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Abstract 

A thermomechanical analysis is presented for an elastic semi-infinite solid in contact with a rigid 

rough surface characterized by fractal geometry. A piecewise-linear distribution of the contact 

pressure was obtained by the superposition of overlapping triangular pressure elements. The 

normal surface displacements caused by the contact pressure, shear traction, and thermoelastic 

distortion due to frictional heating are incorporated in the influence coefficients used in the 

matrix inversion method. Results for a smooth cylindrical surface sliding over a semi-infinite 

elastic medium demonstrate the accuracy of the analysis and provide a reference for comparison 

with the results obtained with the rough (fractal) surface. The effects of the surface topography 

and the interaction between neighboring asperity microcontacts on the surface and subsurface 

temperature rise and stress field of the elastic semi-infinite medium are discussed in the context 

of analytical results. The significance of frictional heating on the contact pressure, temperature 

rise, and stresses is interpreted in terms of the Peclet number and topography (fractal) 

parameters. The results provide insight into the likelihood for cracking and plastic flow at the 

surface due to the combined effects of mechanical and thermal surface loads. 

_________________________ 
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1. Introduction 

Frictional heating and the resulting temperature rise may significantly affect the mechanical 

response of interacting surfaces. Knowledge of the thermoelastic stresses in sliding solid bodies 

with rough surfaces is essential in failure analysis of mechanical systems. The determination of 

the thermal and thermoelastic fields in semi-infinite homogeneous media due to different surface 

heat sources has been the objective of several past studies. One of the pioneering analyses is 

attributed to Blok (1937) who examined the flash temperature and maximum surface temperature 

rise in a semi-infinite elastic body subjected to a uniform square heat source moving at high and 

low Peclet numbers. Jaeger (1942) extended the previous analysis to the intermediate regime of 

Peclet number. These early studies established the foundation of subsequent thermomechanical 

studies, both analytical and numerical. 

Based on a Green’s function method, Tian and Kennedy (1994) determined the surface 

temperature rise in a semi-infinite body due to different moving heat sources. Ju and Huang 

(1982) performed a thermomechanical analysis of homogeneous half-spaces subjected to a fast 

moving heat source and showed predominantly compressive stresses at the surface. Ju and 

Huang (1982) and Ju and Liu (1988) observed that the maximum thermal tensile stress occurs 

slightly below the trailing edge of the contact region at a depth controlled by the Peclet number. 

Leroy et al. (1989) conducted a two-dimensional analysis of a layered medium subjected to a 

translating heat source and reported high stresses in the surface layer when its thermomechanical 

properties differed significantly from those of the substrate. Ju and Farris (1997) obtained 

thermal and thermoelastic solutions in the frequency domain for an arbitrary heat source moving 

over an elastic half-space. Liu and Wang (2003) investigated the transient thermoelastic stress 
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fields generated in a half-space due to either a parabolic or irregularly distributed heat source 

moving at constant velocity.  

In the previous studies, the a priori assumed distribution of the heat sources was assumed to 

be unaffected by the mechanical response of the deformed medium. To consider the effect of 

frictional heating on contact deformation, it is necessary to account for the coupling of 

mechanical and thermal stresses. In view of the complex fully coupled thermomechanical contact 

problems, the majority of the earlier analyses have been based on the finite element method. 

Gupta et al. (1993) used a two-dimensional finite element model to study rolling and sliding over 

a semi-infinite medium under the assumption of invariant contact pressure. Cho and 

Komvopoulos (1997) investigated subsurface crack propagation using the finite element 

technique. Ye and Komvopoulos (2003) developed a finite element model to examine the 

simultaneous effects of mechanical and thermal surface traction on the deformation of elastic-

plastic layered media. Gong and Komvopoulos (2004) conducted a fully coupled finite element 

analysis of an elastic-plastic layered medium with a patterned surface in contact with an elastic-

plastic sphere. Wang and Liu (1999, 2000) introduced a two-dimensional thermoelastic contact 

model of two infinitely large rough surfaces that accounts for the thermal effect on the 

mechanical response, and Liu and Wang (2001) extended the previous analysis to a three-

dimensional thermomechanical model of non-conforming contacts.  

Although the previous studies have provided useful insight into the temperature and 

thermoelastic stress fields in solids subjected to either moving heat sources or sliding rough 

surfaces, analytical thermomechanical analysis for rough surfaces elucidating the dependence of 

the temperature and stress fields on the surface topography and Peclet number has not been 

reported yet. Therefore, the objective of this study was to develop a thermomechanical contact 
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model for semi-infinite media possessing fractal surface topographies that accounts for the 

simultaneous effects of thermal and mechanical deformations. Results are presented for the 

contact pressure distribution and surface and subsurface temperature and stress fields in terms of 

Peclet number and surface topography (fractal) parameters. The significance of mechanical 

surface traction and frictional heating on the propensity for yielding and cracking at the sliding 

surface are interpreted in light of numerical results. 

2. Surface Characterization 

Surface topography parameters based on traditional statistical theories depend on the sample 

length and instrument resolution. To overcome these limitations, the surface topography can be 

characterized by fractal geometry (Mandelbrot, 1983). The surface topography can be 

represented by the Weierstrass-Mandelbrot (W-M) function (Berry and Lewis, 1980), which 

exhibits continuity, non-differentiability, and self-affinity over a range of scale lengths, given by 

(Wang and Komvopoulos, 1994) 
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where L is the fractal sample length in the x direction, G is the fractal roughness parameter that is 

independent of frequency, D (1 < D < 2) is the fractal dimension that determines the contribution 

of high and low frequency components in the surface function (i.e., high values of D correspond 

to smooth surfaces), γ (γ > 1) is a scaling parameter (typically, γ = 1.5 (Komvopoulos and Yan, 

1997)), and n is a frequency index with ]log/)/int[log(max γ= sLLn  representing the upper limit 

of n, where int[…] denotes the integer part of the number in the bracket and Ls is the cut-off 

length. The scale-independent fractal parameters G and D can be determined experimentally 
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from a log-log plot of the structure function of the surface profile z(x) versus wavelength 

(Komvopoulos, 2000).  

3. Thermomechanical Contact Analysis 

Sliding friction leads to energy dissipation in the form of heat within the vicinity of the real 

contact area. The frictional heat dissipated is responsible for the temperature rise resulting in the 

development of thermal stresses and variations in the real contact area and contact pressure 

distribution due to thermal expansion. Because such changes affect heat generation rate and heat 

conduction across the contact interface, the thermal and mechanical stress and strain fields are 

fully coupled. Therefore, the determination of the thermal and mechanical fields must be 

determined simultaneously.  

3.1 Surface Deformation and Temperature Field 

Thermomechanical contact of two rough surfaces can be studied using the equivalent model 

of a rigid and adiabatic surface with roughness equivalent to the effective roughness of the two 

original surfaces in contact with a deformable semi-infinite medium possessing a smooth surface 

and effective material properties, as shown schematically in Fig. 1. Coulomb friction is assumed 

at the contact interface. The elastic medium is subjected to normal and tangential (friction) 

surface tractions, yielding a total normal load, P, in the z direction and a total tangential load, F = 

µP, in the x direction, where µ is the coefficient of friction. Frictional heat at each asperity 

microcontact is conducted into the elastic medium. Similar to the treatment of Carslaw and 

Jaeger (1959), coordinate system (x, y, z) fixed with the moving rough surface and system (x', y', 

z') fixed with the stationary elastic medium are used in the analysis. The two coordinate systems 

are related by  
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 zzVtxx ′=−′= , (2) 

where t is the time. The heat flux density due to frictional heat, q, is given by 

   pVq ηµ= , (3) 

where η is the fraction of mechanical work dissipated as heat, and p is the contact pressure. It is 

assumed that η = 1.0, i.e., nearly all the energy dissipated in a frictional contact is converted to 

heat, consistent with the conclusion of Uetz and Föhl (1978). Because the rough surface is 

modeled to be adiabatic, the generated frictional heat, q, is entirely conducted into the elastic 

medium. 

The normal displacement in sliding contact is due to the effects of contact pressure, shear 

traction, and thermoelastic distortion induced by frictional heating. Hence, the normal 

displacement at the surface, uz, can be expressed as, 
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where N
zu , S

zu , and T
zu  are the normal displacements due to the contact pressure, shear traction, 

and frictional heating, respectively. Each microcontact area is divided into a number of small 

segments of equal width, b. A piecewise-linear distribution of the contact pressure is obtained by 

superposition of overlapping triangular pressure elements (Johnson, 1985).  

The normal surface displacement due to the triangular pressure distribution shown in Fig. 

2(a) is given by (Johnson, 1985) 
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where p0 is the maximum contact pressure, E and ν are the elastic modulus and Poisson ratio of 

the semi-infinite solid, and C is a constant determined by choosing a point on the z axis at a 

distance d below the surface as a reference for the normal displacements. The surface 
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displacement in the z direction due to the triangular shear traction distribution shown in Fig. 2(a) 

is obtained as (Johnson, 1985) 
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where q0 is the peak value of the shear traction. A triangular distribution of a heat source moving 

from left to right at velocity V is shown in Fig. 2(b). For convenience, the following non-

dimensional parameters are introduced in the analysis, 
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The thermoelastic distortion at the surface due to a moving heat source of triangular distribution 

can be obtained by superposition of the moving line heat source solutions (Barber, 1984), which 

can be expressed as  
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where I0 is the modified zero-order Bessel function of the first kind, sgn(ξ) is a sign function of 

ξ, and λ is defined as 
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where Tq0  is the peak value of the heat flux, Pe is the Peclet number, defined as Vb/2κ, and 

α, ρ, c, and κ are the thermal expansion, mass density, specific heat, and thermal diffusivity of 

the semi-infinite solid medium, respectively. 

Therefore, the total surface displacement in the z direction can be obtained by summing the 

displacement components given by Eqs. (5), (6), and (8) at each microcontact and then 

integrating over all the asperity microcontacts comprising the real contact area, 

 ])()()([)(
1

1

1

xuxuxuxu j
i

T
z

j
i

S
z

N

i

M

j

j
i

N
zz

i

++= ∑ ∑
=

−

=

,  (10) 

where N is the total number of asperity microcontacts, Mi is the total number of segments in the 

ith asperity microcontact, and j
i

N
zu , j

i
S
zu , and j

i
T
zu  are the normal surface displacements at the 

ith asperity microcontact due to the triangular distributions of contact pressure, shear traction, 

and frictional heat, respectively, at the jth asperity microcontact. 

Since Tq0  and q0 can be expressed as functions of p0, i.e.,  

 0000 , pqVpq T µηµ == , (11) 

it follows that Eq. (10) represents a set of ∑
=

N

i
iM

1

 simultaneous equations that can be expressed 

in matrix form, 

 }}{{}{ PCUZ = , (12) 

where }U{ Z  is the matrix of the normal surface displacements, {P} is the contact pressure 

matrix, and {C} is square and symmetric matrix termed the influence coefficient matrix. A 

procedure based on the matrix inversion method, which is similar to that used by Bailey and 

Sayles (1991) to determine the subsurface stresses in rough surfaces subjected to both normal 

and tangential forces, was used to solve Eq. (12). Since both the contact pressure and the real 
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contact area are unknown, the following iteration procedure was used to solve Eq. (12). First, the 

initial surface displacement matrix {Uz} was determined by truncating the rough surface by a 

plane to a maximum surface interference, δmax, and the corresponding contact pressure was 

calculated from {P} = {C-1}{Uz}. Any triangular pressure elements exhibiting negative pressure 

violate the requirement p > 0 and were removed from the assumed contact region. Then, the 

surface displacement was recalculated using Eq. (12) and any overlapping points were added to 

the assumed contact region. With the new set of contact points, Eq. (12) was solved again to 

obtain the contact pressure {P}. This iteration procedure was repeated until conditions of (a) 

positive contact pressure, (b) no surface penetration, and (c) contact only within the current 

contact region were satisfied.  

Following an approach similar to that for a uniform band heat source (Carslaw and Jaeger, 

1959), the temperature rise due to a heat source of triangular distribution is found to be 
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where k is the thermal conductivity of the semi-infinite solid, and K0 is the modified zero-order 

Bessel function of the second kind. Therefore, the temperature rise at a point (x, z), obtained by 

superimposition, is given by 
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where )z,x(T j
i∆  is the temperature rise at the ith asperity microcontact due to the jth triangular 

distribution of heat flux. 

 

 



 10

3.2 Stress Field 

The stress field in the elastic semi-infinite medium due to contact with the rough surface can 

be obtained by superposition of the stress fields generated by the triangular distributions of 

contact pressure, shear traction, and heat flux at each microcontact. The stresses in the elastic 

solid due to a moving heat source with the triangular distribution shown in Fig. 2(b) were 

obtained in the frequency domain using spatial Fourier transformation, following an analytical 

approach similar to that of Ju and Farris (1997),  
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The spatial stress field due to frictional heating can be obtained by applying inverse Fourier 

transformation to the numerical solution derived in the frequency domain, i.e., 
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where σΤ and Tσ̂  denote thermal stress components in the spatial and frequency domains, 

respectively. The numerical thermoelastic stresses for a moving line heat source obtained with 

this method were found to be in good agreement with the analytical results of Barber (1984). 

Closed-form solutions for the stresses due to normal and shear tractions possessing triangular 

distributions have been obtained by Johnson (1985). Consequently, the stress at any point A(x, z) 

in the solid can be expressed as 
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where j
i

Nσ , j
i

Sσ , and j
i

Tσ  are the stresses at the ith asperity microcontact due to the jth 

triangular distributions of contact pressure, shear traction, and heat flux, respectively.  

4. Results and Discussion 

Numerical results are presented in this section for a semi-infinite medium with 

thermomechanical properties (Table 1) typical of carbon (Gong and Komvopoulos, 2004). 

Analytical solutions for a single asperity sliding over the semi-infinite are presented first to 

validate the algorithm and in order to establish a reference for comparison with the results 

obtained for a sliding rough surface, illustrating the effects of surface topography and interaction 

between neighboring asperities on the temperature and stress fields in the elastic medium. 

4.1 Single Asperity Sliding 

Numerical results for a rigid cylindrical asperity are contrasted with theoretical results in 

order to demonstrate the accuracy of the algorithm derived from the presented analysis. Figure 

3(a) shows the deformed surface of the elastic medium due to different loading conditions for 

δmax/R = 0.0075, where δmax is the maximum surface interference and R is the asperity radius. 
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The x and z coordinates were normalized by the half-contact width corresponding to pure 

indentation, ri. Normal contact produces a symmetric deformation surface profile, while normal 

and tangential traction (µ = 0.5) produce pile-up and sink-in at the rear and front of the contact 

region, respectively. Thermoelastic deformation enhances pile-up at the rear of the contact region 

due to frictional heating (Pe = 0.05). The good match between the deformed surface and the 

asperity profile within the contact region illustrates the accuracy of the thermomechanical 

contact algorithm. Figure 3(b) shows the contact pressure distribution for δmax/R = 0.0075. The 

contact pressure was normalized by the maximum contact pressure obtained under pure 

indentation, poi. The curves represent numerical results and the symbols theoretical results 

(Johnson, 1985). The contact pressure profile is not symmetric in the presence of shear traction. 

The peak contact pressure predicted by the theoretical solution and the present analysis occurs at 

x0/ri = 0.092 and 0.088, respectively. The good agreement between numerical and theoretical 

results for the contact pressure distribution indicates the accuracy of the piecewise-linear 

distribution of the contact pressure profile, obtained by the superposition of overlapping 

triangular pressure elements. For fixed surface interference, frictional heating induces larger 

contact area and higher contact pressure. This is expected because frictional heating causes 

thermal expansion due to the development of temperature gradients, which increases both the 

contact area and the contact pressure. 

The variation of the surface temperature distribution with the Peclet number is shown in Fig. 

4 for µ = 0.5 and δmax/R = 0.0075. In this figure, as well as in subsequent figures, the results are 

presented as a temperature rise from the room temperature, ∆T, normalized by kvqa πκ /2 , where 

qa is the average heat flux rate at the contact region (i.e., total heat flux divided by the contact 

area), and the x coordinate is normalized by the half-contact width, r. The surface temperature 
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increases significantly with the increase of the Peclet number. For Pe < 0.5, the surface 

temperature distribution is symmetric, while for Pe > 0.5 the maximum surface temperature 

shifts from the center toward the trailing edge of the contact region, in agreement with the result 

of Carslaw and Jaeger (1959) for a moving heat source and the three-dimensional numerical 

result of Gong and Komvopoulos (2004) for a spherical indenter sliding on a half-space medium. 

Following an approach similar to that for a uniform heat band source (Carslaw and Jaeger, 

1959), the temperature rise due to a moving heat band that is elliptically distributed over region 

bxb ≤≤−  was obtained as 
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Figure 4 shows that the normalized maximum temperature rise for Pe = 10 is equal to 2.59, 

which differs only by 0.4% from the theoretical solution obtained from Eq. (24). This confirms 

the accuracy of the present algorithm. To examine the dependence of the subsurface temperature 

field on the Peclet number, temperature contours for Pe = 0.05 and 5, µ = 0.5, and δmax/R = 

0.0075 are contrasted in Fig. 5. For relatively low Peclet number (Pe = 0.05), the temperature 

field is almost symmetric with respect to the contact region (Fig. 5(a)). However, for relatively 

high Peclet number (Pe = 5), the temperature field is greatly distorted and the maximum 

temperature occurs at the trailing edge of the contact region (Fig. 5(b)). In addition, the 

temperature field is significantly intensified with the increase of the Peclet number. 

The effect of frictional heating on the surface stress σxx is illustrated in Fig. 6 for µ = 0.5 and 

δmax/R = 0.0075. The surface stress σxx was normalized by the maximum contact pressure, p0, 

and the x coordinate by the half-contact width for the elastic case, r0. Frictional heating produces 

a profound decrease of the surface tensile stress at the trailing edge of the contact region (Pe = 

49). Such high Peclet number produces a compressive σxx stress in the wake of the contact 
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region, while in the absence of frictional heating the stress is tensile (elastic case). Therefore, 

surface cracking is less likely to occur under conditions promoting significant frictional heating.  

Figure 7 shows the effect of frictional heating on the subsurface von Mises equivalent stress, 

σM, for µ = 0.5 and δmax/R = 0.0075. (The same contour levels are used for comparison 

purposes.) The Mises stress was normalized by the maximum contact pressure, p0, and the x and 

z coordinates by the half-contact width obtained for the elastic case, r0. Frictional heating (Pe = 

49) intensifies the subsurface stress field. This is because the compressive stress field due to 

frictional heating enhances significantly the subsurface stresses below the contact region. The 

results shown in Fig. 7 are consistent with the finite element results of Ye and Komvopoulos 

(2003) that show an increase in the Mises stress due to frictional heating. The maximum value of 

σM/p0 in the thermoelastic case is equal to 1.42, which is 48% higher than that in the elastic case. 

The dimensionless maximum surface tensile stress, 0
max / pxxσ , and von Mises equivalent stress, 

0
max / pMσ , are plotted as a function of Peclet number in Fig. 8 for µ = 0.5 and δmax/R = 0.0075. 

The surface max
xxσ  stress decreases and the max

Mσ stress increases with the increase of the Peclet 

number due to the significant compressive stress induced by frictional heating. Hence, surface 

plasticity is more likely to occur than surface cracking under sliding conditions involving a high 

Peclet number. 

4.2 Rough Surface Sliding 

Unless otherwise stated, the numerical results for the case of rough surface sliding presented 

in this section are for δmax = 1.5 nm, L = 5 µm, D = 1.44, and G = 9.46 × 10-4 nm. For generality, 

results for the temperature rise are shown in dimensionless form, ∆T/(2qaκ/πkV).  
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Figure 9 shows the surface deformation of the elastic half-space due to sliding of a rough 

surface from left to right due to different types of loading. Figure 9(a) shows the establishment of 

four asperity microcontacts at the contact region. The high magnification of a segment of the 

surface profile shown in Fig. 9(b) demonstrates that the deformed surface follows very closely 

the contour of the rough surface. The exact match between the deformed surface of the half-

space and the rough surface illustrates the accuracy of the algorithm. For pure normal indentation 

(µ = 0) the total contact width is 23.6 nm, increasing to 28.8 nm with the occurrence of frictional 

heating (µ = 0.5 and Pe = 0.06). This is a consequence of the surface pile-up induced by 

frictional heating that increases the real contact area, especially at the trailing contact region 

where thermoelastic distortion is more pronounced.  

To illustrate the significance of frictional heating on the pressure distributions at asperity 

microcontacts, contact pressure results are shown in Fig. 10 for µ = 0.5 and Pe = 54. The four 

plots in Fig. 10 show the contact pressure distributions in the four contact segments shown in 

Fig. 9. The solid curves represent numerical results for the thermoelastic case and the 

discontinuous curves results for elastic sliding contact. The contact pressures and the 

microcontact areas in the thermoelastic case are larger than those in the elastic case. This is 

mostly pronounced at the fourth asperity microcontact (segment 4) due to the greater cumulative 

effect of frictional heating at the trailing contact region. 

Figure 11 shows the effect of the Peclet number of the distribution of the dimensionless 

surface temperature rise due to sliding (µ = 0.5). For convenience, the corresponding segments of 

the rigid rough surface are also shown at the top of Fig. 11. For low Peclet number (Pe = 0.06) 

the temperature at the front of the contact region is quite close to that encountered at the wake of 

sliding, i.e., the temperature distribution is almost symmetric within each microcontact region 
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(Fig. 11(a)). However, in the case of relatively high Peclet number (Pe = 6), the temperature rise 

at the wake of sliding is significantly higher than that at the contact front (Fig. 11(b)), consistent 

with the results obtained for the single-asperity case (Fig. 4). In addition, the surface temperature 

for Pe = 6 is much higher than that for Pe = 0.06, evidently due to the more pronounced effect of 

frictional heating. For both low and high Peclet numbers, the maximum temperature rise at the 

surface occurs at the second microcontact (segment 2) due to the correspondingly much larger 

contact area (Fig. 10). Conversely to the first and second microcontacts (segments 1 and 2, 

respectively), the temperature at the front of the third and fourth microcontacts (segments 3 and 

4, respectively) does not decrease to zero due to the more pronounce cumulative thermal effect at 

the trailing contact region.  

Contours of normalized temperature rise, ∆T/( kVqa πκ /2 ), in the subsurface of the semi-

infinite medium for Pe = 0.06 and 6, corresponding to the segments shown in Figs. 10 and 11, 

are contrasted in Fig. 12. It is noted that, for both low and high Peclet numbers, the maximum 

temperature rise at each microcontact always occurs at the surface. As expected, the temperature 

rises for Pe = 6 are much higher than those for Pe = 0.06. The appreciably higher temperature 

gradients produced with the higher Peclet number are responsible for the increase of the 

thermoelastic surface distortion and the intensification of the thermal stress. Comparison of Figs. 

12(a) and 12(b) shows a profound effect of the Peclet number on the subsurface temperature 

distribution. The temperature contours for Pe = 6 are significantly distorted compared to those 

for Pe = 0.06, which are fairly symmetric.  

The significance of the surface topography on the temperature rise can be interpreted in light 

of the dimensionless maximum temperature rise, ∆Tmax/( kVqa πκ /2 ), shown as a function of Pe 

and D in Fig. 13. The maximum temperature rise increases monotonically with the Peclet 
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number due to the increase of the frictional heat at the sliding interface. For given Peclet number 

and maximum surface interference, the maximum temperature rise increases with the decrease of 

the fractal dimension. This is due to the dependence of the dominant frequencies in the surface 

profile on the value of D. Smaller D values are associated with rougher surfaces yielding asperity 

microcontacts of smaller radius of curvature that produce higher mean contact pressures and 

smaller contact areas. For fixed Peclet number, smaller contact areas imply higher sliding speed. 

Thus, the combination of higher contact pressure and sliding speed, obtained with small D 

values, enhances frictional heating, which, in turn, leads to an increase in the temperature rise at 

the surface.  

Figure 14 shows the effect of frictional heating on the stress, σxx, at the surface of the semi-

infinite medium. Four asperity microcontacts are established at the contact interface, as shown in 

Fig. 9. The solid curves denote numerical results from the thermoelastic analysis for Pe = 54, 

while the discontinuous curves represent results from the elastic analysis of sliding contact. 

Frictional heating decreases the tensile stress at the trailing edge of each microcontact region and 

shifts the location of the maximum tensile stress slightly toward the trailing contact edge. Again, 

the largest differences between thermomechanical and mechanical results are encountered in the 

segment of the profile corresponding to the largest microcontact area (segment 2).  

Figure 15 shows contours of von Mises equivalent stress in the subsurface corresponding to 

the segments shown in Fig. 14. For clarity and comparison purposes, different contour levels are 

used for each microcontact stress field. Comparison of Figs. 15(a) and 15(b) shows that frictional 

heating increases the Mises stress, especially below the third and fourth microcontacts (segments 

3 and 4, respectively) due to the greater cumulative effect of frictional heating. The maximum 

von Mises stress in the thermomechanical case is equal to 7.01 GPa (Fig. 15(b)), which is 23% 



 18

higher than that obtained in the elastic analysis (Fig. 15(a)). The results shown in Fig. 15 are 

consistent with finite element simulation results of Ye and Komvopoulos (2003) demonstrating 

that the maximum Mises stress at each microcontact always occurs at the surface when the 

coefficient of friction is relatively high (e.g., µ = 0.5) and that frictional heating affects the 

location of the maximum Mises stress, as seen for the second microcontact in Fig. 15.  

The maximum tensile stress at the surface, max
xxσ , and maximum von Mises equivalent stress 

in the subsurface, max
Mσ , versus Peclet number are compared in Fig. 16. The max

xxσ  stress increases 

slightly with the increase of the Peclet number in the range of Pe < 20 due to the dominant effect 

of the increasing mean contact pressure. However, when Pe > 20, max
xxσ  decreases due to the 

dominant effect of the increasing compressive thermal stress, which is enhanced by the 

interaction of neighboring microcontacts. The fact that max
Mσ  increases when Pe > 20 suggests 

that the contribution of thermal stresses is comparable with that of the mechanical stresses. The 

small variations of max
xxσ and max

Mσ when Pe < 20 suggests that, at relatively low and intermediate 

values of the Peclet number, the stress field is dominated by the mechanical stresses and so the 

effect of thermal stresses due to frictional heating is secondary.  

5. Conclusions 

A thermomechanical analysis of sliding contact was presented for elastic semi-infinite solids 

with surface topographies characterized by fractal geometry. The effect of frictional heating on 

the contact pressure, temperature rise, and stress field was examined in terms of the Peclet 

number for the cases of a single asperity and a rough surface sliding over the elastic medium. 

Based on the presented results and discussion, the following main conclusions can be drawn. 
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(1) Frictional heating increases the contact area and contact pressure. This effect is mostly 

pronounced at asperity microcontacts located at the trailing edge of the contact interface 

where the cumulative effect of frictional heating is most pronounced. 

(2) The surface temperature distribution at a single asperity contact is fairly symmetric for low 

Peclet numbers (e.g., Pe < 1). However, the peak temperature shifts toward the trailing edge 

of the contact region for relatively high Peclet numbers (e.g., Pe > 2.5).  

(3) The maximum temperature at each microcontact always occurs at the surface and increases 

with the Peclet number. The intensification of the temperature gradients with the increase of 

the Peclet number is responsible for the increase of the thermoelastic distortion at the surface 

and the development of high thermal stresses. The increase of the Peclet number changes 

significantly the fairly symmetric subsurface temperature field at each microcontact obtained 

at low Peclet numbers (e.g., Pe = 0.06). The maximum temperature rise at the surface 

increases with the decrease of the fractal dimension. 

(4) At low Peclet numbers (Pe < 1) the stress field is dominated by mechanical stresses. 

Frictional heating decreases the maximum tensile stresses at the trailing edges of asperity 

microcontacts and slightly shifts their locations toward the trailing contact edge.  

(5) The von Mises equivalent stress is strongly affected by frictional heating, especially at 

microcontact regions close to the trailing contact edge where the highest thermal stresses are 

produced due to the cumulative heating effect. High friction (µ = 0.5) increases the 

maximum Mises stress at each microcontact and shifts its location at the surface. The 

increase of the Peclet number promotes surface plastic deformation and reduces the 

probability for surface cracking. 
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                       Table 1.  Thermomechanical properties of semi-infinite solid 
 

Property Magnitude 

Elastic modulus, E (GPa) 168 

Poisson’s ratio, ν  0.3 

Thermal expansion, α (K-1) 3.1 × 10-6 

Specific heat, c (J/g.K) 0.5 

Conductivity, k (W/m.K) 0.052, 0.52, 5.2 

Density, ρ (kg/m3) 2.15 × 103 

Diffusivity, κ (m2/s) 4.84 × (10-8, 10-7, 10-6)  
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List of Figures 

Fig. 1. Schematic representation of a rough (fractal) surface sliding over an elastic semi-

infinite medium and pertinent nomenclature.  

Fig. 2 Triangular distributions of (a) normal and tangential tractions and (b) heat source. 

Fig. 3 Dimensionless (a) surface displacement z/ri and (b) contact pressure p/p0i distribution of 

elastic semi-infinite solid subjected to different loadings by a rigid asperity (δmax/R = 

0.0075). 

Fig. 4 Dimensionless temperature rise ∆T/( kVqa πκ /2 ) at the surface of elastic semi-infinite 

solid due to sliding contact with a rigid asperity versus Peclet number (µ = 0.5 and 

δmax/R = 0.0075). 

Fig. 5 Contours of dimensionless temperature rise ∆T/( kVqa πκ /2 ) in the subsurface of elastic 

semi-infinite solid due to sliding contact with a rigid asperity (µ = 0.5 and δmax/R = 

0.0075): (a) Pe = 0.05 and (b) Pe = 5. 

Fig. 6 Dimensionless σxx/p0 stress at the surface of elastic semi-infinite solid due to sliding 

contact with a rigid asperity (µ = 0.5 and δmax/R = 0.0075). Solid and discontinuous 

curves represent elastic and thermoelastic (Pe = 49) results, respectively. 

Fig. 7 Contours of dimensionless von Mises equivalent stress σM/p0 in the subsurface of elastic 

semi-infinite solid due to sliding contact with a rigid asperity (µ = 0.5 and δmax/R = 

0.0075): (a) Pe = 0 and (b) Pe = 49. 

Fig. 8 Dimensionless maximum surface tensile stress 0
max / pxxσ and von Mises equivalent 

stress 0
max / pMσ for elastic semi-infinite solid in sliding contact with a rigid asperity 

versus Peclet number (µ = 0.5 and δmax/R = 0.0075). 
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Fig. 9 (a) Deformed surface and (b) segment of interfacial region of elastic semi-infinite solid 

subjected to different loadings by a rigid rough (fractal) surface (D = 1.44, G = 9.46 × 

10-4 nm, µ = 0.5, δmax = 1.5 nm, and Pe = 0.06). 

Fig. 10  Contact pressure on elastic semi-infinite solid in normal contact with a rigid rough 

(fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). Solid and 

discontinuous curves represent thermoelastic (Pe = 54) and elastic results, respectively. 

Fig. 11 Dimensionless temperature rise ∆T/( kVqa πκ /2 ) at the surface of elastic semi-infinite 

solid in sliding contact with a rigid rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 

nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0.06 and (b) Pe = 6. 

Fig. 12 Contours of dimensionless temperature rise ∆T/( kVqa πκ /2 ) in the subsurface of elastic 

semi-infinite solid in sliding contact with a rigid rough (fractal) surface (D = 1.44, G = 

9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0.06 and (b) Pe = 6. 

Fig. 13 Dimensionless maximum temperature rise ∆Tmax/( kVqa πκ /2 ) at the surface of elastic 

semi-infinite solid in sliding contact with a rigid rough (fractal) surface versus Peclet 

number and fractal dimension (G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). 

Fig. 14 Stress xxσ at the surface of elastic semi-infinite solid in sliding contact with a rigid 

rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). Solid 

and discontinuous curves represent thermoelastic (Pe = 54) and elastic results, 

respectively. 

Fig. 15 Contours of von Mises equivalent stress, σM, in the subsurface of elastic semi-infinite 

solid in sliding contact with a rigid rough (fractal) surface (D = 1.44, G = 9.46 × 10-4 

nm, µ = 0.5, and δmax = 1.5 nm): (a) Pe = 0 and (b) Pe = 54.  
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Fig. 16 Maximum tensile stress, max
xxσ , and von Mises equivalent stress, max

Mσ , at the surface of 

elastic semi-infinite solid in sliding contact with a rigid rough (fractal) surface versus 

Peclet number (D = 1.44, G = 9.46 × 10-4 nm, µ = 0.5, and δmax = 1.5 nm). 
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