \mathrm{E}-003$	$4.5000 \mathrm{E}-004$	3
$1.2059 \mathrm{E}-003$	$4.1500 \mathrm{E}-004$	1
$1.2500 \mathrm{E}-003$	$4.1500 \mathrm{E}-004$	0
$1.2500 \mathrm{E}-003$	$5.8500 \mathrm{E}-004$	1
$1.2059 \mathrm{E}-003$	$5.8500 \mathrm{E}-004$	3
$0.0000 \mathrm{E}+000$		
13	1	
$4.3915 \mathrm{E}-004$	$7.8000 \mathrm{E}-004$	2
$3.3915 \mathrm{E}-004$	$6.7000 \mathrm{E}-004$	2
$3.3915 \mathrm{E}-004$	$5.0000 \mathrm{E}-004$	0
$5.0000 \mathrm{E}-005$	$5.0000 \mathrm{E}-004$	2
$5.0000 \mathrm{E}-005$	$7.1500 \mathrm{E}-004$	2
$5.3000 \mathrm{E}-005$	$7.4800 \mathrm{E}-004$	2
$6.1000 \mathrm{E}-005$	$7.8000 \mathrm{E}-004$	2
$7.4000 \mathrm{E}-005$	$8.1000 \mathrm{E}-004$	2
$9.2000 \mathrm{E}-005$	$8.3800 \mathrm{E}-004$	2
$2.0000 \mathrm{E}-004$	$9.6800 \mathrm{E}-004$	2
$6.8339 \mathrm{E}-004$	$9.6800 \mathrm{E}-004$	0
$7.0608 \mathrm{E}-004$	$8.4500 \mathrm{E}-004$	2
$6.0000 \mathrm{E}-004$	$7.8000 \mathrm{E}-004$	2
$3.0000 \mathrm{E}-007$		
8	1	
$6.8339 \mathrm{E}-004$	$9.6800 \mathrm{E}-004$	1
$7.6222 \mathrm{E}-004$	$9.6800 \mathrm{E}-004$	1
$7.8122 \mathrm{E}-004$	$9.6400 \mathrm{E}-004$	1
$7.9722 \mathrm{E}-004$	$9.5400 \mathrm{E}-004$	1

$8.0722 \mathrm{E}-004$	$9.3800 \mathrm{E}-004$	1
$8.1142 \mathrm{E}-004$	$9.1900 \mathrm{E}-004$	1
$8.1142 \mathrm{E}-004$	$8.7000 \mathrm{E}-004$	1
$7.0608 \mathrm{E}-004$	$8.4500 \mathrm{E}-004$	3
$0.0000 \mathrm{E}+000$		
4	1	
$1.2200 \mathrm{E}-003$	$5.0025 \mathrm{E}-004$	0
$1.2200 \mathrm{E}-003$	$4.9975 \mathrm{E}-004$	0
$1.2199 \mathrm{E}-003$	$4.9975 \mathrm{E}-004$	0
$1.2199 \mathrm{E}-003$	$5.0025 \mathrm{E}-004$	0
$0.0000 \mathrm{E}+000$		
12	1	
$6.8600 \mathrm{E}-004$	$4.9800 \mathrm{E}-004$	0
$7.5100 \mathrm{E}-004$	$4.9800 \mathrm{E}-004$	0
$7.6800 \mathrm{E}-004$	$5.7300 \mathrm{E}-004$	0
$8.4400 \mathrm{E}-004$	$6.1400 \mathrm{E}-004$	0
$9.8700 \mathrm{E}-004$	$7.3200 \mathrm{E}-004$	0
$1.2500 \mathrm{E}-003$	$7.3200 \mathrm{E}-004$	0
$1.2500 \mathrm{E}-003$	$9.6800 \mathrm{E}-004$	0
$1.0720 \mathrm{E}-003$	$9.6800 \mathrm{E}-004$	0
$1.0720 \mathrm{E}-003$	$8.6700 \mathrm{E}-004$	0
$9.7300 \mathrm{E}-004$	$8.1900 \mathrm{E}-004$	0
$7.0700 \mathrm{E}-004$	$6.4500 \mathrm{E}-004$	0
$6.8600 \mathrm{E}-004$	$6.4500 \mathrm{E}-004$	0
$1.0000 \mathrm{E}-005$		
13	1	
$4.3915 \mathrm{E}-004$	$2.2000 \mathrm{E}-004$	2
$3.3915 \mathrm{E}-004$	$3.3000 \mathrm{E}-004$	2
$3.3915 \mathrm{E}-004$	$5.0000 \mathrm{E}-004$	0
$5.0000 \mathrm{E}-005$	$5.0000 \mathrm{E}-004$	2
$5.0000 \mathrm{E}-005$	$2.8500 \mathrm{E}-004$	2
$5.3000 \mathrm{E}-005$	$2.5200 \mathrm{E}-004$	2
$6.1000 \mathrm{E}-005$	$2.2000 \mathrm{E}-004$	2
$7.4000 \mathrm{E}-005$	$1.9000 \mathrm{E}-004$	2
$9.2000 \mathrm{E}-005$	$1.6200 \mathrm{E}-004$	2
$2.0000 \mathrm{E}-004$	$3.2000 \mathrm{E}-005$	2
$6.8339 \mathrm{E}-004$	$3.2000 \mathrm{E}-005$	0
$7.0608 \mathrm{E}-004$	$1.5500 \mathrm{E}-004$	2
$6.0000 \mathrm{E}-004$	$2.2000 \mathrm{E}-004$	2
$3.0000 \mathrm{E}-007$		
8	1	
$6.8339 \mathrm{E}-004$	$3.2000 \mathrm{E}-005$	1
$8.6222 \mathrm{E}-004$	$3.2000 \mathrm{E}-005$	1
$8.8122 \mathrm{E}-004$	$3.6000 \mathrm{E}-005$	1
$8.9722 \mathrm{E}-004$	$4.6000 \mathrm{E}-005$	1
$9.0722 \mathrm{E}-004$	$6.2000 \mathrm{E}-005$	1

$9.1142 \mathrm{E}-004$$9.1142 \mathrm{E}-004$	8.1000E-005	1		
	$1.3000 \mathrm{E}-004$	1		
$7.0608 \mathrm{E}-004$ 1.5500E-004 3				
$0.0000 \mathrm{E}+000$				
4 1				
$1.1340 \mathrm{E}-003$	9.6800E-004	0		
$1.1340 \mathrm{E}-003$	8.6700E-004	0		
$1.2500 \mathrm{E}-003$	8.6700E-004	0		
$1.2500 \mathrm{E}-003$	$9.6800 \mathrm{E}-004$	0		
$0.0000 \mathrm{E}+000$				
12 1				
$8.0000 \mathrm{E}-005$	4.2000E-004	3		
$8.0000 \mathrm{E}-005$	2.8500E-004	3		
$8.3000 \mathrm{E}-005$	$2.5200 \mathrm{E}-004$	3		
$9.1000 \mathrm{E}-005$	$2.2000 \mathrm{E}-004$	3		
$1.0400 \mathrm{E}-004$	$1.9000 \mathrm{E}-004$	3		
$1.2200 \mathrm{E}-004$	$1.6200 \mathrm{E}-004$	3		
$2.3000 \mathrm{E}-004$	$5.2000 \mathrm{E}-005$	1		
4.1694E-004	5.2000E-005	3		
$4.1694 \mathrm{E}-004$	$1.6000 \mathrm{E}-004$	3		
$3.5915 \mathrm{E}-004$	$1.6000 \mathrm{E}-004$	3		
$2.4915 \mathrm{E}-004$	$3.0000 \mathrm{E}-004$	3		
$2.4915 \mathrm{E}-004$	4.2000E-004	3		
$0.0000 \mathrm{E}+000$				
12 1				
$8.0000 \mathrm{E}-005$	5.8000E-004	3		
$8.0000 \mathrm{E}-005$	$7.1500 \mathrm{E}-004$	3		
$8.3000 \mathrm{E}-005$	$7.4800 \mathrm{E}-004$	3		
$9.1000 \mathrm{E}-005$	$7.8000 \mathrm{E}-004$	3		
$1.0400 \mathrm{E}-004$	8.1000E-004	3		
$1.2200 \mathrm{E}-004$	8.3800E-004	3		
$2.3000 \mathrm{E}-004$	9.4800E-004	1		
$4.1694 \mathrm{E}-004$	$9.4800 \mathrm{E}-004$	3		
$4.1694 \mathrm{E}-004$	8.4000E-004	3		
$3.5915 \mathrm{E}-004$	8.4000E-004	3		
$2.4915 \mathrm{E}-004$	7.0000E-004	3		
$2.4915 \mathrm{E}-004$	5.8000E-004	3		
$0.0000 \mathrm{E}+000$				
101010				
$0.0000 \mathrm{E}+000$ 1.3822E-006 2.7644E-006 4.1467E-006 5.5289E-006 6.9111E-006				
8.2933E-006 9.6756E-006 1.1058E-005 1.2440E-005				
$0.0000 \mathrm{E}+0005.2469 \mathrm{E}-007$ 9.8765E-007 1.3889E-006 1.7284E-006 2.0062E-006				
$2.2222 \mathrm{E}-0062.3765 \mathrm{E}-0062.4691 \mathrm{E}-006$ 2.5000E-006				
$0.0000 \mathrm{E}+000$	1.2222E-006 2	4444E-006 3.6667E-006	4.8889E-006	6.1111E-006
7.3333E-006	.5556E-006 9.	78E-006 1.1000E-005		

```
3.0000E-007 7.6173E-007 1.1691E-006 1.5222E-006 1.8210E-006 2.0654E-006
2.2556E-006 2.3914E-006 2.4728E-006 2.5000E-006
0.0000E+000 1.6933E-007 3.3867E-007 5.0800E-007 6.7733E-007 8.4667E-007
1.0160E-006 1.1853E-006 1.3547E-006 1.5240E-006
0.0000E+000 6.2963E-008 1.1852E-007 1.6667E-007 2.0741E-007 2.4074E-007
2.6667E-007 2.8519E-007 2.9630E-007 3.0000E-007
0.0000E+000 0.0000E+000 2.5000E-006
2.5400E-008 2.5000E-009 0.0000E+000
1.2200E-003 1.2050E-003 2.4100E-004 2.4100E-004
5.0000E-004 5.0000E-004 9.7400E-004 2.6000E-005
```

The rail structure for this sample file is shown in Fig. 9. The first two lines are the header. The third line contains the slider dimensions in meters: length, width, thickness. The fourth line indicates the number of rails and the number of (different) wall profiles used. Next, each rail is defined in succession. The starting line for each rail describes the number of points and style. A step has a style value of 1 , while a ramp has a style value of 0 . The lines that follow contain the \mathbf{x} and \mathbf{y} coordinates of a rail point and the wall profile index for the rail edge starting at that point. Note that the \mathbf{x} and y coordinates are in meters instead of normalized, and the wall profile indices should be zero for a ramp. The final line in a rail description contains the recess height(or three heights for a ramp) in meters for the rail. The line that follows the rail definitions contains the number of wall profile points for all wall profiles. Next, each wall profile definition occupies two lines. The first line contains the normal distances to the nominal edge for the profile points. Note, the unit is in meters. A negative value indicates that the point is inside the nominal rail boundary, while a positive value is otherwise. The second line contains the recess depth in meters for each point. Note that the zero recess reference plane is the same as for all the rail recess depths, rather than the nominal recess for each rail. The next line contains the taper length in meters, the taper
angle in radians, and the base recess in meters. The following line gives the crown, camber and twist in meters. The final two lines are the \mathbf{x} and \mathbf{y} coordinates for the points of interest.

4.2 run.dat

Sample run.dat:

CML Version 6.020 RUN.DAT
REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU
****************Solution Control ${ }^{* * * * * * * * * * * * * * * * ~}$
istiff isolv ioldg iadpt isave
$\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}$
****************Intial Attitude ${ }^{* * * * * * * * * * * * * * * * ~}$
hm(m) pitch(rad) roll(rad)
$1.0000 \mathrm{E}-008 \quad 1.5000 \mathrm{E}-004 \quad 0.0000 \mathrm{E}+000$
***************Runs***************
irad irpm ialt
$\begin{array}{lll}1 & 1 & 0\end{array}$
radii(m)
$2.3000 \mathrm{E}-002$
skews(deg)
$9.1000 \mathrm{E}+000$
RPMs
$7.2000 \mathrm{E}+003$
altitudes(m)
***************Air Parameters***************
p0(pa) al(m) vis(nsm^-2)
$1.0135 \mathrm{E}+005 \quad 6.3500 \mathrm{E}-008$ 1.8060E-005
****************Load Parameters ${ }^{* * * * * * * * * * * * * * * * ~}$
f0(kg) xf0(m) yf0(m)
$1.5000 \mathrm{E}-003 \quad 0.0000 \mathrm{E}+000 \quad 0.0000 \mathrm{E}+000$
xfs $(\mu \mathrm{NM}) \quad \mathrm{yfs}(\mu \mathrm{NM}) \quad$ emax
$0.0000 \mathrm{E}+000 \quad 0.0000 \mathrm{E}+000 \quad 1.0000 \mathrm{E}-003$
***************Grid Control ${ }^{* * * * * * * * * * * * * * * ~}$
nx ny
593593
nsx nsy isymm
110
xnt(i), $\mathrm{i}=2$, nsx

```
nxt(i), i = 2, nsx
dxr(i), i = 1, nsx
1
ynt(i), i = 2, nsy
nyt(i), i = 2, nsy
dyr(i), i = 1, nsy
1
****************Adaptive Grid}\mp@subsup{}{}{*****************
difmax decay ipmax
100 60 1
100 60 0
*****************Mesh refinement in x direction*******
1
0.380e-3 0.42e-3 0
*****************mesh refinement in y direction*******
1
0.325e-3 0.375e-3 0
****************Reynolds Equation****************
ischeme imdoel akmax beta gamma accommodation
2 \ 3 1.0000E-007 6.0000E+000 6.0000E+000 1.0000E+000
icmodel stdasp(m) dnsasp(m^-2) ConstantA ConstantB
0}\quad0.0000\textrm{E}+000\quad1.0000\textrm{E}+012 1.0000\textrm{E}-019 1.0000\textrm{E}-07
rdsasp(m) eyoung(pa) yldstr(pa)
0.0000E+000 1.0000E+010 1.0000E+012
frcoe pratio
0.3 0.3
***************Molecular Force Hamaker Constants(ahc,bhc)*****
0.0e-19 0.0e-76
***************Sensitivities***************
crowninc(m) camberinc(m) twistinc(m)
0.0000E+000 0.0000E+000 0.0000E+000
tlnginc(m) tanginc(rad) loadinc(kg)
0.0000E+000 0.0000E+000 0.0000E+000
ptrqinc( }\mu\textrm{NM})\mathrm{ rtrquinc( }\mu\textrm{NM})\mathrm{ recessinc(m)
0.0000E+000 0.0000E+000 0.0000E+000
iwscale
1
****************Comments***************
```

"This is a test case"

Here are some explanations:

Solution Control:
istiff: 1 = calculate stiffness, $0=$ no stiffness calculation
isolv: 1 = solve for fly height, 0 = given attitude
ioldg: 1 = use existing grid data, 0 = create new grid
iadpt: 1 = use adaptive grid, $0=$ no adaptive grid
isave: 1 = save pressure and mass flow, 0 = don't save
Initial Attitude:
hm(m): nominal trailing edge height
pitch(rad): pitch, note the change in units from the previous version
roll(rad): roll
Runs:
irad: number of disk radii where the solution is sought
irpm: number of RPMs
ialt: number of altitudes, $0=$ use Air Parameters
radii(m): disk radii
skews(deg): skews corresponding to each disk radii
rpms: RPMs
altitudes(m): altitudes, lowest one is the base case.
Air Parameters:
$\mathbf{p 0 (p a) : ~ a m b i e n t ~ p r e s s u r e ~}$
17
$\mathbf{a l (m)}$: mean free path
vis(NS/M2): viscosity
Load Parameters:
f0(kg): load
$\mathbf{x f 0}(\mathbf{m})$: load point x offset, origin is at the geometric center now!
$\mathbf{y f 0}(\mathbf{m})$: load point y offset
$\mathbf{x f s}(\mu \mathrm{NM})$: static pitch torque, note the change of unit
yfs($\mu \mathrm{NM})$: static roll torque
emax: convergence criterion of load error
Grid Control:
$\mathbf{n x}$: total x grid number ($16 \mathrm{k}+1$)
ny: total y grid number ($16 \mathrm{k}+1$)
nsx: number of sections in length
nsy: number of sections in width
isymm: 1 = symmetry in width, $0=$ specify entire width
xnt(i), $i=2$, nsx: x control points in meters, no longer normalized!
$\mathbf{n x t}(\mathrm{i}), \mathrm{i}=2$, nsx: grid indices at x control points
$\mathbf{d x r}(\mathrm{i}), \mathrm{i}=1$, nsx: grid ratios for each x section
ynt(i), $\mathrm{i}=2$, nsy: y control points, use half width if isymm = 1
nyt(i), $\mathrm{i}=2$, nsy: grid indices at y control points
dyr(i), $i=1$, nsy: grid ratios for each y section
Adaptive Grid:
difmax: ratio of max/min gradient allowed
decay: smaller value increases smoothness
ipmax:1 = use maximum gradient, $0=$ average gradient

The adaptive grids in the x and y directions are controlled separately by two lines. The first line specifies difmax, decay and ipmax for the x direction. The second line defines these parameters for the y direction.

Mesh refinement in x and y directions:
The first line defines how many locations will be refined by the end user. The following lines specify the starting and ending locations for mesh refinement.

Reynolds Equation:
ischeme: convective term scheme.
0 = upwind
1 = hybrid
2 = power-law; default
imodel: slip model
1 = first order slip
$2=$ second order slip
3 = FK; default
akmax: convergence criterion for the Reynolds equation
Partial Contact:
icmodel: 0 = no contact model
1 = Greenwood-Williamson

2 = Elastic-Plastic
stdasp(m): standard deviation of asperity height
dnsasp(m-2): asperity density
rdsasp(m): mean radius of curvature of asperity
eyoung(pa): Young's modulus
yldstr(pa): yield strength
frcoe: friction coefficient
pratio: Poisson's ratio
Intermolecular Force menu

Two constants, ahc and bhc, are defined for the adhesive force between the head and disk for ultra low flying height sliders. The first one is the effective Hamaker constant between the slider and disk. The second is the constant B used in the Lernard Jones potential. For detailed information of these two parameters, please refer to Lin Wu's Ph . D. dissertation at CML, "Physical Modeling and Numerical Simulations of the Slider Air Bearing Problem of Hard Disk Drives".

Sensitivities:
Zero increment means no sensitivity is calculated for the parameter.
crowninc(m): crown increment
camberinc(m): camber increment
twistinc(m): twist increment
tlnginc(m): taper length increment
tanginc(rad): taper angle increment
loadinc(kg): load increment
ptrqinc($\mu \mathrm{NM})$: pitch torque increment
rtrqinc($\mu \mathrm{NM})$: roll torque increment
recessinc(m): recess increment
iwscale: used with recessinc
$0=$ stretch the profile, the normal distances are unchanged,
only the depths are scaled.

1 = scale the wall profile with recess. For the part of the
profile that is outside the nominal rail boundary, the normal
distances will change proportionally with recess.

4.3 Particles.dat

Sample Particles.dat

```
lamda rous roup amu p0
.635e-7 1.4128d0 3.52d3 1.488e-5 1.0135e+5
NX|NY|NZ|
1 50 10
Xmean Std
200e-09 50e-9
    xp0 yp0 zp0
    0.02 0.04 6.0
    0.02 0.75 25.0
```

The velocity ratio to the disk |particle velocity option
7.52
Time for simulation (T, DT)
5.0 1e-3
|The skew angle of the slider| Particle Module|Particle Distribution Option|
-17.55 22
|Gravity Effect| Saffman Lift|Magnus Lift | Pressure Gradient|Vortex
0.01 .01 .01 .01 .0
|Particle|Airbearing Module|Layer Streamline Module|
100
|Particle Nature:1: Soft; 2: Hard|
2
|Mechanical and Thermal Properties of particle(TiC)|
Young's Modulus|Poison's Raio|Hardness|Thermal conductivity|SPecific Heat|
$\begin{array}{lllll}4.39 \mathrm{~d} 11 & 0.187 & 2.47 \mathrm{~d} 9 & 30.9 & 710.6\end{array}$
Disk Material Properties(Aluminum)
|Density|Modulus|Poison's Ratio|Hardness|Thermal Conductivity|Specfific Heat(J/kg.C)|
$\begin{array}{llllll}2.7 \mathrm{~d} 3 & 6.9 \mathrm{~d} 10 & 0.3269 & 1.20 \mathrm{~d} 8 & 166.9 & 896\end{array}$
Slider Material Properties(TiC 40\% Al2O3 60\%)
|Density|Modulus|Poison's Ratio|Hardness|Thermal Conductivity|Specfific Heat|
4.31d3 4.390d11 $0.2 \quad 2.42 \mathrm{e} 9 \quad 27.0 \quad 898$
Friction Coefficient(Betweeen particle and slider)
0.2
lamda: free mean path of the air.
rous: air density
roup: particle density
amu: air viscosity.
p0: air ambient pressure.
NX,NY,NZ: Number of particles in the X, Y, Z directions.
Xmean, Std (m): these two parameters define the particle mean size and standard deviation for a Gaussian distribution.
$\mathbf{x p} \mathbf{0}, \mathbf{y p} \mathbf{0}, \mathbf{z p} \mathbf{0}$: define the initial location of the particles. The first line defines the lowest value of $\mathrm{x}, \mathrm{y}, \mathrm{z}$. The second line defines the upper limit of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

The velocity ratio of particle to the disk is used for the initial particle velocity option. Particle velocity option: 1: its ratio to the disk velocity is specified. 2: air borne particles. 2 is the default option for most cases.

T, DT: simulation time and time step. These two are normalized. The user can change the time step to balance the calculation time and accuracy based on experience.

In the remaining part of the input file, each item is clearly defined. The user can enter the corresponding value for specific case.

5. Output data files

The output files include ParticleD.dat, Pcontaminates.dat, Summary.dat, and Contacts.dat. These output files are post processed in the particle flow and slider contamination software interface.

6. Post processing

The post processing for particle flow and slider contamination includes visualization of the particle flow in the head disk interface, the final particle contamination profile on the slider, and the contact force and moment history acting on the air bearing slider. They are integrated into the software interface. Advanced users may modify the corresponding module to get other information. For visualization post processing, a movie file is generated for each animation. They are found in your working directory after you run the animation.

Welcome to
CML Particle Flow and Slider Contamination Program
Version 1.0, March 2004

Please report bugs and suggestions to xjshen@cml.me.Berkeley.EDU

Figure 1. Matlab Interface

-) CML Particle Flow Analysis

File Input Fies Slider Preprocessing Particle Solver Particle Flow Visualization Results Help run.dat rail.dat Particles.dat

Welcome to

CML Particle Flow and Slider Contamination Program

Version 1.0, March 2004

Please report bugs and suggestions to xjshen@cml.me.Berkeley.EDU

Figure 2. Input Files

Figure 3. Slider Information

Figure 4. CML Air Bearing Solver

Welcome to
CML Particle Flow and Slider Contamination Program
Version 1.0, March 2004

Please report bugs and suggestions to xjshen@cml.me.Berkeley.EDU

Figure 5. CML Particle Flow and Slider Contamination Solver

Figure 6. Particle Flow Visualization Modules

Figure 7. Particle Result Files

Figure 8. User’s Manual and README Files

Figure 9. A sample air bearing slider.

