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Abstract

A thermomechanicd andyss is presented for an dagtic semi-infinite solid in contact with a rigid
rough surface characterized by fractd geometry. A piecewise-linear didribution of the contact
pressure was obtained by the superpostion of overlapping triangular pressure dements. The
norma surface displacements caused by the contact pressure, shear traction, and thermoedagtic
digortion due to frictiond hesting are incorporated in the influence coefficients used in the
matrix inverson method. Results for a smooth cylindricd surface diding over a semi-infinite
elastic medium demondrate the accuracy of the anayss and provide a reference for comparison
with the results obtained with the rough (fractd) surface. The effects of the surface topography
and the interaction between neighboring asperity microcontacts on the surface and subsurface
temperature rise and dress fidd of the éagtic semi-infinite medium are discussed in the context
of andyticd results The dgnificance of frictiond heeting on the contact pressure, temperature
rise, and dresses is interpreted in terms of the Peclet number and topogrephy (fracta)
parameters. The results provide indght into the likelihood for cracking and plagtic flow a the

surface due to the combined effects of mechanical and therma surface loads.
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1. Introduction

Frictiond heating and the resulting temperaiure rise may dgnificantly affect the mechanica
response of interacting surfaces. Knowledge of the thermodadtic stresses in diding solid bodies
with rough surfaces is essentid in falure anadyss of mechanica sysems. The determination of
the theemd and themodadtic fidds in semi-infinite homogeneous media due to different surface
heat sources has been the objective of several past sudies. One of the pioneering anayses is
attributed to Blok (1937) who examined the flash temperature and maximum surface temperature
rse in a sami-infinite dadtic body subjected to a uniform square heat source moving & high and
low Peclet numbers. Jaeger (1942) extended the previous andyss to the intermediate regime of
Peclet number. These early studies established the foundation of subsequent thermomechanica
studies, both andlytica and numericdl.

Based on a Green's function method, Tian and Kennedy (1994) determined the surface
temperature rise in a semi-infinite body due to different moving heat sources. Ju and Huang
(1982) peformed a thermomechanica andyss of homogeneous hdf-spaces subjected to a fast
moving heat source and showed predominantly compressve dresses a the surface. Ju and
Huang (1982) and Ju and Liu (1988) observed that the maximum therma tensle stress occurs
dightly below the trailing edge of the contact region a a depth controlled by the Peclet number.
Leroy et a. (1989) conducted a two-dimensond andyss of a layered medium subjected to a
trandating heat source and reported high dresses in the surface layer when its thermomechanica
properties differed dgnificantly from those of the subsrate. Ju and Faris (1997) obtained
theemd and thermoelagtic solutions in the frequency domain for an arbitrary heat source moving

over an dadic hadf-space. Liu and Wang (2003) investigated the transent thermodastic stress



fidlds generated in a hdf-space due to ether a parabolic or irregularly distributed heat source
moving a condant velocity.

In the previous studies, the a priori assumed distribution of the heat sources was assumed to
be unaffected by the mechanica response of the deformed medium. To condder the effect of
friciond heeting on contact deformation, it is necessay to account for the coupling of
mechanica and thermd dresses. In view of the complex fully coupled thermomechanica contact
problems, the mgority of the earlier anayses have been based on the finite eement method.
Gupta et d. (1993) used a two-dimensond finite dement mode to study rolling and diding over
a smi-infinite medium under the assumption of invariant contact pressure. Cho and
Komvopoulos (1997) investigated subsurface crack propagation usng the finite eement
techniqgue. Ye and Komvopoulos (2003) developed a finite dement modd to examine the
smultaneous effects of mechanical and therma surface traction on the deformation of dadtic-
plagic layered media Gong and Komvopoulos (2004) conducted a fully coupled finite dement
andyss of an dadic-plagtic layered medium with a patterned surface in contact with an dadtic-
plagic sphere. Wang and Liu (1999, 2000) introduced a two-dimensond thermoelastic contact
model of two infinitdly large rough surfaces that accounts for the themd effect on the
mechanical response, and Liu and Wang (2001) extended the previous andysis to a three
dimensond thermomechanica modd of non-conforming contacts.

Although the previous sudies have provided ussful indgght into the temperature and
thermodagtic dress fidds in solids subjected to ether moving heat sources or diding rough
aurfaces, andyticd thermomechanicd andyss for rough surfaces ducidating the dependence of
the temperature and dress fields on the surface topography and Peclet number has not been

reported yet. Therefore, the objective of this study was to develop a thermomechanical contact



model for semi-infinite media possessng fractd surface topographies that accounts for the
gmultaneous effects of therma and mechanicd deformations. Results are presented for the
contact pressure distribution and surface and subsurface temperature and stress fidds in terms of
Peclet number and surface topogrephy (fractd) parameters. The dgnificance of mechanica
surface traction and frictional hegting on the propengty for yieding and cracking & the diding

surface are interpreted in light of numerica results.

2. Surface Characterization

Surface topography parameters based on traditiond datistica theories depend on the sample
length and indrument resolution. To overcome these limitations, the surface topography can be
characterized by fractd geometry (Manddbrot, 1983). The surface topography can be
represented by the Weierstrass-Mandelbrot (W-M) function (Berry and Lewis, 1980), which
exhibits continuity, non-differentiability, and sdf-affinity over a range of scae lengths, given by

(Wang and Komvopoulos, 1994)
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where L is the fractd sample length in the x direction, G is the fracta roughness parameter thet is
independent of frequency, D (1 < D < 2) is the fractal dimension that determines the contribution
of high and low frequency components in the surface function (i.e,, high vaues of D correspond
to smooth surfaces), g (g> 1) is a scaing parameter (typicdly, g = 1.5 (Komvopoulos and Yan,
1997)), and n is a frequency index with n,_, =intflog( L/L,)/logg] representing the upper limit
of n, where int[...] denotes the integer part of the number in the bracket and Ls is the at-off

length. The scde-independent fractd parameters G and D can be determined experimentdly



from a loglog plot of the gructure function of the surface profile z(x) versus waveength

(Komvopoulos, 2000).

3. Thermomechanical Contact Analysis

Siding friction leads to energy disspation in the form of heat within the vicinity of the red
contact area. The frictiond heat disspated is respongble for the temperature rise resulting in the
development of therma dresses and variations in the red contact area and contact pressure
digtribution due to thermd expanson. Because such changes affect heet generation rate and hesat
conduction across the contact interface, the therma and mechanical dtress and drain fidds are
fully coupled. Therefore, the determination of the themd and mechanicd fidds mus be

determined Smultaneoudy.

3.1 Surface Deformation and Temperature Field

Thermomechanical contact of two rough surfaces can be sudied usng the equivdent modd
of a rigid and adiabatic surface with roughness equivadent to the effective roughness of the two
origind surfaces in contact with a deformable semi-infinite medium possessng a smooth surface
and effective materid properties, as shown schematicdly in Fig. 1. Coulomb friction is assumed
a the contact interface. The dadic medium is subjected to norma and tangentid (friction)
surface tractions, yielding a total norma load, P, in the z direction and a total tangentid load, F =
nP, in the x direction, where m is the coefficient of friction. Frictiond heat a each asperity
microcontact is conducted into the eagtic medium. Smilar to the treatment of Cardaw and
Jaeger (1959), coordinate system &, vy, 2) fixed with the moving rough surface and system ', v/,
Z) fixed with the dationary dagtic medium are used in the andyds. The two coordinate systems

arerelated by



X=x-Vt z=2z( 2
wheret isthetime The heat flux densty dueto frictiona heet, g, is given by

q=hnpv, ®)
where h is the fraction of mechanica work disspated as heat, and p is the contact pressure. It is
assumed that h = 1.0, i.e, nearly al the energy disspated in a frictionad contact is converted to
heet, condgtent with the concluson of Uetz and Fohl (1978). Because the rough surface is
moddled to be adiabatic, the generated frictiond hedt, g, is entirdy conducted into the dadtic
medium.

The normd displacement in diding contact is due to the effects of contact pressure, shear
traction, and thermodadic digtortion induced by frictiond heating. Hence, the normd
displacement at the surface, u,, can be expressed as,

u, =ul+ud+ul, 4
where u), u’®, and u] are the normal displacements due to the contact pressure, shear traction,
and frictiond hedting, respectively. Each microcontact area is divided into a number of smal
segments of equa width, b. A piecewise-linear digtribution of the contact pessure is obtained by
superposition of overlgpping triangular pressure e ements (Johnson, 1985).

The normd surface displacement due to the triangular pressure didribution shown in Fig.

2(a) isgiven by (Johnson, 1985)
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where pp is the maximum contect pressure, E and n are the dastic modulus and Poisson ratio of

the semi-infinite solid, and C is a congtant determined by choosing a point on the z axis & a

dissance d bedow the surface as a reference for the normd displacements. The surface



disolacement in the z direction due to the triangular shear traction ditribution shown in Fig. 2(a)

is obtained as (Johnson, 1985)
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where (o is the pesk vaue of the shear traction. A triangular distribution of a heat source moving
from left to right a veocdty V is shown in Fg. 2(b). For convenience, the following non

dimensond parameters are introduced in the andysis,

’ h=—. (7)

The thermodagtic digtortion a the surface due to a moving heat source of triangular didribution

can be obtained by superposition of the moving line heat source solutions (Barber, 1984), which

can be expressed as
i
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where |y is the modified zero-order Bessd function of the firgt kind, sgn(x) is a sgn function of
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where g is the pesk vadue of the heat flux, Pe is the Peclet number, defined as Vb/2k, and

a,r,c, and k ae the theemd expanson, mass dendty, specific heat, and thermd diffusivity of
the semi-infinite solid medium, respectively.

Therefore, the totd surface digplacement in the z direction can be obtained by summing the
displacement components given by Egs. (5), (6), and (8) a each microcontact and then

integrating over al the asperity microcontacts comprising the real contact area,

u,()=8 &[u
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where N is the total number of asperity microcontects, M; is the total number of segments in the

) are the norma surface displacements a the
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ith asperity microcontact, and u_’
ith asperity microcontact due to the triangular distributions of contact pressure, shear traction,
and frictiona hest, respectively, at the jth agperity microcontact.

Since g, and go can be expressed as functions of py, i.e,,
o =hmpV, g, =mp,, (12)

N
it follows that Eq. (10) represents a set of é M, sSmultaneous equations that can be expressed

i=1
in metrix form,

{U.} ={C{P}, (12)
where {U,} is the matrix of the norma surface displacements, {P} is the contact pressure
matrix, and {C} is square and symmetric mairix termed the influence coefficient matrix. A
procedure based on the matrix inverson method, which is amilar to that used by Baley and
Sayles (1991) to determine the subsurface dresses in rough surfaces subjected to both normal

and tangentid forces, was used to solve Eq. (12). Since both the contact pressure and the real



contact area are unknown, the following iteration procedure was used to solve Eq. (12). Fird, the
initiad surface digplacement matrix {U;} was determined by truncating the rough surface by a
plane to a maximum surface interference, dmax, and the corresponding contact pressure was
cdculated from {P} = {C}{U,}. Any triangular pressure elements exhibiting negative pressure
violate the requirement p > 0 and were removed from the assumed contact region. Then, the
surface displacement was recdculated using Eqg. (12) and any overlgpping points were added to
the assumed contact region. With the new st of contact points, Eq. (12) was solved again to
obtain the contact pressure {P}. This iteration procedure was repeated until conditions of (@)
postive contact pressure, (b) no surface penetration, and (c) contact only within the current
contact region were satisfied.

Following an approach smilar to that for a uniform band heat source (Cardaw and Jaeger,

1959), the temperature rise due to a heat source of triangular digtribution is found to be

g, b
pk

DT =

Q- hpe P K {Pe(x +h)? +2 2]} dn, (13)

where k is the therma conductivity of the semi-infinite s0lid, and Ky is the modified zero-order
Besd function of the second kind. Therefore, the temperature rise at a point , z), obtained by

superimposition, is given by

NMgr
DT(x2)=8Q a DT|i’ (x,2), (14)

izl j=1
where DT|ij (Xx,z) is the temperature rise at the ith asperity microcontact due to the jth triangular

digtribution of hest flux.



3.2 StressField

The dress fidd in the dadtic semi-infinite medium due to contact with the rough surface can
be obtaned by superpodgtion of the dress fidds generated by the triangular digtributions of
contact pressure, shear traction, and heat flux a each microcontact. The dtresses in the éadtic
solid due to a moving hest source with the triangular didribution shown in Fg. 2(b) were
obtained in the frequency domain udng spatid Fourier trandformation, following an andyticd

gpproach smilar to that of Ju and Farris (1997),
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wherei =+- 1, and parametersb, by, by, and T, are defined as

b=V/k (18)
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The spatid dress fiedld due to frictiond heating can be obtaned by applying inverse Fourier

transformation to the numerica solution derived in the frequency domain, i.e,

sT(x,2) = Qj $T(w,z)e™ dw, 22)
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where sT and ST denote therma stress components in the spatid and frequency domains,
repectivdy. The numericd thermodadtic stresses for a moving line heat source obtained with
this method were found to be in good agreement with the analytica results of Barber (1984).
Closed-form solutions for the stresses due to norma and shear tractions possessing triangular
digtributions have been obtained by Johnson (1985). Consequently, the dtress a any point A(X, 2)

in the solid can be expressed as

s2=4 Als /(6D I D+s ) (x, 2, @)

i j=1

I are the stresses at the ith asperity microcontact due to the jth

where s N|ii : ss|ii , and sT|

triangular distributions of contact pressure, shear traction, and hegt flux, respectively.

4. Results and Discussion

Numericad results ae presented in this section for a semi-infinite medium with
thermomechanical properties (Table 1) typicad of carbon (Gong and Komvopoulos, 2004).
Andyticad solutions for a dngle asperity diding over the semi-infinite are presented first to
vdidate the dgorithm and in order to edablish a reference for comparison with the results
obtained for a diding rough surface, illudrating the effects of surface topography and interaction

between neighboring asperities on the temperature and stressfidds in the dastic medium.

4.1 Single Asperity Sliding

Numerical results for a rigid cylindricd asperity are contrasted with theoretica results in
order to demondrate the accuracy of the adgorithm derived from the presented andyss. Figure
3(@ shows the deformed surface of the dastic medium due to different loading conditions for

dmax/R = 0.0075, where dmax is the maximum surface interference and R is the asperity radius.
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The x and z coordinates were normdized by the haf-contact width corresponding to pure
indentation, r;. Norma contact produces a symmetric deformation surface profile, while norma
and tangentiad traction (m= 0.5) produce pile-up and snk-in a the rear and front of the contact
region, respectively. Thermodadtic deformation enhances pile-up at the rear of the contact region
due to frictiond hedating (Pe = 0.05). The good match between the deformed surface and the
agoerity profile within the contact region illustrates the accuracy of the thermomechanica
contact dgorithm. Figure 3(b) shows the contact pressure digtribution for dmax/R = 0.0075. The
contact pressuwe was normdized by the maximum contact pressure obtained under pure
indentation, poi. The curves represent numerica results and the symbols theoretica results
(Johnson, 1985). The contact pressure profile is not symmetric in the presence of shear traction.
The peak contact pressure predicted by the theoretica solution and the present andlysis occurs at
Xo/fi = 0.092 and 0.088, respectively. The good agreement between numerica and theoretical
results for the contact pressure digtribution indicates the accuracy of the piecewise-linear
digribution of the contact pressure profile, obtaned by the superpostion of overlapping
triangular pressure dements. For fixed surface interference, frictiond heating induces larger
contact area and higher contact pressure. This is expected because frictional hesting causes
therma expanson due to the development of temperature gradients, which increases both the
contact area and the contact pressure.

The variation of the surface temperature distribution with the Peclet number is shown in Fg.
4 for m= 0.5 and dnax/R = 0.0075. In this figure, as well as in subsequent figures, the results are

presented as a temperature rise from the room temperature, DT, normdized by 2q,k/pkv, where

Oa IS the average heat flux rate a the contact region (i.e, tota heat flux divided by the contact

ared), and the x coordinate is normdized by the hdf-contact width, r. The surface temperature
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increases dgnificantly with the increese of the Peclet number. For Pe < 05, the surface
temperature didribution is symmetric, while for Pe > 05 the maximum surface temperaiure
shifts from the center toward the tralling edge of the contact region, in agreement with the result
of Cardaw and Jeeger (1959) for a moving heat source and the three-dimensond numerica
result of Gong and Komvopoulos (2004) for a sphericad indenter diding on a haf-space medium.
Following an approach smilar to that for a uniform heat band source (Cardaw and Jaeger,
1959), the temperature rise due to a moving heat band that is dlipticdly distributed over region

- b £ x£ b wasobtained as

T
DT qukbC\ll /1_ h2e Pe(x+h)K0{ Pd (x +h)2 +7 2]1/2}dh ) (29)
p

Figure 4 shows that the normaized maximum temperature rise for Pe = 10 is equd to 2.59,
which differs only by 0.4% from the theoreticd solution obtained from Eqg. (24). This confirms
the accuracy of the present agorithm. To examine the dependence of the subsurface temperature
fiddd on the Peclet number, temperature contours for Pe = 0.05 and 5, m= 0.5, and dmax/R =
0.0075 are contrasted in Fig. 5. For rdatively low Peclet number (Pe = 0.05), the temperature
fidd is dmost symmetric with respect to the contact region (Fig. 5(a)). However, for rdatively
high Peclet number (Pe = 5), the temperature fidd is grealy distorted and the maximum
temperature occurs a the tralling edge of the contact region (Fig. 5(b)). In addition, the
temperature field is significantly intengfied with the increase of the Peclet number.

The effect of frictiond hesting on the surface dress Sy« isilludraed in Fg. 6 for m= 0.5 and
dmax/R = 0.0075. The surface stress sy was normdized by the maximum contact pressure, po,
and the x coordinate by the haf-contact width for the eastic case, ro. Frictiona heating produces
a profound decrease of the surface tendle dress at the trailing edge of the contact region (Pe =

49). Such high Peclet number produces a compressve Sy stress in the wake of the contact
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region, while in the absence of frictiond heating the dress is tendle (elagic case). Therefore,
surface cracking isless likely to occur under conditions promoting significant frictiona heating.

Figure 7 shows the effect of frictiond heating on the subsurface von Mises equivdent dress,
sm, for m= 05 and dmax/R = 0.0075. (The same contour levels are used for comparison
purposes.) The Mises dtress was normalized by the maximum contact pressure, po, and the x and
z coordinates by the haf-contact width obtained for the dagtic case, ro. Frictiond heating (Pe =
49) intendfies the subsurface dress fidd. This is because the compressve dress fidd due to
friciond heating enhances sgnificantly the subsurface dresses below the contact region. The
results shown in Fg. 7 ae condgent with the finite dement results of Ye and Konmvopoulos
(2003) that show an increase in the Mises dress due to frictional heeting. The maximum vaue of

Swm/po in the thermoelagtic case is equa to 1.42, which is 48% higher than that in the dadtic case.
The dimendonless maximum surface tendle dress, s ;° / p,, axd von Mises equivdent dress,

s v /p,, ae plotted as a function of Peclet number in Fig. 8 for m= 0.5 and dmax/R = 0.0075.

The surface s ;™ stress decreases and the s ;™ stress increases with the increase of the Peclet

number due to the dgnificant compressive dress induced by frictiond heating. Hence, surface
plagticity is more likely to occur than surface cracking under diding conditions involving a high
Peclet number.
4.2 Rough Surface Siding

Unless otherwise dated, the numericd results for the case of rough surface diding presented
in this section are for dmax = L.5nm, L =5 mm, D = 1.44, and G = 9.46 ~ 10™* nm. For generdlity,

results for the temperature rise are shown in dimensonless form, DT/(2g.k/pkV).
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Figure 9 shows the surface deformation of the dagtic hdf-gpace due to diding of a rough
surface from left to right due to different types of loading. Figure 9(a8) shows the establishment of
four asperity microcontacts & the contact region. The high magnification of a ssgment of the
surface profile shown in Fig. 9(b) demondrates that the deformed surface follows very cdosdy
the contour of the rough surface. The exact mach between the deformed surface of the half-
gpace and the rough surface illugtrates the accuracy of the dgorithm. For pure norma indentation
(m= 0) the totd contact width is 23.6 nm, increasing to 28.8 nm with the occurrence of frictiona
hesting (m = 0.5 and Pe = 0.06). This is a consequence of the surface pile-up induced by
frictiond hedting that increases the red contact area, especidly a the tralling contact region
where thermoeladtic distortion is more pronounced.

To illugrae the sgnificance of frictiona heating on the pressure didributions a agperity
microcontacts, contact pressure results are shown in Fig. 10 for m= 0.5 and Re = 54. The four
plots in Fig. 10 show the contact pressure digtributions in the four contact segments shown in
Fig. 9. The solid curves represent numericd results for the thermodagtic case and the
discontinuous curves results for dadic diding contact. The contact pressures and the
microcontact aress in the thermoelagtic case are larger than those in the dadic case. This is
mostly pronounced at the fourth asperity microcontact (segment 4) due to the greater cumulative
effect of frictiond heating a the trailing contact region.

Figure 11 shows the effect of the Peclet number of the didribution of the dimensionless
surface temperature rise due to diding (n= 0.5). For convenience, the corresponding segments of
the rigid rough surface are dso shown d the top of Fig. 11. For low Peclet number (Pe = 0.06)
the temperature at the front of the contact region is quite close to that encountered at the wake of

diding, i.e, the temperature didribution is admost symmetric within each microcontact region
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(Fig. 11(a). However, in the case of rdatively high Peclet number (Pe = 6), the temperature rise
a the wake of diding is sgnificantly higher than that at the contact front (Fig. 11(b)), consstent
with the results obtained for the sngle-asperity case (Fig. 4). In addition, the surface temperature
for Pe = 6 is much higher than that for Pe = 0.06, evidently due to the more pronounced effect of
frictiond hegting. For both low and high Peclet numbers, the maximum temperature rise & the
surface occurs at the second microcontact (segment 2) due to the correspondingly much larger
contact area (Fig. 10). Conversdly to the firs and second microcontacts (segments 1 and 2,
respectively), the temperature a the front of the third and fourth microcontacts (segments 3 and
4, respectively) does not decrease to zero due to the more pronounce cumulative therma effect at
the trailing contact region.

Contours of normalized temperature rise, DT/(2qg,k /pkV), in the subsurface of the semi-

infinite medium for Pe = 0.06 and 6, corresponding to the segments shown in Figs. 10 and 11,
are contrasted in Fig. 12. It is noted that, for both low and high Peclet numbers, the maximum
temperature rise a each microcontact aways occurs at the surface. As expected, the temperature
rises for Pe = 6 are much higher than those for Pe = 0.06. The appreciably higher temperature
gradients produced with the higher Peclet number are responsble for the incresse of the
thermodadtic surface digortion and the intendfication of the therma stress. Comparison of Figs.
12(a) and 12(b) shows a profound effect of the Peclet number on the subsurface temperature
digribution. The temperature contours for Pe = 6 are sgnificantly distorted compared to those
for Pe=0.06, which arefairly symmetric.

The ggnificance of the surface topography on the temperature rise can be interpreted in light

of the dimensonless maximum temperature rise, DTma/(20.k /pkV ), shown as a function of Pe

and D in Fg. 13. The maximum temperaure rise increases monotonicaly with the Peclet
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number due to the increase of the frictiona heat a the diding interface. For given Peclet number
and maximum surface interference, the maximum temperature rise increases with the decrease of
the fractd dimenson. This is due to the dependence of the dominant frequencies in the surface
profile on the vaue of D. Smdler D vaues are associated with rougher surfaces yieding asperity
microcontacts of smaler radius of curvature that produce higher mean contact pressures and
gmdler contact aress. For fixed Peclet number, smaler contact areas imply higher diding speed.
Thus, the combination of higher contact pressure and diding Speed, obtaned with smal D
vaues, enhances frictiond hesting, which, in turn, leads to an increase in the temperature rise a
the surface.

Figure 14 shows the effect of frictional hesting on the dress, sy, a the surface of the semi-
infinite medium. Four asperity microcontacts are established a the contact interface, as shown in
Fig. 9. The solid curves denote numerical results from the thermodadtic andyss for Pe = 54,
while the discontinuous curves represent results from the dadic andyss of diding contact.
Frictional heating decreases the tensle dress a the tralling edge of each microcontact region and
shifts the location of the maximum tendle dress dightly toward the tralling contact edge. Again,
the largest differences between thermomechanica and mechanical results are encountered in the
segment of the profile corresponding to the largest microcontact area (segment 2).

Figure 15 shows contours of von Mises equivaent stress in the subsurface corresponding to
the segments shown in Fg. 14. For cdarity and comparison purposes, different contour levels are
used for each microcontact stress field. Comparison of Figs. 15(a) and 15(b) shows that frictiona
hesting increases the Mises dress, especidly beow the third and fourth microcontacts (segments
3 and 4, respectivdly) due to the grester cumulative effect of frictiond heating. The maximum

von Misss sress in the thermomechanical case is equd to 7.01 GPa (Fig. 15(b)), which is 23%
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higher than that obtained in the dadtic andyss (Fig. 15()). The results shown in Fig. 15 are
consdgent with finite dement smulation results of Ye and Komvopoulos (2003) demongrating
that the maximum Mises dress a each microcontact dways occurs a the surface when the
coefficient of friction is rddivey high (eg, m = 05) and that frictiond heeting affects the
location of the maximum Mises stress, as seen for the second microcontact in Fig. 15.

The maximum tensle dress a the surface, s ., and maximum von Mises equivalent stress

in the subsurface, s i, versus Peclet number are compared in Fig. 16. The s [ stress increases
dightly with the increase of the Peclet number in the range of Pe < 20 due to the dominant effect
of the increasng mean contact pressure. However, when Pe > 20, s /™ decreases due to the
dominant effect of the increesng compressve thermd dress which is enhanced by the
interaction of neighboring microcontacts. The fact that s ™ increases when Pe > 20 suggests
that the contribution of thermd dsresses is comparable with that of the mechanicd dresses. The
and| varidions of s *and s ;*when Pe < 20 suggests that, at atively low and intermediate

vaues of the Peclet number, the dress fidd is dominated by the mechanicad sresses and o the

effect of therma stresses due to frictiond heating is secondary.

5. Conclusions

A thermomechanicd andyss of diding contact was presented for eagtic semi-infinite solids
with surface topographies characterized by fractd geometry. The effect of frictiond hesting on
the contact pressure, temperature rise, and sress fidd was examined in terms of the Peclet
number for the cases of a dngle asperity and a rough surface diding over the dagic medium.

Based on the presented results and discussion, the following main conclusions can be drawn.
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(1) Frictional heating increases the contact area and contact pressure. This effect is modtly
pronounced at asperity microcontacts located a the trailling edge of the contact interface
where the cumulative effect of frictiond heating is most pronounced.

(2) The surface temperature didribution & a sngle asperity contect is farly symmetric for low
Peclet numbers (eg., Pe < 1). However, the pesk temperature shifts toward the trailing edge
of the contact region for rdatively high Peclet numbers (e.g., Pe > 2.5).

(3) The maximum temperature a each microcontact aways occurs a the surface and increases
with the Peclet number. The intengfication of the temperature gradients with the increase of
the Peclet number is responsible for the increase of the thermodlagtic distortion at the surface
and the devdopment of high thermd dresses The increase of the Peclet number changes
sgnificantly the fairly symmetric subsurface temperature fidd at each microcontact obtained
a low Peclet numbers (eg, Pe = 0.06). The maximum temperaiure rise a the surface
increases with the decrease of the fractal dimension.

(4) At low Peclet numbers (Pe < 1) the dress fidd is dominaied by mechanica stresses.
Frictiond hegting decreases the maximum tensile stresses at the tralling edges of asperity
microcontacts and dightly shifts their locations toward the trailing contact edge.

(5 The von Mises equivdent dress is drongly affected by frictiond heating, especidly at
microcontact regions close to the trailing contact edge where the highest thermd Stresses are
produced due to the cumulative hedting effect. High friction (m = 0.5) increases the
maximum Mises dress a each microcontact and shifts its location & the surface. The
increese of the Peclet number promotes surface plagtic deformation and reduces the

probability for surface cracking.
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Table 1. Thermomechanical properties of semi-infinite solid

Property Magnitude
Elagtic modulus, E (GPa) 168
Poisson’sratio, n 0.3

Therma expansion, a (K1) 31" 10°
Specific heat, ¢ (JgK) 0.5
Conductivity, k (W/mK) 0.052, 0.52, 5.2
Density, r (kg/nt) 215" 10°
Diffusivity, k (mf/s) 4.84° (108, 107, 10°®)
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