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1 INTRODUCTION 1

Abstract

The aim of this study is to numerically study unsteady flows in

hard disk drive enclosures by means of large eddy simulation (LES).

In particular, the flow between two co-rotating disks obstructed by

an e-block arm is simulated. The results of the simulation are used

to analyse and describe the topology of the flow, and to characterize

the structural response of the e-block arm, which forms the main ob-

struction to the flow. Global quantities such as the drag on the arm

and the windage loss at the disks are reported. Finally, comparisons

between 2 different simulations are made to support the assertion that

LES is a reliable and accurate method for studying such flows.

1 Introduction

The hard disk drive (HDD) industry is continually faced with demands for

higher areal recording densities, faster data transfer rates, and higher re-

liability. The demand for a higher areal recording density can be met by

increasing the track density and/or the linear bit density. Track misregis-

tration (TMR) and flying height modulation (FHM) must both be squeezed

into tighter budgets in order to achieve such increases in the track and linear

bit densities. On the other hand, the demand for higher data transfer rates

has necessitated faster disk rotation speeds. Higher disk speeds increases the

turbulence intensity of the flow which results in larger displacements of the

arm and suspension.
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Early research of Lennemann (1974) on the fluid dynamics of disk drives

employed experimental methods using water showed the exsistence of a cen-

tral rotating laminar core between 2 co-rotating disks. The work of Abraham-

son et al. (1989) confirmed the exsistence of three flow regions – the central

core, a number of vortical structures and a boundary layer region. Abra-

hamson et al. (1989) also investigated the effect of the Ekman number on

the flow field and concluded that increasing the Ekman number or decreasing

the axial separation of the disks increases the number of vortices in the outer

region. Humphrey et al. (1995) computationally verified these results and

additionally concluded that for high Reynolds numbers, the toroidal vortices

“acquire a time varying sinuous shape” and the mid-plane axial vorticity is

circumferentially periodic.

In more recent work, Shimizu et al. (2001) performed LES modeling with

and without an arm obstruction. Their numerical results correlate well with

their experimentally observed disk vibration amplitudes, and by calculating

shear stresses on the disk they are able to predict windage loss. In Shimizu

et al. (2003) the same authors used LES results to predict air-flow induced

vibrations of the head gimbal assembly (HGA). This is one of the first works

to use transient LES information to predict displacements of the obstructing

structures. Their model, however, is over-simplistic, in the sense that the

distributed loading on the structures are approximated by resultant forces

acting at certain pre-defined points. It is also unclear how the authors calcu-

late the skin friction drag since they do not mention the integration of wall
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shear stress. Tsuda et al. (2003) performed a direct numerical simulation

(DNS) and compared their results with experiments. They reported the ex-

istence of a three dimensional spiral vortex in the wake of the e-block arm.

Tatewaki et al. (2001) performed LES calculations of three obstructed and

unobstructed disks and demonstrated the spatial structure of the pressure

fluctuations with direct applications to disk flutter.

The current study is also a LES compuation of the flow between two disks

with an e-block arm. We draw useful conclusions about the simulation by

the use of two different LES models. We also examine the vibration of the

structure, and for this we employ a rigorous technique without the use of ad

hoc simplifications.

2 CFD Modeling

2.1 The finite volume algorithm

Our simulations were performed using the commercial computational fluid

dynamics (CFD) software – CFDRC. This software includes an unstructured,

polyhedral cell flow solver, an interactive geometry modeling and grid gener-

ation system and a post-processing system. The code solves the equations of

motion in strong conservation form using the finite volume method. The al-

gorithm uses the well-known SIMPLEC (Semi-Implicit Method for Pressure-

Linked Equations: Consistent). A very good description of pressure cor-

rection methods is given in Anderson (1995), and the original algorithm is
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published in Van doormaal and Raithby (1984). We describe the highlights

here.

In solving the integral form of the Navier Stokes equations (momentum)

in discretized form, we seek solutions of equations of the form,

AP un+1

i,P +
∑

l

Alu
n+1

i,l = −

(

δp

δxi

)n+1

P

(1)

which represents an equation for the velocity components ui at the point

P . The quantities ui,l are the velocity components at the neighbouring grid

locations, and the coefficients AP and Al are determined by the scheme used

to discretize the advective and diffusive terms in the Navier Stokes equations.

We use the symbol δ to denote the specific numerical scheme to implement

the gradient of pressure (e.g. central differencing). In this report, we use

the notation in Ferzige and Peric (2002). Notice that Eqn. 1 is implicit and

hence it requires the solution of a large system of non-linear equations. We

also note that by choosing an implcit scheme we are not restricted by the

CFL-like conditions on the time-step, and the numerical method is assured

of unconditional stability in time. In fact, we use a first order (Backward

Euler’s) implicit method, because of its simplicity. A first order O(∆t) ac-

curate scheme is indeed acceptable, since our time step is already restricted

by the physics of the flow.
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The equation of continuity is represented by,

δui

δxi
= 0 (2)

The SIMPLEC algorithm is inherently iterative – it uses pressure and

velocity data from the previous time-step (or iteration) and corrects it by

satifying the continuity and momentum equations. We denote the previous

values of velocity and pressure by um∗ and pm∗, and propose corrections of

the form,

um = um∗ + u′; pm = pm∗ + p′; (3)

where the subscript i has been dropped for notational convenience. Since

um∗ from the previous iteration satisfies Eqn. 1 we may write,

um∗

i,P =
−

∑

l Alu
m∗

l

AP
−

1

AP

(

δp

δxi

)m∗

(4)

or

um∗

i,P = ũm∗

i −
1

AP

(

δp

δxi

)m∗

(5)

where,

ũm∗

i =
−

∑

l Alu
m∗

l

AP

(6)

Taking the divergence of Eqn. 5 we obtain the following Poisson equation
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for the pressure correction,

δ

δxi

(

1

AP

δp′

δxi

)

=
δ

δxi

(

ũ′

i,P

)

+
δ

δxi

(

um∗

i,P

)

(7)

Since the term ũ′

i,P is still unknown we approximate it by the following

equation: (which forms the basic assumption of the SIMPLEC Method)

ũ′

i,P = −u′

i,P

∑

l Al

AP
(8)

This gives the final equation to solve, so that the pressure correction

satifies the divergence condition,

δ

δxi

(

ρ

AP +
∑

l Al

δp′

δxi

)

=
δ

δxi

(

ρum∗

i,P

)

(9)

Once the pressure correction is obtained, it is used to solve the momen-

tum equations (Eqn. 1) to obtain the corrected velocities. This procedure

is continued until the corrections obtained are sufficiently small with each

iteration. In our simulation, the criterion for convergence was maintained at

10−4.

To evaluate the fluxes at the cell boundaries (for integration of the con-

vective terms) from the variable values at the cell center, we use second order

central differencing. However to increase the stability of such a scheme in

an inherently iterative solver, we “blend” it with a first order upwind differ-

encing scheme. The contribution of the upwinding scheme was limited to no
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more 10%.

2.2 Turbulence Modeling

2.2.1 The Kolmogorov microscale of the problem

For the problem of turbulence it is not practical to compute the Navier Stokes

equations directly, because of their complexity. The Kolmogorov microscale

may be computed approximately as,

η =

(

ν3

ε

)1/4

= O(10−5)m (10)

and this value implies that our simulation would need approximately O(1010)

cells in a typical 3D domain. Here, η = Kolmogorov’s scale, ν = Molecu-

lar viscosity and ε = Disspiation rate. The same result could be obtained

(approximately) by realizing that the number of grid cells in a direct sim-

ulation is on the order of Re9/4. We define the Re of the flow using the

disk separation: Re = ωRh/ν, where R is the disk radius, ω is the angular

velocity and h is the disk-to-disk separation. This is often refered to as the

tip-based Reynolds number because it uses the outer radius R. From using

these grid size estimates, we conclude that a direct simulation would be im-

possible using our current computer workstations. Therefore we use Large

Eddy Simulation (LES). To gain more insight into the CFD solution of the

problem, we performed simulations with two different LES models and com-

pare their results. These models are described briefly below. We assume the
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reader is familiar with the LES technique; For an introduction to the practice

of LES, we refer the reader to Ferziger (1983), Ferziger (1996) and Rogallo

and Moin (1984).

2.2.2 The Smagorinsky model

In large eddy simulation the effect of large scales is directly computed by

a filtered version of the Navier Stokes equations, while the small scales are

modeled. Since small scales tend to be more isotropic than large ones, it is

usually acceptable to parameterize them using an eddy viscosity assumption.

In the well known Smagorinsky model (Smagorinsky, 1963) the eddy viscosity

is obtained by application of the equilibirum hypothesis, i.e. by assuming

that small scales are in equilibrium due to the simultaneous cascade and

dissipation of energy. This gives an expression of the form,

νT = (Cs∆)2|S̄| (11)

where ∆ is the filter width, Cs is Smagorinsky’s constant, |S̄| is the mag-

nitude of the strain rate tensor,

S̄ij =
1

2

(

∂ūi

∂xj
+

∂ūj

∂xi

)

and ūi is the resolved velocity.

Unfortunately there is no common agreement on the value of Cs, which

is determined empirically. The more complicated the flow gets, the more
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difficult it is to predict the model constant Cs, and no such value is known for

separated shear flows with curved streamlines, as in our case. Additionally,

the model must rely on ad hoc methods to extrapolate sub grid scale (SGS)

shear stresses near the wall. The CFDRC simulation software uses the well

known Van Driest damping function (Van Driest, 1956) to locally extrapolate

eddy viscosity to the wall. The behaviour of the model at the wall is especially

important to our simulation since we need to calculate the shear stress at

the wall (which will helps us determine the “windage” loss). And finally,

since the model constant is fixed, the model does not allow energy flow from

small scales to large scales which according to Germano et al. (1991) can be

significant, and it produces excessive disspation of large scale fluctuations.

2.2.3 The dynamic model

The dynamic SGS model due to Germano et al. (1991) is based on the same

eddy viscosity model as above, except that the model constant is computed

dynamically as the calculation progresses. By filtering the equations of mo-

tion using two filters of different filter widths, it is possible to derive an

algebraic expression for the model constant. These are often called sub-grid

and sub-test filters. This, however, leads to 5 equations for a single model

constant, and the error in the eddy viscosity assumption is minimized by the

use of a least squares technique as explained in Lilly (1992). This proposed

modification to the dynamic model makes it a more appropriate candidate

for universal application, than the Smagorinsky’s model. The mathematical
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formulation of the technique is lucidly discussed in Lilly (1992).

The advantages using this model are multifold: Firstly, the SGS stress

vanishes at the walls and shows the correct aymptotic behaviour ( y3) near the

walls. This eliminates the use of wall functions in the model. Also, since the

model constant may be locally negative, the model allows for reverse energy

cascade, i.e. backscatter. The only parameter that needs to be supplied is

the ratio of the sub-grid to the sub-test filter widths. We use the optimized

value of 0.5 as presented in Germano et al. (1991).

2.2.4 Time discretization

The time step is chosen so that numerical stability is assured and the turbu-

lent motions are accurately resolved in time. We ensure that the time-step

is smaller than the time scale of the smallest resolved scale of motion. This

is given by,

τ =
∆x

U
(12)

where ∆x is the grid spacing and U is the mean (outer) velocity at that

position. Considering this condition we choose a time-step of 10−5. We also

note, at this point, that the frequencies of oscillations of the structures in a

disk drive have experimetally been determined to be on the order of a few

kHz, hence such a small time step is indeed necessary to resolve the dynamics

of the flow.
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3 Structural modeling

To compute the response of the structure obstructing the flow, we employ a

finite element stress solver module included in the CFDRC software that can

be directly coupled to the flow solver. The equations of structural mechanics

are solved in finite element form as derived from the principal of virtual work.

For each element, displacements are defined at the nodes and are obtained

within the element in the usual manner, by interpolation from the nodal

values using shape functions.

3.1 Structural damping

To treat structural damping in the e-block arm we use the simple Rayleigh

damping (proportional damping) method. By assuming,

C = αM + βK (13)

where M, C and K are the mass, damping and stiffness matrices re-

spectively, we get the following equation for each degree of freedom of the

system,

ξi =
1

2

(

α

ωi
+ βωi

)

(14)

where ξi is the damping ratio and ωi is the natural frequency of the ith

mode. As explained in Cook et al. (1989), such a formulation permits us
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to choose the amount of damping for two specific frequencies to determine

the two coefficients, α and β. In our particular case we choose the damping

at the first and tenth modes of vibration of the structure to 5% of critical

damping. This effectively guarantees that the damping in the spectrum of

interest (first ten modes, 1-40 kHz) will be below 5%, and vibration modes

outside this range will be strongly damped out.

3.2 Coupling of the fluid - structure analyses

On completion of each time-step by the flow solver, the pressure data (normal

loading) and shear stress at the wall (tangential loading) are passed on to

the stress solver. These force boundary conditions are implemented on a face

by face basis, without the use of simplifying assumptions. To the authors’

knowledge this is the first study of the hard disk drive problem to rigorously

couple the flow-structure problems. The FE stress solver thus determines

the response of the structure as the simulation progresses. We note that

the deflections of the e-block arm are usually very small compared to the

grid size in the vicinity of the arm. Hence, we do not need to re-mesh the

domain surrounding the arm, although the displacement of the wall is finite.

In this sense, the problem is coupled in one way only: the fluid flow affects

the structural vibration but not vice versa.
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4 Model setup

Our model consists of two 3.5” disks rotating in a fixed, closed enclosure.

The disk to shroud radial clearance is 2 mm and this clearance is closed by

flat walls at the top and bottom. The disk rotation speed is 10,000 rpm.

Each time step of 10−5 seconds corresponds to 0.6 degrees of rotation of the

disks. The calculation is carried out for 6 revolutions, i.e. 3600 time steps.

Theoretically, our simulations are able to resolve a maximum frequency of

50 kHz. However, we limit this to 10 kHz from a data storage point of view.

The model was meshed using an unstructured grid with 395,000 cells. The

e-block arm used in the simulation matches geometrically with experimental

work done previously by Gross et al. (2002). Fig. 1 shows the front view

and bottom view of the CFD model, and a 3-dimensional view of the e-block

arm is shown in Fig. 2. Table 1 gives the material properties used for the

e-block arm. The e-block is treated as a cantilever with its pivot fixed, and

it is placed symmetrically at the midplane between the two disks. As shwon

in Fig. 1, the arm is tilted at 32 degrees to the vertical axis, representative

of the configuration during read-write operations.

To begin, a modal analysis is performed on the e-block arm to estimate its

natural frequencies of vibration. The natural frequencies and mode shapes

are listed in Table 2. The first four modes are also shown in Fig. 3 - Fig. 6.

Of particular interest to the current problem are the sway modes, which

contribute the most to the off-track displacement, while the lower bending



5 RESULTS 14

modes contribute largely to the on-track discplacement. We note that off-

track is defined as orthogonal to the axis of symmetry of the e-block arm,

while on-track is along the axis of the arm.

The LES simulation is initialized from a steady state RANS (Reynolds

Averaged Navier Stokes) solution, using the standard k − ε model. To this

solution, we add 5% random fluctuations to the velocities, to perturb the base

flow. This implies that for the initial condition, the flow field is assumed to

be in steady state with the rotating disks, with small pertubations from the

mean.

5 Results

All of the results presented in this section refer to the simulation using the

dynamic LES model, unless otherwise noted. We conclude our discussion in

Sec. 5.7 by comparing the results from the two LES models.

The flow inside a disk drive casing is very complex and involves regions of

mostly transitional and turbulent flows. For the configuration in our simula-

tions the flow field near the center of the rotating disks remained transitional,

while most of the other regions – including the sheared region at the shroud

and the wake – remained largely turbulent.

The flow displays a strong stagnation zone near the leading edge of the

arm. The top and bottom surfaces of the arm contain regions of unsteady

separation and reattachment which results in the formation of coherent struc-
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tures, particularly in the wake of the arm. The wake itself is very complex

showing regions of shear and the presence of intense vortices that are con-

tinually being transported due to the shearing effect of the rotating walls at

the top and bottom. Due to the lack of symmetry of the arm with respect to

the incoming flow there appears to be no strict periodicity in the shedding

of vortices.

Fig. 7 and Fig. 8 show the time averaged contour plots of the azimuthal

and radial velocities, respectively, in the mid plane of the model, averaged

after 5 revolutions of the disk. The figures show a largely uniform flow field

in about the 3/4 portion of the drive upstream of the arm. The wake region

contains a more irregular flow topology. Interestingly there is a small region

of flow reversal, near the hub, just upstream of the arm. This flow reversal

is probably due to the adverse pressure gradient (the flow stagnates at the

arm). The radial contours show a strong inflow in the wake of the arm; this

is primarily due to the constraining geometry and the disk rotation.

5.1 Vortex dynamics

Fig. 9 shows a three dimensional view of instantenous streamtubes in the

region of the wake behind the arm. They are color-coded (for contrast) ac-

cording to the azimuthal velocity. Fig. 10 shows the orientation of these

tubes with respect to the midplane. Additionally the midplane is colored to

reflect the axial velocity of the flow. These figures demonstrate the orienta-

tion of vortical structures shed by the arm, whose axes are oriented at an
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angle to the arm. This is most likely due to the “forcing” of the disks, and

results in an orientation that is different compared to the wake of a regular

cylinder. Eddies are typically generated from every sharp edge of the arm

and transported downstream by the Couette type flow. These structures are

coherent and persistent; viscous dissipation does not cause them to be dis-

sipated completely before they approach the arm after being transported to

its upstream side.

5.2 Global parameters

A commonly reported non-dimensional frequency of the flow is the Strouhal

Number. We do not report this number here, since our observations show

that eddies are shed from more than one point along the face of the arm.

Additionally, these points have different mean velocities of the upstream flow

which causes the difficulty in reporting a global Strouhal Number. We also

note that this quantity is not a significant test of the quality of the simulation

as noted in Rodi et al. (1997)

5.3 Drag

Fig. 11 and Fig. 12 show the pressure drag and the viscous drag on the arm

as a function of time. We define drag as the net resultant force acting in a

direction perpendicular to the axis of symmetry of the arm. These have been

obtained by integrating the pressure and shear stress on the area of the arm
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using,

Fp =

∫

∂S1

p dA; Fτ =

∫

∂S2

τw dA (15)

where ∂S1 denotes the surfaces of the arm normal to the general upstream

flow direction (the thin edges of the arm including the holes), p denotes the

pressure acting on these faces, ∂S2 denotes the surfaces of the arm tangent to

the general upstream flow direction (the top and bottom faces of the arm) and

τw is the shear stress acting on these faces (∂S2). We note that the viscous

drag (or the skin friction drag) is two orders of magnitude smaller than the

pressure drag, and hence the corresponding contribution of the pressure drag

to the vibration of the arm is significantly higher.

Fig. 13 shows the frequency spectrum of the total drag. We see that the

power of the spectrum is concentrated in the low frequency (0 - 3 kHz) range,

and the higher frequency part of the spectrum is more uniform. This implies

that we can (numerically) expect a low frequency forcing of the e-block arm

by the flow.

5.4 Spatial Variation of Pressure

Given that pressure contributes the most to the vibrations of the arm, we

discuss the pressure fluctuations in the flow field along the leading edge face

of the arm. In particular, we note the pressure at ten points on the leading

edge face of the arm as shown by the small dots in Fig. 14. The points
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are numbered so that they start from 1 at the tip of the arm, and go to 10

at the fixed pivot of the arm. Fig. 15 shows a waterfall plot, where each

line denotes the frequency spectrum of pressure fluctuation at that point.

From this figure we again note that the pressure fluctuations are rich in

the low frequency range. It is of interest to note that point #9 displays a

significantly higher amplitude (of the spectrum) in the low frequency range

than its neighbours. This is most likely due to the fact that the upstream

incoming velocity is the highest at this point, and this results in a large

pressure rise as the flow stagnates at the face of the arm.

5.5 Windage

Finally, we also calculate the windage loss at the disks. This refers to the

power required by the motor to rotate the disks at 10,000 rpm due to viscous

effects. This quantity may be easily calculated as,

W =

∫

∂D

τu|wall dA =

∫

∂D

τφzuφ|wall dA (16)

Fig. 16 shows a time history of the windage loss. We note that this

estimate of windage considers only 1 face of each of the 2 rotating disks. In

an actual drive windage is due to power lost on both faces of each rotating

disk. We also note that we do not include the power lost at the arm due to

shear.
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5.6 Vibrational response of the arm

We decompose the vibrational response of the arm into two components: the

on-track displacements , lying along the axis of the arm, and the off-track

displacements, lying orthogonal to the axis of the arm. To study the response

of the arm to the flow field we analyse the displacement of the structure at

its tip on its lower face. This is the region where the suspension is attached

in a real drive.

Fig. 17 and Fig. 18 show the displacements of the end of the arm in the

off-track and on-track directions respectively. Fig. 19 and Fig. 20 show the

corresponding frequency spectra. From the figures, we conclude that the

off-track amplitude is limited to about 2.2 nm peak-to-peak, with a mean

at about 2.2 nm also. The on-track vibration is significantly greater, with

a peak to peak amplitude of about 5.2 nm, with a mean at about 2 nm.

We conclude that the response of the arm in the on-track direction is larger

due to its lower stiffness in bending. Since the arm is modelled here as a

cantilever, its lowest stiffness is in bending, and this causes relatively large

bending vibrations (out of plane vibrations) as shown in Fig. 21. Large

on-track displacements are simply a consequence of the bending.

The frequency spectra of the vibrations correlate very well with the modal

analysis. In Fig. 19 peaks are seen at 5.785 kHz (very close to the second

bending mode), 7.621 kHz (first torsional mode) and a large peak at 8.901

kHz (close to the first sway mode). In the on-track spectrum, a large portion

of the power is concentrated in the region close to the 1.252 kHz first bending



5 RESULTS 20

mode, implying that the dominating frequency of oscillation corresponds to

the first bending mode. Additionally, the second bending, first torsion and

first sway modes are also evident.

For a more physical insight into the vibrations, we plot the trajectory of

the point under consideration on the x-y plane in Fig. 22, where the large

dot represents its original undeflected position.

We conclude this discussion by noting that the vibrations of the e-block

arm are primarily dominated by the first bending mode. In practice, the

boundary conditions for the drive level components are different, given that

a suspension and slider is attahced to the end of the arm. However, our

results showing the off-track component should carry over to realistic drive

configurations, which will be included in the follow-on study.

5.7 Model Comparison

Fig. 23 shows the radial line BC and a circle A along which the results of

the two LES models are compared. Fig. 24 shows the detailed comparisons

along these lines at the midplane of the drive. The figures show plots of the

midplane azimuthal, radial and axial components of velocity (ūphi, ūr, ūz) at

a radius of 20 mm (circle A) as a function of the polar angle. These figures

are accompanied by plots of corresponding fluctuations (u′

phi, u
′

r, u
′

z). All

quantities are time averaged over five revolutions of the disk. We notice that

the radial and azimuthal velocities agree quite well between the two LES

models, (which form the mean flow) and so do their fluctuations. However,
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the axial components, which reflect the three dimensionality of the flow, do

not show much similarity. Since this is a secondary (or perturbation) flow,

O(ūz) ≡ O(u′

z), we do not expect much agreement of these quantities between

the models.

One of the claims of the dynamic model is that it maintains the dissipa-

tion at more physical values. To examine this, we plot in Fig. 25 the three

components of velocity and their fluctuations at an upstream location (along

radius B-C, in Fig. 23) as a function of the radius (again, averaged over 5 rev-

olutions). Again, the velocity components of the radial and azimuthal flow

agree well, but there is less agreement in the axial component. This indicates

that the two models predict comparable flow topologies when averaged over

time, but the dynamics of the flow may differ.

To examine other quantities we plot the pressure drag and the windage for

each model in Fig. 26 and Fig. 27 respectively. We observe that the dynamic

model predicts higher drag (on the e-block arm) and a higher windage on

the disks. The reason for this is that the dynamic model is better able to

resolve near-wall turbulence than the Smagorinsky wall functions. We also

note that the frequency spectra for drag did not differ significantly between

the two models, and hence they are not plotted again here (see Fig. 13).

Additionally, the frequency spectra for pressure fluctuations at the e-block

arm face do not differ significantly, (see Fig. 15). We conclude from this, that

in computing the unsteady dynamics of the flow, the models do not differ

significantly.
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Lastly, we plot in Fig. 28 the model constant determined by the dynamic

model over the entire domain. In the norm, the constant compares well

with the constant used by the Smagorinsky’s model (Cs = 0.1), but clearly

the Smagorinsky’s model fails to capture any local variation of the model

parameter. Since the dynamic model does not predict any negative model

parameter values, its fails to predict any backscatter. However this may not

be the case if the numerical experiments were performed with successively

smaller grids as suggested in Rodi et al. (1997), but this is beyond the scope

of our current analysis.

6 Conclusions

Large Eddy Simulation is a useful tool for studing flows in disk drives. Our

simulations provide a rich data in terms of pressure and velocities. We have

also been successful in integrating the flow and stress solvers, and the stru-

cural response results agree quite well with the modal analysis.

In terms of the flow topology, we observe a highly complicated shear flow

with aperiodic vortex shedding in the wake of the arm. The turbulent eddies

are not dissipated completely by the time they complete one revolution. The

pressure fluctuations are rich in the low frequency (0-3 kHz) range and act

as low frequency excitations to the structures. The pressure drag on the arm

is two orders in magnitude larger than the viscous drag.

In terms of the response of the arm to the flow – the structure vibrates
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at frequencies corresponding to its first few modes. Due to the nature of

the model (i.e. the arm being modeled as a cantilever) the arm shows rela-

tively large vibrations in bending, which in turn contribute to the on-track

displacement. The vibrations that are more important to designers, (i.e. off-

track) correspond closely to the first sway mode, which in our case has a

frequency of 9.3 kHz. They display a mean displacement of about 2.19 nm

and a peak-to-peak amplitude of 2.18 nm.

On the topic of comparison of the two turbulence models, we note that

the complicated geometry of the disk drive enclosure does not lend itself

to fundamental turbulence analysis, e.g. kinetic energy spectra. However by

comparing a few quantities we are able to conclude that the two models are in

good agreement when comparing average flow quantities. It is often observed

that instantaneous values of primitive variables are fairly different but the

time scale of variation (and hence the frequency spectra) are remarkably

similar between the two LES models. The primary advantage of using the

dynamic model is that it does not use ad hoc methods to extrapolate stresses

at the wall – hence it may offer more realistic values for wall shear stress and

pressure.

In future stduies we will include the suspension and read-write heads.

Our analysis will still be incomplete due to the lack of any experimental

validation. We believe that experimental data coupled with our numerical

simulations will lead to a reliable and accurate understanding of the effects

of air-turbulence on the dynamics of hard disk drives.



REFERENCES 24

References

E. Lennemann. Aerodynamic aspects of disk files. IBM J. Res. Develop,

pages 480–488, 1974.

S. D. Abrahamson, John Eaton, and D. J. Koga. The flow between shrouded

co-rotaing disks. Physics of Fluids, 1(2):241–251, 1989.

J. A. C. Humphrey, C. A. Schuler, and D. R. Webster. Unsteady laminar flow

between a pair of disks corotating in a fixed cylindrical enclosure. Physics

of Fluids, 7(6):1225–1240, 1995.

H. Shimizu, M. Tokuyama, S. Imai, S. Nakamura, and K. Sakai. Study of

aerodynamic characteristics in hard disk drives by numerical simulation.

IEEE Transcations on Magnetics, 37(2):831–836, 2001.

H. Shimizu, T. Shimizu, M. Tokuyama, H. Masuda, and S. Nakamura. Nu-

merical simulation of positioning error caused by air-flow-induced vibra-

tion of head gimbals assembly in hard disk drive. IEEE Transcations on

Magnetics, 39(2):806–811, 2003.

N. Tsuda, H. Kobutera, M. Tatewaki, S. Noda, M. Hashiguchi, and

T. Maruyama. Unsteady analysis and experimental verification of the

aerodynamic vibration mechanism of hdd arms. IEEE Transcations on

Magnetics, 39(2):819–825, 2003.



REFERENCES 25

M. Tatewaki, N. Tsuda, and T. Maruyama. A numerical simulation of un-

steady airflow in hdds. FUJITSU Sci. Tech. J., 37(2):227–235, 2001.

J. D. Jr. Anderson. Computational Fluid Dynamics. McGraw-Hill, 1995.

J. P. Van doormaal and G. D. Raithby. Enhancements of the simple method

incompressible fluid flows. Numerical Heat Transfer, 7:147–163, 1984.

J. H. Ferzige and M. Peric. Computational Methods for Fluid Dynamics.

Springer, 2002.

J. H. Ferziger. Higher level simulations of turbulent flows in Compuational

methods for turbulent, transonic and viscous flows. 1983.

J. H. Ferziger. Simulation and modeling of turbulent flows. Cambridge Uni-

versity Press, 1996.

R. S. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual

Review of fluid mechanics, 16:99–137, 1984.

J. Smagorinsky. General circulation experiments with the primitive equa-

tions, i. the basic experiment. Monthly Weather Review, 91:99–164, 1963.

E. R. Van Driest. On turbulent flow near a wall. Journal of Aero. Science,

23:1007–1011, 1956.

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic sub-grid

scale eddy viscosity model. Physics of Fluids, A(3):1760–1765, 1991.



7 TABLES 26

D. K. Lilly. A proposed modification of the germano subgrid scale closure

method. Physics of Fluids, A(4):633–635, 1992.

R. D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and Applications of

Finite Element Analysis. John Wiley and Sons, third edition, 1989.

Hany M. Gross, Toru Watanabe, D. B. Bogy, and O. Savas. The effects of

e-block arm thickness on the airflow past the head stack assembly in a

modeled hard disk drive. CML Technical Report, 2002.

W. Rodi, J. H. Ferziger, M. Breuer, and M. Pourquie. Status of large eddy

simulation: Results of a workshop. ASME Journal of Fluids Engineering,

119:248–261, 1997.

7 Tables

Table 1: Material Properties of e-block arm
Young’s Modulus 69 GPa

Density 2710 kg/m3

Poisson’s Ratio 0.33

8 Figures
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Table 2: Natural Frequencies and mode shapes of the e-block arm
Mode Number Natural Frequency (kHz) Mode Shape
1 1.252 First Bending
2 5.529 Second Bending
3 7.768 First Torsion
4 9.387 First Sway
5 13.792 Third Bending
6 16.877 Second Torsion
7 24.398 Fourth Bending
8 25.292 Second Sway
9 28.103 Third Torsion
10 40.733 Third Sway
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Figure 1: Front view and Bottom view of CFD model
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Figure 2: Front view and 3D view of eblock arm

Figure 3: Mode 1: First Bending, 1.252 kHz

Figure 4: Mode 2: Second Bending, 5.529 kHz
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Figure 5: Mode 3: First Sway, 7.768 kHz

Figure 6: Mode 4: First Torsion, 9.387 kHz

Figure 7: Time averaged contours of azimuthal velocity
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Figure 8: Time averaged contours of radial velocity

Figure 9: Three dimensional view of streamtubes in the wake of the arm
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Figure 10: [h] Orientation of streamtubes relative to the midplane of the
model

Figure 11: Pressure Drag on the arm as a function of time. The dotted line
indicates the mean value
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Figure 12: Viscous Drag on the arm as a function of time. The dotted line
indicates the mean value

Figure 13: Frequency Spectrum of the Drag Force.
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Figure 14: Schematic of points where pressure fluctuations are reported.
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Figure 15: Waterfall plot showing the frequency content of pressure fluctua-
tions at 10 points along the face of the arm.
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Figure 16: Windage loss at disks as a function of time.

Figure 17: Off-track deflection of arm-tip (nanometers).
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Figure 18: On-track deflection of arm-tip (nanometers).
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Figure 19: Frequency Spectrum of off-track deflections.

Figure 20: Frequency Spectrum of on-track deflections.
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Figure 21: Out of plane (bending) deflections (nanometers).

Figure 22: Plot of trajectory of the arm tip in the hortizontal plane.
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Figure 23: Circle (A) and Radius (B-C) along which comparisons of LES
models are made.
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Figure 24: Comparison of velocities predicted by two models along circle A:
Dynamic model: full line, Smagorinsky’s model: dotted line.
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Figure 25: Comparison of velocities predicted by two models along radius
B-C: Dynamic model: full line, Smagorinsky’s model: dotted line.
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Figure 26: A comparison of pressure drag predicted by both LES models:
Observe that the dynamic model predicts higher drag.

Figure 27: A comparison of windage loss predicted by both LES models:
Observe that the dynamic model higher windage.
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Figure 28: A plot of the dynamic coefficient. Compare to standard value
used in the Smagorinsky’s model (Cs = 0.1)


