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Abstract 

Surface cracking in a multi-layered medium due to sliding of a rigid asperity was analyzed using 

linear elastic fracture mechanics and the finite element method. Overlapping of the crack faces 

and assumptions about the distributions of surface tractions were avoided by using special 

contact elements. The main objectives of this study were to obtain solutions for the tensile and 

shear stress intensity factor (SIF) and to determine the crack propagation path in the first layer 

due to repetitive sliding. The crack propagation direction was predicted based on the maximum 

(tensile or shear) SIF range. The effects of crack length, sliding friction, and crack-face friction 

on the SIF and crack propagation direction are discussed in the context of finite element 

solutions. Simulation results demonstrate the effects of crack growth in the elastic surface layer 

on the accumulation of plastic strain in the elastic-plastic underlying layer and the significance of 

crack growth increment on the propagation path. It is shown that the surface crack propagates 

toward the layer interface at an angle of ~57 deg. from the original crack plane, independent of 

crack growth increment, in fair agreement with experimental observations. Based on the obtained 

results, a general fatigue approach for surface cracking is derived for multi-layered media 

subjected to repetitive sliding contact. 
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1. Introduction 

Coatings are often used to enhance the tribological performance and endurance of various 

components with contact interfaces. The wear resistance of hard protective coatings, such as 

ceramics, cemented carbides, and diamond-like carbon, greatly affects the reliability of many 

mechanical systems. However, the inherent high hardness of these materials is obtained at the 

expense of low fracture toughness. Consequently, contact fatigue and/or fracture of hard 

overcoats are dominant failure mechanisms in many mechanical systems subjected to continuous 

sliding contact, such as gear flanks, bearing surfaces, and hard disk drives. 

Contact analysis of layered media subjected to normal and tangential (friction) surface 

tractions has been the objective of numerous past studies. King and O’Sulllivan [1] investigated 

the plane-strain problem of a rigid cylinder sliding over an elastic layered half-space in both in-

plane and anti-plane (i.e., along the cylinder axis) directions and found a high tensile stress at the 

trailing edge of the contact region. Kral and Komvopoulos [2] performed three-dimensional 

finite element simulations of a rigid spherical indenter sliding against an elastic-plastic layered 

medium and discussed the likelihood of transverse (ring) crack formation at the surface in the 

wake of the indenter. Ring crack formation has been observed on glass along the wake of a 

sliding conical indenter [3] and on the surface of carbon-coated magnetic rigid disks subjected to 

microscratching [4]. Gong and Komvopoulos [5] used the finite element method to analyze 

normal and sliding contact of a rigid cylindrical asperity on a patterned elastic-plastic layered 

medium. The high surface tensile stress at the trailing edge of the contact region indicated a 

greater probability of surface cracking in patterned layered media compared to smooth-surface 

media. In a three-dimensional thermomechanical analysis of Gong and Komvopoulos [6], a high 

thermal tensile stress was predicted slightly below the trailing edge of the contact region, which 



 3

is considered to be responsible for the initiation of thermal cracking in the wake of sliding 

microcontacts. 

Although the contact stress/strain field in layered media has been extensively investigated, 

fracture mechanics studies are relatively sparse and limited to homogenous and brittle (elastic) 

half-spaces. Several fracture analyses of homogenous media [7-10] have shown that crack 

initiation is favored at the trailing edge of the contact region, where the maximum tensile stress 

arises during sliding. Beuth and Klingbeil [11] performed a plane-strain fracture analysis of an 

elastic thin film bonded to an elastic-plastic substrate and observed that substrate yielding 

increased the likelihood of film cracking due to the increase of the energy for crack growth in the 

film. Oliveira and Bower [12] studied fracture and delamination of thin coatings due to contact 

loading and reported a greater probability for fracture originating from flaws in the coating than 

the substrate or the interface. It was also found that the fracture load and crack pattern were 

strongly affected by the elastic property mismatch between the layer and the substrate materials. 

Surface crack growth due to repeated sliding contact resembles a fatigue process in which the 

crack propagation rate is proportional to a power of the stress intensity factor (SIF) range, ∆K. 

Experiments by Mageed and Pandey [13] have shown that the crack propagation direction due to 

mixed mode cyclic loading can be determined from the maximum tensile stress criterion, which 

depends on IK∆  and IIK∆ . Alfredsson and Olsson [14] performed experimental and numerical 

studies of normal contact fatigue caused by the formation of ring/cone and lateral cracks and 

discovered that surface crack growth occurred in the direction where the shear SIF was close to 

zero and that the propagation rate was dominated by IK∆ . Lin and Smith [15,16] conducted a 

finite element fatigue analysis of surface cracked plates and obtained results for the SIF and 

fatigue life. Ko et al. [17] studied both experimentally and analytically crack growth and wear 
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particle formation on sliding steel surfaces and reported that the analytical predictions for the 

wear particle size and wear volume were in fair agreement with experimental results. 

Despite valuable insight into surface cracking in thin coatings obtained from earlier studies, 

very little is known about the effect of plastic deformation in the underlying material (layer or 

substrate) on the growth direction of surface cracks. In addition, the effects of friction, initial 

crack length, and crack growth on the accumulation of plasticity in the underlying medium have 

not been considered in previous fracture mechanics analyses. Therefore, the objective of this 

investigation was to analyze surface cracking in a multi-layered medium due to repetitive sliding 

of a rigid asperity using the finite element method. SIF and crack propagation results are 

presented in terms of coefficient of friction at the contact region and crack interface and initial 

crack length. Another goal of this study was to develop a fracture mechanics approach that yields 

estimates of contact fatigue life for elastic-plastic multi-layered media undergoing surface 

cracking due to repetitive sliding contact.   

2. Modeling Procedures 

2.1 Problem Definition and Finite Element Model 

Normal and shear tractions produced between contacting rough surfaces are transmitted 

through asperity microcontacts with statistical distributions depending on the effective surface 

roughness, normal load, and material properties of the interacting surfaces. When the average 

asperity spacing is significantly larger than the mean microcontact size, interaction of the 

stress/strain fields of neighboring microcontacts is secondary [18] and the problem is simplified 

to that of a single asperity in contact with a layered medium. Figure 1 shows schematically an 

asperity sliding over a layered medium containing a crack of initial length ci perpendicular to the 
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free surface of the medium. The position of the asperity relative to the crack is denoted by yP 

(Fig. 1). 

Plane-strain sliding simulations were performed with a two-dimensional finite element mesh, 

such as that shown in Fig. 2(a), consisting of approximately 9,000 eight-node, isoparametric, 

quadrilateral elements (depending on the initial crack length and crack propagation path). The 

horizontal and vertical dimensions of the mesh are equal to 2.4R and 3.1R, respectively, where R 

is the radius of the rigid asperity (assumed constant in all simulations). The nodes at the bottom 

boundary of the mesh were constrained against displacement in the vertical direction, while the 

nodes at the left boundary were constraint against displacement in the horizontal direction. The 

mesh was refined at the surface in order to increase the accuracy in the calculation of the contact 

area and stress/strain field in the highly stressed surface layer. The mesh was further refined 

around the crack, as shown in Fig. 2(b) for a propagating crack. In the vicinity of the crack tip, 

the mesh consists of 36 eight-node, isoparametric, collapsed quadrilateral plane-strain elements 

with their midside nodes adjacent to the crack tip displaced to the quarter-point distance in order 

to simulate the square root singularity of the stress field at the crack tip [19,20]. Since the 

analysis is based on linear fracture mechanics, the crack-tip nodes were constrained to move 

together in order to prevent crack-tip blunting during crack growth.  

Special contact elements were used to model contact or separation between surface nodal 

points and the surface of the rigid asperity, based on the measurement of the relative distance of 

the two surfaces in the normal direction. If the obtained distance was less than the specified 

tolerance, it was assumed that contact was established and the appropriate contact force was 

applied at the corresponding node. The local surface overclosure (i.e., displacement of a nodal 

point at the surface of the deformable medium into the rigid surface) and relative slip were 
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obtained at each integration point of the contact elements. These kinematics were used in 

conjunction with appropriate Lagrange multiplier techniques to model surface interaction.  

To examine the accuracy of the finite element model, especially the mesh around the crack 

tip, the classical problem of an edge-cracked medium subjected to far-field tension in the 

direction perpendicular to the crack plane was solved using the finite element mesh shown in 

Fig. 2. The entire mesh was modeled as a homogeneous elastic material. The value of the mode I 

SIF obtained from the finite element analysis was found to differ from the analytical solution 

[21] by only 2.3 percent, indicating the suitability of the finite element model for fracture 

analysis. 

2.2 Material Properties and Plasticity Models 

The thickness, h, elastic modulus, E, and yield strength, σY, of each layer in the multi-layered 

medium are given in Table 1. These thickness and mechanical property values are typical of 

layers used in magnetic rigid disks consisting of carbon overcoat (layer 1), CoCrPt magnetic 

medium (layer 2), CrV underlayer (layer 3), and  NiP (layer 4) electroplated on Al-Mg substrate. 

The von Mises yield criterion was used to determine whether yielding occurred at a material 

point. The Mises yield condition, g, is expressed as  

 02
2 =−= kJg , (1) 

where k is a material constant, and J2 is the second deviatoric stress invariant given by  

 ijij SSJ
2
1

2 = , (2) 

where mijijijS σδσ −= , in which σij is the stress tensor, δ ij is Kronecker’s delta function, and σm 

is the mean octahedral stress (σm = σii/3).  

For uniaxial stress state, the yield criterion can be written as  
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where σM is the von Mises equivalent stress, and σY is the yield strength under uniaxial tension. 

Plastic deformation was based on the usual associated flow rule, assuming negligible plastic 

volume change. An updated Lagrangian formulation was used in all contact simulations. In the 

present model, the first layer was assumed to be elastic, while all the other layers were modeled 

as elastic-perfectly plastic. The equivalent plastic strain, pε , is obtained as 

 2/1]
3
2

[ p
ij

p
ijp dd εεε ∫Ω

= , (4) 

where Ω is the strain path, and p
ijε  denotes the components of the plastic strain tensor. The 

plastic flow rule was applied only to yielding material for which σM = σY. The usual elastic 

constitutive equations were used when σM  < σY.  

2.3 Calculation of Stress Intensity Factors  

In linear elastic fracture mechanics, the normal and shear stresses at the crack tip due to 

sliding contact can be expressed in terms of the tensile (mode I) and shear (mode II) SIFs, IK  

and IIK , respectively, defined as 

 ),(2lim
0

θσπ rrK yy
r

I
→

=  (5) 

 ),(2lim
0

θτπ rrK xy
r

II
→

= , (6) 

where r and θ are cylindrical polar coordinates and x and y are Cartesian coordinates at the crack 

tip (Fig. 1). Based on the method proposed by Chan et al. [22], the magnitudes of IK  and IIK  

were determined from linear extrapolation of least-square line fits to the yyσ  and xyτ  stress data 

calculated at ten nodes in the vicinity of the crack tip along the crack plane ( 0=θ ). The 
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accuracy of this method has been evaluated in an earlier finite element analysis of Komvopoulos 

and Cho [23] dealing with subsurface crack propagation in a half-space due to a moving asperity. 

2.4 Crack Growth Rate and Fatigue Life 

The crack growth rate was assumed to follow a power-law relationship [24] 

 mKA
dN
dc

)(∆= , (7) 

where N is the number of loading cycles (representing the number of asperity passes required for 

the crack to propagate by an infinitesimal distance, dc), and A and m are material constants. 

Integration of Eq. (7) yields a fatigue life relation,  

 ∫ ∫ ∆
=f f

i

N c

c mKA
dc

dN
0 )(

, (8) 

where Nf is the number of fatigue cycles required for the crack to grow from an initial length ci to 

a length cf. Since K∆  depends on the specific geometry, external loading, and crack length, it is 

not possible to obtain accurate estimates of fatigue life using Eq. (8). To circumvent this 

difficulty, an Euler integration algorithm was adopted in the numerical simulations,  

 [ ] rj
cKA
c

NN
m

j
jj ,,1,0

)(
1 L=

∆
∆

+=+  (9) 

and 

 ccc jj ∆+=+1 , (10) 

where cj is the crack length in the jth crack growth cycle, and c∆ is the crack growth increment, 

which is constant in each simulation. The effect of the crack growth increment on the crack 

propagation path is discussed in a later section. 
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2.5 Simulation of Sliding Contact and Crack Growth 

Simulations were performed with the finite element code ABAQUS (version 5.8). Each 

simulation consisted of three sequential steps. First, the rigid asperity was incrementally 

advanced into the medium to a specified depth and then displaced tangentially over the 

neighborhood of the surface crack by a distance approximately equal to eight times the half-

contact width. Finally, the asperity was unloaded following the same incremental path as for the 

loading. These simulation steps were repeated in the same order for several cycles in order to 

model repetitive sliding. To examine the dependence of the SIFs on friction, the coefficient of 

friction between the surface of the multi-layered medium and the asperity, µ, and the crack faces, 

µc, was varied between 0 and 0.5. In order to study the effect of the initial crack length on the 

SIF distributions and crack propagation direction, four initial crack lengths (i.e., ci/h1= 0.125, 

0.25, 0.5, and 0.875) were used in the finite element model. After each loading cycle, the mesh 

around the crack tip was modified to account for the growth of the crack by the specified 

increment in the direction of maximum tensile SIF range, max
σK∆ , determined during the 

particular loading cycle.  

To account for the deformation history effect on the SIF ranges, crack propagation, and 

evolution of plasticity in the second layer, the stress/strain state in the multi-layered medium 

generated after a given number of cycles was included in the subsequent loading cycle by using 

the following method. First, sliding of the asperity over the modified mesh was simulated with 

all the nodes of the kink faces locked together. Then, the nodes of the first kink were unlocked 

and asperity sliding over the medium was simulated again following exactly the same path. This 

procedure was repeated until all the kinks were unlocked sequentially. Finally, a new crack 

growth increment was simulated in the next sliding cycle. In view of the excessive computational 
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time of these crack growth simulations, only one initial crack length (ci/h1 = 0.25), but different 

crack growth increments, were modeled in this study. A simulation was terminated when the 

crack propagated very close to the interface of the first and second layers. 

3. Results and Discussion 

3.1 Crack Length Effect 

To obtain generalized solutions, the SIFs were normalized by 2P/πa1/2, where P is the normal 

force applied by the moving asperity, and a is the corresponding half-contact width. In addition, 

the asperity distance from the crack, Py , was normalized by the half-contact width, and the crack 

length by the thickness of the first layer, h1. Figure 3(a) shows IK  as a function of dimensionless 

asperity position and crack length for 5.0== cµµ . In all simulation cases, IK  assumes nonzero 

values only when the asperity passes over the crack ( Py /a > 0), apparently due to the effect of 

crack closure that is enhanced by the predominantly compressive stress field ahead of the sliding 

asperity. When the crack is just behind the trailing contact edge ( Py /a > 1), IK  increases rapidly 

to a peak value and then decreases gradually as the asperity moves further to the right of the 

crack. In addition, Fig. 3(a) reveals a strong dependence of IK  on crack length, indicating that 

the longer the crack, the higher the tensile stress at the crack tip. Moreover, the maximum IK  

increases with an increase in crack length and the corresponding asperity position occurs further 

to the right of the crack.  

The variation of IIK  with asperity position and initial crack length, shown in Fig. 3(b), is 

complex compared to that of IK . The range of IIK  increases with crack length; however, IIK  

decreases rapidly to zero after the asperity passes over the crack ( Py /a > 1). When the asperity 

slides over the crack region, the predominant mode changes from shear to tensile. However, a 
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comparison of the results shown in Figs. 3(a) and 3(b) shows that IIK∆  is significantly less than 

IK∆ , approximately by an order of magnitude. Hence, because the crack growth rate depends on 

K∆ (Eq. (7)), it may be inferred that crack growth is predominantly affected by the tensile mode.  

3.2 Sliding Friction Effect 

The stress field in the vicinity of the crack tip is strongly affected by the magnitude of 

friction traction at the surface. Figure 4 shows the variation of IK  and IIK  with asperity position 

and coefficient of friction at the contact region ( 1.0=µ , 0.25, and 0.5) for ci/h1 = 0.125 and µc = 

0. The increase of IK  and IIK  with friction coefficient is a consequence of the enhancement of 

the shear traction at the contact region and the higher stresses produced at the crack tip. The 

maximum value of IK  occurs as soon as the asperity slides over the crack, while that of IIK  

occurs when the asperity is over the crack. 

Figures 5 shows the effect of coefficient of friction between the crack faces on the variation 

of IK  and IIK  for ci/h1 = 0.125 and 5.0=µ . Figure 5(a) shows that IK  is not affected by the 

friction condition at the crack interface. This is expected because the magnitude of IK  is 

controlled solely by the σyy stress (Eq. (5)), which is not affected by the shear traction generated 

between the crack faces. Although the variation of IIK  with asperity position is qualitatively 

similar to that shown in Fig. 4(b), IIK  deceases with the increase of crack-face friction, which is 

opposite from the trend obtained with the increase of coefficient of friction at the contact 

interface. This behavior is attributed to reduced slip between the crack faces due to the increase 

of the coefficient of friction at the crack interface. Thus, crack-face friction promotes shear stress 

relaxation, in agreement with the fracture mechanics analysis of Komvopoulos and Cho [23] for 

subsurface crack growth parallel to the free surface of a homogeneous half-space. Since IK  is 
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significantly greater than IIK  (Figs. 4 and 5), it may be inferred that sliding friction exhibits a 

strong effect on the variation of the tensile and shear SIFs, whereas the effect of crack-face 

friction is relatively secondary.  

3.3 Crack Growth Direction 

The crack growth direction was determined based on the maximum shear or tensile SIF 

ranges. The dominance of the shear and tensile modes during crack growth depends on the 

maximum values of σK∆  and τK∆ , where σK  and τK  are given by [25] 

 ]sinKcosK[cosr)a/y,(K IIIP θ−
θθ

=πσ=θ θσ 2
3

22
2 2  (11) 

 )]cos(KsinK[cosr)a/y,(K IIIrP 13
2

2 −θ+θ
θ

=πσ=θ θτ  (12) 

Because of the dependence of KI and KII on asperity position (Figs. 3-5), σK  and τK  are 

functions of yP/a. The maximum tensile and shear SIF ranges, max
σK∆  and max

τK∆ , respectively, 

are defined as  

 ]max[)](max[ ** min,max,
max

θθσθθσσσ θ
==

−=∆=∆ KKKK  (13) 

 ]max[)]([max ** min,max,
max

θθτθθτττ θ
==

−=∆=∆ KKKK  (14) 

where subscripts max and min denote maximum and minimum values of σK  and τK , and θ* is 

a given value of θ , which varies between –180 and 180 deg. For fixed angle θ  = θ*, *max, θ=θσK  

and *min, θ=θσK were determined at different asperity positions during a sliding cycle. Then, the 

angle θ was varied between 180−  and 180 deg. to determine the maximum value of 

)( ** min,max, θ=θσθ=θσ − KK  , which is used to obtain max
σ∆K . The same procedure was used to 
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determine max
τK∆ . Based on this approach, the crack growth direction was determined from Eqs. 

(11)-(14). 

Figure 6 shows the variation of dimensionless σK∆  and τK∆  with angle θ and crack length 

for 5.0== cµµ . The increase of σK∆  and τK∆  with crack length is a consequence of the 

increase of KI with crack length and the relatively small contribution of KII (Fig. 3). The fact that 

the maximum values of σK∆  are higher than those of τK∆  indicates the dominance of the 

tensile mode in the crack growth process. Moreover, the maximum values of σK∆  occur at an 

angle 10≈θ deg. independent of crack length, suggesting that crack propagation will occur 

toward the sliding direction. Figure 7 shows the initial crack propagation direction, i.e., first 

deviation (kink) angle, θ1, as a function of initial crack length for 5.0== cµµ . The data 

indicate a greater tendency for shorter cracks to propagate initially toward the sliding direction 

than longer cracks. 

3.4 Crack Propagation 

To examine the evolution of crack-tip stresses, development of crack growth path, and 

accumulation of plastic deformation in the underlying layer, results are presented in this section 

for ci/h1 = 0.25 and 5.0== cµµ . Crack propagation was simulated based on the crack growth 

direction predicted based on the maximum tensile SIF range, assuming a certain crack growth 

increment. As explained in section 2.5, the stress and strain fields produced in a given crack 

growth cycle were updated in the subsequent cycle in order to simulate continuous crack growth 

by taking into account the stress/strain history effect.  

Figure 8 shows the effect of crack growth cycles on the variation of dimensionless IK  and 

IIK  with dimensionless asperity position for 8/1hc =∆ . In each cycle, the crack propagated by 
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an increment ∆c in the direction of max
σK∆ . Figure 8(a) shows that the variation of IK  with 

asperity position is qualitatively similar to that shown in Fig. 3(a). However, crack growth causes 

the increment of IK∆ initially to increase and then to exhibit small fluctuations with further crack 

growth, which are attributed to variations in the crack growth direction as the crack propagates 

deeper into the first layer, discussed in detail below. In addition, crack growth produces nonzero 

IK  values even when the asperity is to the left of the crack and causes the maximum value of 

IK∆ to occur at a greater distance of the asperity from the crack. These phenomena are attributed 

to the effect of crack face separation (either partial or complete) and the mixed mode crack 

growth. As discussed earlier, the appreciably lower values of IIK , by an order of magnitude, 

compared to those of IK  (Fig. 8(b)) reveal a dominant effect of the tensile mode in crack 

propagation. Indeed, in all crack growth cycles it was found that max
σK∆ > max

τK∆ . Table 2 gives 

normalized max
σ∆K  in terms of deviation angle at each crack growth cycle, ∆θ, total deviation 

angle from the initial crack direction (perpendicular to the surface), θtotal, and corresponding 

crack growth cycle. max
σ∆K was calculated from the results of IK  and IIK , shown in Fig. 8, using 

Eqs. (11) and (13). The data given in Table 2 confirm that crack growth leads to an increase in 

max
σ∆K and crack propagation direction at 57≈θ deg. 

To examine the dependence of the crack growth direction (i.e., direction of max
σ∆K ) on the 

magnitude of crack growth increment, crack paths obtained for ∆c = h1/4, h1/8, and h1/16, ci/h1 = 

0.25, and 5.0== cµµ  are compared in Fig. 9. It is interesting to note that, after the first or 

second crack increments, the crack growth paths become almost parallel to each other, showing a 

common deviation angle from the direction normal to the free surface of ~57 deg. This suggests 
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that the crack growth increment does not affect the crack propagation direction. The obtained 

crack growth path is consistent with experimental observations of Ko et al. [17] according to 

which, crack growth commences at an angle of ~30 deg. with respect to the sliding direction, i.e., 

60 deg. from the direction normal to the surface versus 57 deg. predicted in the present study. 

Moreover, the simulated crack propagation toward the interface is in qualitative agreement with 

numerical results reported by Oliveira and Bower [12] for fracture of thin coatings due to contact 

loading. 

3.5 Fatigue Life Model  

The finite element results presented above can be used in conjunction with the Euler 

integration algorithm discussed in section 2.4 to derive a contact fatigue model. While in the 

finite element simulations the crack grows by an increment ∆c in each asperity passage, in reality 

crack growth commences after several asperity passes. To model this phenomenon using the 

simulation results, it is assumed that ∆Kmax (either tensile or shear, depending on which is larger) 

remains constant during crack propagation by ∆c, and the actual number of asperity passes, i.e., 

fatigue cycles, is calculated from Eq. (9). To demonstrate this approach, a graphite substrate 

coated with a pyrolytic carbon layer was selected for analysis because it consists of an elastic 

(hard/brittle) carbon layer and an elastic-plastic (soft/ductile) graphite substrate. The fatigue 

properties of pyrolytic carbon, 19=m  and 1918 )m(MPa m/cycle1086.1 −−×=A , quoted from 

the study of Ritchie and Dauskardt [26], were used in the calculations. The normalized number 

of fatigue crack growth cycles, *N , is given by 

 ∑
=

∆
=

π
≡

n

j
m
j

m

D
hc
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h
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N
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where N is obtained from Eqs. (9) and (10), and )/2/()( 2/1max aPcKD jj πσ∆=  is the normalized 

SIF range. Figure 10 shows the variation of normalized crack length, c/h1, with *N  for 

25.0/ 1 =hc i  and 8/1hc =∆ . The very steep slope of the fatigue curve observed after the first 

few crack increments is indicative of the brittle behavior of pyrolytic carbon. 

3.6 Evolution of Crack-Tip Stresses 

Results for the stress field at the crack tip, obtained at different stages of the simulated crack 

growth process, are presented next for 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ . Figure 11 

shows contours of von Mises equivalent stress in the vicinity of the crack tip produced in the first 

crack growth cycle. When the crack is adjacent to the trailing edge of the contact region 

( 261.a/yP = ), it remains fully open (Fig. 11(a)) and the intensified stresses at the crack tip 

produce the maximum value of IK  shown in Fig. 3(a). However, when the asperity slides further 

to the right ( 885.a/yP = ), the crack faces move closer to each other (stress relaxation) and the 

size of the high-stress region at the crack tip decreases (Fig. 11(b)). This crack behavior is 

attributed to the high tensile stress at the trailing edge of the contact region (sliding friction 

effect), which decreases rapidly with the increase of the distance from the contact edge. Since the 

high stresses at the crack tip occur remote from the interface during the initial stage of crack 

growth, the crack-tip stresses do not affect the accumulation of plastic deformation in the second 

layer during sliding contact. 

Figure 12 shows contours of von Mises equivalent stress in the eighth crack growth cycle, 

revealing remarkable changes in the stress field at the crack tip due to the propagation of the 

crack close to the interface. Conversely to the initial stage of crack growth, Fig. 12(a) shows that 

the crack remains partially open when it is close to the trailing edge of the contact region 
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( 261.a/yP = ), while Fig. 12(b) shows that the crack opens fully when the asperity moves 

further to the right ( 522.a/yP = ). This behavior is consistent with the fact that the maximum 

value of IK  in this case occurs at 522.a/yP =  (Fig. 8(a)) and is a consequence of the change of 

the crack propagation direction. In addition, the high-stress region at the crack tip is very close to 

the interface, affecting the stresses in the second layer. The large stress discontinuities at the 

interface (Fig. 12(b)) are due to the significant elastic modulus mismatch of the two layers. The 

intensification of the stress field in the second layer as the crack propagates closer to the 

interface affects the deformation in the second layer adjacent to the interface. This phenomenon 

is discussed in detail in the following section.  

3.7 Development of Plasticity in the Second Layer 

The effects of crack length, friction at the contact region and crack interface, and sliding 

cycles on the deformation of the elastic-plastic second layer are examined in this section. It is 

noted that for the loading conditions and layer material properties used in this study, the 

deformation in the third and fourth elastic-plastic layers is purely elastic. Thus, stress/strain 

results for these layers are not presented here for the sake of brevity.  

Figure 13(a) shows the maximum equivalent plastic strain, max
pε , in the second layer versus 

dimensionless asperity position and crack length for 5.0== cµµ . In all cases, max
pε increases as 

the asperity slides over the multi-layered medium in a similar fashion, reaching a steady state at a 

distance from the crack approximately equal to five times the half-contact width. The results 

show that the accumulation of plasticity does not depend on the (initial) crack length, evidently 

because the high-stress field at the crack tip is far away from the interface (when the crack is 

relatively short) to affect deformation in the second layer. Thus, the crack effect on the 
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propensity for plastic flow in the second layer is negligible until the crack tip reaches a distance 

less than h1/8 from the interface, as shown by the simulation results. The location of max
pε in the 

second layer is always at the interface with the first layer below the asperity and shifts along the 

interface as the asperity slides over the medium, in agreement with a previous finite element 

analysis of normal and sliding contact of a rigid cylindrical asperity on a patterned elastic-plastic 

layered medium [5].  

Figure 13(b) shows the variation of max
pε in the second layer with dimensionless asperity 

position and coefficient of friction at the contact region and crack interface for 125.0/ 1 =hc i . As 

the asperity slides on the surface of the multi-layered medium, max
pε increases monotonically, 

exhibiting a trend similar to that shown in Fig. 13(a). As expected, max
pε intensifies with the 

increase of coefficient of friction at the contact region due to the pronounced effect of the surface 

shear (friction) traction on the subsurface stress field. However, the effect of crack-face friction 

is negligible because it only affects the stress field at the crack tip, which, in this case, is far 

away from the interface to affect the stress state in the second layer. Therefore, only friction at 

the contact region affects the accumulation of plasticity in the second layer when the crack tip is 

remote from the layer interface. 

Figure 14 shows contours of pε in the second layer obtained in the eighth crack growth cycle 

for two asperity positions, 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ . When the crack is just 

behind the trailing edge of the contact region ( 261.a/yP = ), the crack is partially closed and 

max
pε arises below the crack tip, adjacent to the interface with the first layer (Fig. 14(a)). 

However, when the asperity moves further away from the crack ( 522.a/yP = ), the crack opens 
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fully, while max
pε occurs again below the crack tip close to the interface (Fig. 14(b)). This differs 

from the results of previous crack growth cycles showing that max
pε shifts along the interface 

under the moving asperity. This finding provides additional evidence for the effect of crack-tip 

stresses on the evolution of plasticity in the second layer.  

In the case of multiple asperity contacts, knowledge of the accumulation of plasticity in the 

multi-layered medium is of particular importance. The results of the present analysis can be used 

to examine the evolution of plasticity in the second layer due to multi-asperity contacts with 

spacing larger than the average contact width. Figure 15(a) shows max
pε in the second layer versus 

dimensionless asperity position for different crack growth cycles, 25.0/ 1 =hc i , 8/1hc =∆ , 

and 5.0== cµµ . A gradual increase in max
pε occurs when the asperity slides over the medium 

and with the increase of crack growth cycles (i.e., crack propagation). The increments of 

max
pε decrease with increasing crack growth cycles because the crack tip is remote from the 

interface to affect the development of plasticity. However, in the eighth crack growth cycle, a 

sharp increase in max
pε is encountered when the asperity slides over the crack due to the small 

distance of the high-stress region at the crack tip from the interface. To better illustrate the effect 

of crack-tip stresses on the evolution of plastic deformation in the second layer, the increment of 

maximum plastic strain, max
pε∆ , is plotted as a function of number of (simulated) crack growth 

cycles, n, in Fig. 15(b). The decrease of max
pε∆  up to the seventh crack growth cycle reveals the 

dominant effect of repetitive sliding, while the sharp increase of max
pε∆  in the eight crack growth 

cycle, i.e., when the crack propagates very close to the interface, illustrates the effect of the 
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crack-tip stresses on plastic flow in the second layer, within a small region close to the interface 

with the first layer.  

While the present analysis provides insight into surface cracking in elastic-plastic multi-

layered media subjected to cyclic loading, the obtained results can be used to discuss possible 

failure mechanisms. For instance, when the crack propagates to the interface, failure may occur 

due to delamination along the weaker interface, resulting in the formation of a sheet-like wear 

particle. Assuming that the fatigue life is dominated by crack growth in the first layer, i.e., layer 

debonding occurs rapidly after the crack reaches the interface, the fracture approach presented in 

this study can be used to estimate the loading cycles required to form a wear particle. However, 

in the case of high interfacial strength, the crack may propagate into the second layer, where it 

may become inactive or shear eventually toward the surface to produce a wear particle, as in the 

case of homogeneous media [17], depending on the stress field. Crack growth in the elastic-

plastic second layer can be accomplished with appropriate modification of the finite element 

mesh used in this analysis. 

4. Conclusions 

Surface cracking in a multi-layered medium containing a crack perpendicular to the free 

surface due to repetitive sliding of a rigid asperity was analyzed using linear elastic fracture 

mechanics and the finite element method. Based on the presented results and discussion, the 

following main conclusions can be drawn from this study. 

1. The significantly higher values (by an order of magnitude) of the tensile stress intensity 

factor, IK , than those of the shear stress intensity factor, IIK , obtained in all simulation 

cases indicate that surface cracking in the multi-layered medium due to sliding contact is 

controlled by the tensile fracture mode.  
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2. Longer surface cracks produce significantly higher IK  values and marginally different IIK  

values. Higher friction at the sliding contact region increases both IK  and IIK  significantly 

due to the strong effect of the surface shear traction on the crack-tip stresses. The increase of 

friction at the crack interface promotes stress relaxation that decreases the magnitude of IIK ; 

however, the effect on IK  is negligible. 

3. Based on the maximum tensile stress intensity range, max
σK∆ , initial crack growth was found 

to occur at an angle of ~10 deg. from the original crack plane, independent of initial crack 

length. Although the crack length effect on the crack growth direction is negligible, the effect 

on the magnitudes of max
σ∆K  and max

τ∆K is significant. 

4. After the first few (1-3) crack growth increments, the crack growth paths obtained with 

different propagation increments become almost parallel to each other, exhibiting a common 

deviation angle from the original crack plane of ~57 deg., in fair agreement with 

experimental observations.  

5. Crack growth increases the magnitudes of IK  and σK∆ . An approach for estimating the 

contact fatigue life due to surface crack growth in multi-layered media was derived from the 

finite element results, and its application was demonstrated by fatigue crack growth results 

obtained for a graphite substrate coated with a pyrolitic carbon layer. 

6. The effect of initial crack length on plastic deformation in the elastic-plastic second layer is 

negligible because the crack-tip stresses do not reach the layer interface. The effect becomes 

significant only when the crack propagates very close to the interface, a distance 

approximately less than one-eighth of the first layer thickness. The coefficient of friction at 
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the contact (sliding) region exhibits a dominant effect on the plastic strain accumulating in 

the second layer, while the effect of crack-face friction is insignificant.  

7. The maximum plastic strain in the second layer increases rapidly as the crack tip approaches 

the interface due to the effect of the high-stress field at the crack tip. This causes the 

maximum plastic strain in the second layer to arise always below the crack tip adjacent to the 

interface rather than below the sliding asperity, as found for uncracked elastic-plastic layered 

media in earlier studies.  
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Table 1.  Thickness and material properties of each layer in the multi-layered medium 

Layer h/R E (GPa) σY (GPa) 

1 0.025 260 - 

2 0.078 130 2.67 

3 0.4 140 2.58 

4 2.6 160 2.67 

 

Table 2.  Current crack deviation angle, total deviation angle, and maximum  
tensile stress intensity factor range versus crack growth cycle for 25.0/ 1 =hc i , 

8/1hc =∆ , and 5.0=µ=µ c  

Crack growth cycle  ∆θ (deg.) θtotal(deg.) )/2/( 2/1max aPK π∆ σ  

1 11 11 0.5342 

2 28 39 0.7462 

3 18 57 0.9947 

4 -8 49 1.0256 

5 8 57 1.1281 

6 -8 49 1.1416 

7 8 57 1.2397 

8 -6 51 1.2778 
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List of Figures 

Fig. 1 Schematic of a cylindrical rigid asperity sliding over a layered medium with a crack 

perpendicular to the free surface.  

Fig. 2 (a) Finite element discretization of a multi-layered medium with a surface crack, and 

(b) refined mesh in the vicinity of the propagating surface crack. 

Fig. 3 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 

versus dimensionless asperity position, a/yP , and dimensionless crack length, 1/ hc i , 

for 5.0== cµµ . 

Fig. 4 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 

versus dimensionless asperity position, a/yP , and friction coefficient at the 

asperity/multi-layered medium contact region, µ, for 125.0/ 1 =hc i  and 0=cµ . 

Fig. 5 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 

versus dimensionless asperity position, a/yP , and crack-face friction coefficient, cµ , 

for 125.0/ 1 =hc i  and 5.0=µ . 

Fig. 6 Dimensionless tensile and shear stress intensity factor ranges σK∆  and τK∆ , 

respectively, versus angle measured from the original crack plane, θ, for 5.0== cµµ : 

(a) 125.0/ 1 =hc i and 0.25, and (b) 5.0/ 1 =hc i  and 0.875. 

Fig. 7 Crack deviation angle in the first crack growth increment, θ1, versus normalized initial 

crack length, 1/ hc i , for 5.0== cµµ . 
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Fig. 8 Dimensionless tensile and shear stress intensity factors, IK  and KII, respectively, 

versus crack growth cycle and dimensionless asperity position, a/yP , for 

25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ . 

Fig. 9 Simulated crack paths for crack growth increment ∆c = h1/4, h1/8, and h1/16, 

25.0/ 1 =hc i , and 5.0== cµµ . 

Fig. 10 Dimensionless crack length, hc / 1, versus dimensionless number of estimated fatigue 

crack growth cycles, N*, for pyrolytic carbon-coated graphite, 25.0/ 1 =hc i , 

8/1hc =∆ , and 5.0== cµµ . 

Fig. 11 Contours of von Mises equivalent stress, σΜ, in the vicinity of the crack tip obtained in 

the first crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , and 

dimensionless asperity position (a) 261.a/yP =  and (b) 885.a/yP = .  

Fig. 12 Contours of von Mises equivalent stress, σΜ, in the vicinity of the crack tip obtained in 

the eighth crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , and 

dimensionless asperity position (a) 261.a/yP =  and (b) 522.a/yP = . 

Fig. 13 Maximum equivalent plastic strain, max
pε , in the elastic-plastic second layer versus 

dimensionless asperity position, a/yP : (a) ci/h1 = 0.125, 0.25, 0.5, and 0.875 

and 5.0== cµµ , and (b) ci/h1 = 0.125, µ = 0.1, 0.25, and 0.5, and µc = 0 and 0.5. 

Fig. 14 Contours of equivalent plastic strain, pε , in the elastic-plastic second layer obtained in 

the eighth crack growth cycle for 25.0/ 1 =hc i , 8/1hc =∆ , 5.0== cµµ , and 

dimensionless asperity position (a) 261.a/yP =  and (b) 522.a/yP = .  
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Fig. 15 (a) Maximum equivalent plastic strain, max
pε , in the elastic-plastic second layer versus 

dimensionless asperity position, a/yP , for different simulated crack growth cycles, and 

(b) increment of maximum equivalent plastic strain, max
pε∆ , in the elastic-plastic second 

layer versus number of simulated crack growth cycles, n. (The results shown in (a) and 

(b) are for 25.0/ 1 =hc i , 8/1hc =∆ , and 5.0== cµµ ). 
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