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Abstract

This report is concerned with digital track following control of hard disk drives with
dual stage actuation. The dual stage actuator considered in this study consists of a
voice coil motor (VCM) as the first stage actuator and a piezoelectric transducer (PZT)
as the second stage actuator. The second stage actuator is introduced to enlarge the
control bandwidth. The number of sectors for embedded servo must be determined so
that the sampling rate of the position error signal is consistent with the desired servo
bandwidth. Such a sampling rate is applied to the PZT servo loop, but the VCM servo
loop does not have to be closed at the same rate. Namely, the VCM servo loop may be
closed at a slower rate to reduce the total amount of computation without a significant
deterioration of track following performance. Such multi-rate implementations of digital
control algorithms are considered. Analysis is based on lifting. The effectiveness of
the proposed multi-rate implementation schemes is demonstrated by simulations and

experiments.

Multi-rate Digital Control, Computation Saving, Lifting , Performance Analysis, Dual

Actuator and Hard Disk Drives



1 Introduction

A practical multi-rate controller design deals with the following problem: the plant output is
sampled at a limited frequency and the controlling input is updated at a faster frequency to
achieve better performance. One classic example is the single actuator disk file system, where
the position error signal(PES) sampling frequency is limited by the number of sectors and
the rotating speed[1]. Another practical case is a plant consisting of multiple actuators with
different bandwidths. In this case, it may make sense that the control inputs are updated
at slow sampling rates for low bandwidth actuators and at fast sampling rates for the high
bandwidth actuators. Finally, multi-rate control can be used when the control algorithm in
a single loop controller can be separated into fast modes and slow modes [9]. In this case,
it is natural to update the slow mode controller at a slow sampling frequency and the fast
mode controller at a fast sampling frequency. The multi-rate design goal here is to achieve a
low cost solution via computation saving. A multi-actuator example is the dual actuator disk
file system where the plant consists of two actuators: coarse and fine actuators. The coarse
actuator is low bandwidth but has a large stroke; the voice coil motor (VCM) is the most
popular coarse actuator. The fine actuator is high bandwidth but has a small stroke; The
piezoelectric transducer(PZT) is a popular fine actuator[4]. One example for the controller
mode separation is the single actuator disk file system where the digital controller consists
of digital integrator and lead-lag phase compensator. The slow mode controller corresponds
to the digital integrator and the fast mode corresponds to the digital phase compensator.
Multi-rate design and analysis have been widely studied for achieving better performance[1],[2].

In [2], the plant output is sampled at a limited frequency and the multi-rate design is to de-
sign a state estimator working at a fast sampling frequency after the original plant output is
interpolated by repetition. In [3], the multi-rate design is similar to [2] and the output sensi-
tivity function is computed for evaluating disturbance rejection. In [5], the lifting technique

is used to reduce the multi-rate discrete-time problem to a norm-equivalent discrete-time
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Figure 1: Dual Actuator Servosystem

problem, to which standard methods can be applied. More lifting based multirate control
can be found in[10] and [11]. In [8], a multi-rate design method for computation saving is
proposed by approximating the slow sampling frequency path at a fast sampling frequency.
This report will explore the multi-rate scheme from the view point of computation saving.
The remainder of this report is organized as follows. Section 2 presents two cases of
multirate control for computational saving. Section 3 analyzes the multirate system via the
lifting technique. Section 4 presents the performance analysis for disturbance rejection in
the multi-rate system. Section 5 demonstrates an application example, dual actuator track
following control of a hard disk drive with experimental results. Concluding remarks are

given in section 6.

2 Multirate Control for Computational Saving

In this section, two cases of multirate control for computational saving are presented. The
two cases are presented for control of the recording head of hard disk drives(HDD), but
similiar cases may be easily found in other motion control problems.

Magnetic hard disk drive storage technology continues to experience a dramatic areal
density growth of 60% every year [13] and the future density will reach levels as high as
100Gb/in?. Very narrow data tracks are required in order to obtain such high densities.
High bandwidth servo is necessary for track following with such a narrow track pitch. Dual
actuator servo(Fig.1) is one way to enlarge the servo bandwidth. Dual actuator disk servo

consists of two actuators: a coarse and a fine actuator. The coarse actuator is low bandwidth
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Figure 2: Block Diagram of Dual Actuator Servo System for Hard Disk Drive

with a large stroke, and the voice coil motor (VCM) is the most popular coarse actuator; the
fine actuator is high bandwidth with a small stroke, and the piezoelectric transducer(PZT)
is a popular fine actuator.

The dynamics of the VCM and PZT are represented by Pycas(s) and Ppzr(s) , respec-
tively. The control block diagram for the dual actuator servosystem becomes as depicted
in Fig.2. In the figure, the digital controller for VCM and that for PZT are represented by
Cvem(z) and Cpyzr(z), respectively. Note that the input to Cyeon(z) and Cpzr(2) are both
the position error signal. In view of the high bandwidth nature of PZT, a logical question is
whether the PZT controller and VCM controller need to be updated at the same frequency.
As will be revisited by experiments in the later section, there is no significant degradation of
performance if the VCM controller is updated at a frequency lower than the PZT controller.
If the VCM controller is updated at a slow rate, the block diagram of Fig. 2 is modified to
the one in Fig. 3. In the figure, D and I represent decimation and interpolation respectively,
and m denotes the multirate ratio. The decimator picks up the position error signal at every
m instances of the fast sampling frequency ff(:Tif), and the VCM controller is updated at
the slow rate ff/m(:%s). The interpolator converts the VCM output defined at the slow
rate to the fast rate by repetition. Cycp(2™) must be obtained so that its input output
characteristics remains close to that of Cycpr(2). One method to achieve this is summarized

below.
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Figure 3: Multirate Implementation of Dual Actuator Servosystem

Step 1. Obtain a state space realization of Cycp(2). Denote it as:

z(k+1) = Acz.(k)+ Bee(k) (1)
Uper (k) = Coxo(k) + Dee(k)

where e(k) and wuyen (k) are the position error signal and the output of the VCM controller

at the k-th fast sampling instance. Notice that Cycpr(2) and Eq.2 are related by:

CVC’M(Z) = CC(ZI — AC)_lBC + D, (2)

Obviously, the choice of {A., B.,C. and D, } is not unique given Cycpr(2).
Step 2. Assume that the input to Cycp(2) does not change from the fast sampling

instance mk to mk +m — 1. Then, from Eq. 2,

ze(m(k+1)) = Alz.(mk)+ i AT B e(mk + ) (3)

=0
m—1

= ATz.(mk) + (Z A™ 1B Ye(mk)
=0

uc.(mk) = C.x.(mk)+ D.e(mk)
Step 3. Applying z-transformation to Eq. 3:
m—1
Cvenr(2™) = Co(2™I =AM (Y AP'B,) + D, (4)
§=0

Remark 1. Notice from Eqs.2 and 4 that the order of the VC'M controller remains the

same whether it is updated at a fast rate or a slow rate. This implies that the total amount
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of computation is on average significantly reduced by implementing the V' C' M controller at a
slow rate. The computation saving, however, is not uniform over m consecutive fast sampling
instances: at k = mj(j = 0,1,2,...), the amount of computation to implement Eq. 4 is as
much as that to implement Eq. 2, and at other time instances k& # mj, no computation is
performed. This nonuniform nature may be overcome by introducing the idea of interlacing,
which will be stated after Remark 2 below.

Remark 2. If the original controller is expanded by partial fraction expansion, i.e.

Cvem(z) = Cvemn(2) + Cvema(2) + .. + Cvenn(2) (5)

it is possible to apply the three step procedure above to each block in the right hand side
of Eq .5. Furthermore, it is also possible to apply different update rates to each block. For
example, implement the first two blocks at a fast rate and the remaining block at a slow rate
with a multirate ratio of m. In this case, the three step procedure is applied only to the

blocks implemented at the slow rate.

2.1 Multirate Control with Interlacing

Assume that the multirate ratio m is selected so that the VCM controller Cycps(2) may be

naturally decomposed to m blocks: i.e.

CVCM(Z) = CVCMI(Z) + CVCMQ(Z) + ...+ CVCMm(Z) (6)

where n. = ng + Nea + ... + Nem, ne is the order of Cyeop(2) and ng; is the order of

Cvewmi(z)(i=1,2, ...,m). Obviously
Nomaz = mzax(nci) < ne (7)
Applying the three step procedure, the controller for the slow sampling rate is

Cvom(2™) = Cvoumi (2™) + Cvoma(2™) + ... + Cvonm(2™) (8)



Figure 5: Slow rate Implementation of Cycjy/(2) with Interlacing

This controller can be implemented as illustrated in Fig. 4. Instead of updating Cycu;(2™)(1=1,2,..,m)
all at the same sampling instances, Cycp(2™) may be updated one block at a time at fast
sampling instances: i.e. update Cycoy; at k = mj+i— 1(j = 0,1,2,...). This is an inter-
lacing operation, and the controller implementation diagram becomes as shown in Fig. 5.
In this implementation, the amount of computation required at each fast sampling instance
is equivalent to or less than that of implementing an n,,.,-th order digital controller, and
compuation saving is more uniform by distributing computation among each fast sampling

point.

Position Error Disturbance(d)

+ Signal y
I —®— Cyou(2) [P ZOH [ Pycy(s) Héhﬂ

Figure 6: VCM Driven HDD Servosystem
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Figure 7: Frequency Response of VCM

2.2 Decomposition of Controller to Fast-mode and Slow-mode Com-
ponents [8]

Dynamic controllers normally have slow dynamics and fast dynamics. For example, in

PID(Proportional plus Integral plus Derivative) Control, I-action represents slow dynam-

ics and D-action represents fast dynamics. As an example, consider a VCM-driven HDD

servo system depicted in Fig. 6. The controlled plant Py ¢y (s) (a suspension carriage assem-

bly driven by VCM) is characterized by the the frequency response is Fig. 7. For a sampling

period of 99us, one digital controller to achieve design objectives is :

(2 — 0.9971)(z — 0.9387)2 ;
(z — 0.9999) (2 — 0.9987)(z + 0.2142) (9)

CVCM(Z) = 7.5¢e4
Notice that this controller can be expanded as:

Cvem(z) = Cyveomi(z) + Cveoma(z) + Cveoms(z) + Kp (10)

5.19¢2 _975¢2  —8.20e4
- 7.5¢4 1
> 09999 | 209987 2102142 ¢ (11)

In this expansion, the first two blocks represent slow dynamics and it is expected that they can
be updated every other sampling instances without a significant performance degradation.
Then, a multirate implementation of the controller with interlacing becomes as depicted in

Fig.8. Notice that the multirate ratio in this implementation is 2. Since each of Cycpi(i =
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Figure 8: Multirate Implementation of Digital Controller

1,2,3) is a first order block, two first order blocks are updated at every sampling instance.
If the controller is implemented at a single rate, three first order blocks must be updated at
each sampling instance. This implies that the multi-rate implementation saves computation
by about 33%. See Wu and Tomizukal9] for further aspects of multirate implementation of
digital controllers after decomposition to fast-mode and slow-mode components. In [9], a

guideline for classifying dynamic modes to slow and fast components is given.

3 Analysis of Multi-rate Systems via Lifting

An important performance measure of feedback control system is rejection characteristics
of disturbances, i.e. sensitivity. A convenient method for sensitivity analysis of multirate
systems is based on lifting[5]. Lifting converts the multi-rate system to an equivalent single
rate system, the sampling frequency of which is the slow rate. In this section, lifting of

various subsystems in multi-rate systems for computation saving is presented.

3.1 Lifting of the Controlled Plant(Actuator)

Consider a plant(actuator) where the input and the output are related by the following

equation:
y(k) = P(z)u(k) (12)

where 2z is one-step advance operator corresponding to a fast sampling frequency %f Assume
that the multi-rate ratio is m. Then, the lifted input U(k) and output Y (k) at the slow rate

are:



u(mk)
u(mk + 1)

| u(mk +m —1)

y(mk)
y(mk + 1)

Y (k) = | (14)

| y(mk +m —1) |

Notice that the Hy norm of a signal remains unchanged after lifting. Let state space repre-

sentation of P(z) be:

=
B
_|_
=
I

Ax(k) + Bu(k) (15)

<

—~
=

~—
I

Cux(k) + Du(k) (16)

Then, the lifted input and output vectors, U (k) and Y (k), are related by the transfer function

maxtrix[6].

c
CA
P(zm) = | M= AT ATTIB A 2B L AB B (17)
_CAm_l_
D 0 0 T
CB D 0
CAB OB D
+
| cAm2B CA™B . . . D |
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Figure 9: Lifting of Slow-Rate Block

3.2 Lifting of Controllers

3.2.1 Lifting slow rate block (no interlacing)

Figure 9 shows the lifting of slow rate block which does not involve interlacing. The error

signal is decimated before being fed to the controller C'(2™) and the slow rate control input

u(k) interpolated by repetition. The lifted control input U(k) is related to the lifted error

signal E(k) by:

where E(k) is given as:

e(mk)
e(mk + 1)

11

| e(mk+m —1) |

(18)

(19)
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Figure 10: Lifting Interlacing Block
3.2.2 Lifting slow rate block (interlacing)

Figure 10 shows the lifting of slow rate block which involves interlacing. The lifted control

input U(k) is related to the lifted error signal E(k) by:

Ci(z™) 27™mCy(2™) ) c o 2TCn (™) ]
Gz Go(zm) ZmC(em) .. mC(Em)

vy =| B(k)  (20)
| o) ) C e Calm)

3.2.3 Lifting fast rate block

The relation between lifted input signal E(k) and U(k) for the fast rate block (Fig. 11) can
be obtained by following the procedure explained for the plant dynamics in 11T A. For this
purpose, the controller C'(z) must be expressed in the state space form {A., B, C., D.}. Al-

ternatively, C'(z) may be expressed in the impulse response form and decomposed as follows.

12
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Figure 11: Lifting Fast Rate Block

u(mk) C(z)e(mk) (21)
(D cli)z)e(mk)
7=0
Z c(ml)z ™ + Z c(ml 4+ 1)z~ ™D 4 4 Z (ml +m — 1)z (" =Dle(mk)
1=0 1=0 1=0
m—1
2 ciz")ze(mk)
1=0
Co(z™)e(mk) + z " Cy(z™)e(mk +m — 1) + ...
+2 "Chyre(mk +m — (m — 1))
Thus, the lifted input and output are related by:
Co(2™)  2z7™Cp1(2™) : 27™mCh(2™)
Ci(2™) Co(2™) 27 "Ch1(2™) 2 ™mCy(2™)
U(k) E(k) (22)
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3.3 Overall System in Lifted Space

A general multirate control system is an interconnected control blocks and plants(actuators).
The control blocks may be implemented in fast sampling rate, slow sampling rate without
interlacing or slow sampling rate with interlacing and the plants(actuators) are operating
at fast sampling rate. The lifting can be applied to this general multirate control system as
follows. First, the plants are lifted to slow rate system and the corresponding transfer matrices
are given by applying Eq. 17. Second, the slow rate control blocks without interlacing and
with interlacing can be lifted to slow rate control blocks using Eq. 18 and 20, respectively.
Next, the fast rate control blocks are converted to slow rate control blocks via lifting by
applying Eq. 17 for {A., B.,C., D.} or Eq. 22. Finally, the lifted plants and control blocks
can be combined into one transfer matrix via the interconnection. Figure 12 shows such an
example: i.e. the lifted dual actuator HDD block diagram with multi-ratio 2. Cycarr(2?),
Cpzrr(2%), Pyewp(2?) and Ppgrr(2?) denotes the lifted VCM slow rate controller, the lifted
PZT high rate controller, the lifted high rate VCM and PZT plants, respectively. Figure 13
shows a lifted system with multi-ratio 2 by combining all the controllers and plants into a
transfer matrix M.

The stablility and performance of the original multirate system can be analyzed through
its lifted single slow rate system. Notice that lifting is 2-norm invariant transformation and
the stability of the original multirate system can be checked by examing the stability of the
single slow rate lifted system. Details about the stability analysis for multivariable system
can be found in [15].

Remark 3. Recall that in our proposed multirate control, the slow and fast rate imple-
mentation of the controllers have similiar input and output transfer characteristics. Thus,
the slow rate implementation of controllers will less likely cause stability problems.

The sensitivity based performance analysis for multirate system is discussed in the next

section via lifting.
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Figure 13: Lifted System for Disturbance Rejection

4 Performance Indices for Multi-rate Systems

Referring to Fig. 13, the disturbance rejection transfer matrix Sy for the lifted disturbance

signal is:

Sp(a%) = (I+ M(2%) (23)

If we apply a standard method from the multivariable control theory, the performance index

for disturbance rejection is:
Index, = o|(I + M(71=)™!] (24)

where o denotes the maximum singular value and we have noted z = e’7% and T, = 2T7.
We recall that the maximum singular value is nothing but the induced Iy norm of the
matrix. Namely, Index; gives the maximum amplification factor from the lifted disturbance
vector to the lifted output vector but it ingores the relation between the first and second
components of the lifted disturbance vector, a consequence of which is an unrealistic pre-
diction of disturbance rejection, in particular, at low frequencies. If we are evaluating the

frequency response from the disturbance d(k) to the output y(k), the disturbance at the even
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time instances d(2k) and the odd time instances d(2k + 1) are related to each other and may

be written in the complex form

d(2k) = T and d(2k + 1) = T2k (25)

Then, the lifted disturbance vector is

o 2 ][ ][] o

2

By introducing a scaling factor so that || D(2k)||» = 1, The amplification of the disturbance

on the output may be judged for each frequency ws(}—f <ws < %) by

Indexs = 5|(I + M (™) { 1/v?2 }]

EEALYNG: (27)
For multi-ratio m, Index, becomes
_ NG -
eijs/m/\/ﬁ
Indexy = G[(I + M (") ' ] (28)
6j(m71)w7‘13/m/\/ﬁ
At low frequencies, good approximation of Eq.26 is
_ d(2k) _ 1 jwryk | 1| juTek
D(2k) = [d(2k+1) } - [ej“Tf ]e “11]° (29)
Thus, we have
_ o [ 132
Indexs = a](I + M(e") [ 1% ]] (30)

for multi-ratio 2 and ) )
1/v/m
1/v/m

Indexs = G[(I + M(e?*"*) ' ]

(31)

| 1/vm

for multi-ratio m. As will be numerically shown in the next section, Indexs and Indexs give

realistic predictions of disturbance rejection by multi-rate control.

16
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Figure 15: Parallel Track Following Diagram

5 Application Example in Dual Actuator Track Follow-
ing

The experimental setup for dual actuator disk drives is depicted in Fig. 14. It includes a
conventional actuator voice coil motor, a Hutchinson PZT based micro-actuator, a digital
signal processor(TI TMS230C67X DSP), and a laser doppler vibrometer(LDV) for measuring
the position error. All the digital controllers are implemented on the DSP. The fast sampling
rate is 7%f(E)Ok;Hz) and the slow sampling rate is %: i.e. the multi-ratio is 3

Figure 15 shows the single fast rate parallel dual actuator track following system. Pycps
and Ppzr denote the VCM and PZT plant, respectively. Figures 17 and 18 shows the
frequency response of the VCM and the PZT, respectively. Cyeay and Cpyzr denote the

VCM and PZT controller respectively. They are given as:
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Figure 16: Multi-rate Implementation of Digital Controller for Track Following

(z — 0.9905)(z — 0.9756)(z — 0.9057)
(z—1)(z — 0.9577) (= — 0.8664)
(z — 0.9996)(z — 0.5042)
(2 — 0.9991)(z — 0.9681)
(2% — 11482 + 0.9983) (= — 1.5182 + 0.9817)

(22 — 0.9841z + 0.5536) (22 — 1.343z + 0.7729)

(32)

CPZT(Z) = 4.2646

(33)

Figure 19 shows the total open loop frequency response.
Figure 16 shows the multi-rate dual actuator track following system with multi-rate ratio

3. denotes the VCM controller working at slow rate and its transfer function is obtained as:

(2% — 0.9719)(2* — 0.9285)(z* — 0.7414)
(23 —1)(23 — 0.8726) (2% — 0.6465)

Cyons(2°) = 3.8948 (34)

Figure 20 shows the implementation of the interlaced VCM controller at slow rate. Notice

that the slow rate VCM controller is divided into 3 parallel sub-controllers:

0.04498
CVCM1(23) = 3 _1 (35)
—0.09843

C 3y — IO

vem(2) 23— 0.8726

3.89523 — 2.942
3

Crenms(2) 2 — 0.6465

A constant term appearing in the expansion of Eq. 34 has been absorbed in Cy ¢ 3.
Figures 21 and 23 show the performance indices for multi-rate system without interlac-
ing and multi-rate with interlacing. Zoom in of the performance indices at high frequen-

cies(around 8kHz) is shown in Figs. 22 and 24. Notice that Indez; suggests that disturbance
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rejection does not take place at low frequencies, and that Index, is very close to the single
fast rate sensitivity function. Indexrs approximates Indexs well at low frequencies. As shown
later, experimental results indicate that the performance of fast single rate implementation
and that of multi-rate implementation are close to each other. This confirms that Index, and
Indexs are realistic measures of disturbance rejection while Index; is too conservative. They
also indicate that the performance degradation due to slow rate implementation is primarily
at high frequencies but is minimal in this example.

The controller was implemented in assembly language. The TT DSP operates at at
150M H z and it includes two sets of register banks, the floating point unit(MAC) and several
integer functional units(Adder,Multiplier). The codes for the digital controller are optimized
to achieve the least computing cycles. Table 1 summarizes the number of assembly instruc-

tions used in the fast rate PZT controller over T;. To execute these instructions, 159 cycles

are needed over T, = 37T;. Table 2 summarizes the numbers of assembly instructions for

Table 1: Number of Instructions in PZT Controller

Instructions fast rate
Move 36
Mult/Add/Floating 27
Nop 22
Branch 0

the VCM controller for different implementations over 37;. Table 3 summarizes the num-

Table 2: Number of Instructions in VCM Controller

Instructions fast rate | slow rate | interlacing
Move 66 26 28
Mult/Add/Floating 45 15 20
Nop 45 15 10
Branch 0 3 3
Others 0 9 0
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Figure 25: PES Waveform

implementation.

Table 3: Number of Instructions in VCM Controller

Scheme | fast rate | fast rate | slow rate | interlacing
(3Ty) PZT VCM VCM VCM
cycles 159 123 o7 23

Figure 25 shows the PES(position error signal) for PZT fast rate/VCM fast rate, PZT fast
rate/VCM slow rate, and PZT fast rate/VCM interlacing . Notice that there are no significant
differences among the three cases. Table 4 compares the three cases quantitatively in terms

of 30( three times the standard deviation of PES) for each scheme.

Table 4: Number of Instructions in VCM Controller
Scheme | Fast rate | Multi-rate | interlacing
30 26.0604nm | 27.6706nm | 27.6535nm

From Tables 3 and 4, the multi-rate implementation without interlacing achieves about
36.3% computation saving with only about 6.2% performance degradation in terms of 3o
value and the multi-rate implementation with interlacing achieves about 38.5% computation

saving with only about 6.1% performance degradation. This saving is significant since the
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servo algorithm takes up more than 50% of the available DSP processing time in typical

implementation[14].

6 Conclusion

In this report, multi-rate control is studied from the viewpoint of computation saving. The
slow rate control algorithm may be decomposed and interlaced to make the amount of compu-
tation at fast sampling instances uniform. Lifting technique is used to analyze the multi-rate
system. Practical performance indices are presented for evaluating disturbance rejection.
Multi-rate control for computation saving is applied to a dual actuator disk file system. Dual
actuator track following experiment verified that the proposed multi-rate scheme saves a sig-
nificant amount of computation with little performance degradation. Various performance
indices are computed and the proposed ones are shown to give realistic and less conservative

measure of actual performance.
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