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Abstract

Instrumenting a disk drive suspension with vibration sensing strain gages can enhance vibration suppression in hard disk

drives, provided that the gages are properly located and sufficiently sensitive. The cost function of an optimal LQG controller

with Kalman filter is proposed as an objective function for determining the optimal location and orientation of displacement

sensors on a flexible structure, such as strain gages on a disk drive suspension. Analytical bounds are derived for the Kalman

filter Riccati equation in a modal system with large sensor noise. These bounds produce analytical approximations that reduce

the computational complexity of the LQG optimization approach with cheap control. Results are applied to a prototype disk

drive suspension to identify sensor positions and sensor requirements. Piezoresistive and piezoelectric thin films are discussed

as materials for meeting these requirements in an instrumented suspension. The performance of prototype sensors installed

using MEMS-style processing techniques on stainless steel wafers is examined.

1 Introduction

Increasing data storage densities in computer hard disk drives require positioning drives’ read-write heads over ever-smaller

data bits. As the industry targets bit densities of 1 terabit per square inch, airflow induced vibration of the mechanical servo

assembly becomes a major obstacle to attaining the necessary servo precision. In particular, excitation of vibration modes in the

e-block and suspension upon which the head and air bearing are mounted will cause significant off-track error during tracking

operations.

One method of improving servo capabilities to overcome these problems is to incorporate a second actuator into the servo
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Figure 1: Conventional disk drive configuration

Figure 2: Conventional disk drive servo assembly

system. Currently, disk drives rely on a single large voice-coil motor for actuation (see Fig. 1 and 2). Proposed dual-stage

configurations include actuated suspensions (Fig. 3a), with a microactuator built into the suspension itself, and actuated sliders

(Fig. 3b) and heads, with smaller microactuators installed underneath or inside the slider, beyond the vibrating region. In either

case, the smaller second actuator is able to operate at a higher bandwidth than the conventional voice-coil motor (VCM), and

thus damp out higher frequency vibration modes.

Several researchers have examined the use of additional sensors within a disk drive to better detect and reject vibration dis-

turbances. Adding sensors to the disk drive permits acquisition of vibration information at a higher sampling rate and closer to

the point of disturbance than is possible from position error signals taken from the disk itself. This information may be fed back

to the VCM or actuated slider or fed forward to actuated sliders and heads. In one study, simulation of a single stage system

predicted a 500 Hz bandwidth improvement from placing a single stain sensor on a suspension [1] to detect resonant suspension

modes. In one experimental test, a strain sensor mounted on the suspension e-block was used to damp out the e-block butterfly

mode [2], while in another test, a PZT actuated slide was split for sensing and actuating purposes and used to damp both

butterfly and suspension sway modes [3].

In designing a strain gage for vibration detection on a disk drive suspension, it is important to place the gage in a location
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Figure 3: Dual-stage disk drive servo configurations

that provides the maximum amount of useful information to the servo system controller. Not only should a strong signal be

available, but it should include any vibration modes that could contribute to off-track error at the read-write head should be

visible. However, vibration modes that do not cause off-track error should be avoided, as the signal from these modes will

unnecessarily excite the controller.

Micro-scale processing techniques allow precise installation of vibration sensors at locations that meet these demands. Litho-

graphic patterning permits definition of small, focused sensors at locations judged to be optimal. Certain semiconductor and

thin film processing techniques may also produce higher sensitivity gages than conventional methods, and may be integrated

into fabrication and assembly of a disk drive servo system.

In general terms, finding optimal strain gage locations is a problem of optimal placement of an arbitrary number of displace-

ment sensors on a flexible structure. Hac and Liu [4] applied an observability criteria to this problem, which was adapted to

disk drives by Banther, et al. [5] and Gross [6]. However, while this criterion ensures that all modes are visible, the resulting

sensor locations may not be optimal when incorporated into a feedback control system. Several researchers have proposed

using some objective function based on Kalman filter results [7] [?] and Kondoh et al. [9] incorporated controller structure by

minimizing the quadratic cost function in standard LQ optimal control. Solution of the standard LQ problem does provide an

optimal result in terms of the H2 norm of the system, but the approach is computationally intensive and requires knowledge

about the stochastic properties of the system.

In this paper, we optimize sensor locations on a disk drive suspension according to the cost function of the standard LQ

problem, but present numerical approximations of the Riccati equation solutions to simplify the computational complexity and

relax requirements on knowledge about the stochastic system. We then explore several methods of fabricating strain gage vi-

bration sensors on a disk drive suspension and give experimental results for several combinations of materials and processing
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techniques.

2 Sensor Location

The disk drive servo system described here consists of the flexible suspension with inputs from the voice coil motor (VCM)

and airflow disturbances, plus an actuated-slider microactuator at the tip of the suspension. The motion of a flexible structure

can be written as the summation of modal contributions. For instance, off-track displacement, z, of the read-write head may be

written as

z =
n
∑

i=1

diνi + xMA (1)

where νi is a modal coordinate for mode i, xMA is the displacement of the microactuator relative to the tip of the suspension,

di is the displacement at the tip of the suspension in the modal coordinate for mode shape i, and n is the number of modes

considered.

Similarly, strain gage measurements from this system are

yk =

n
∑

i=1

ckiνi cki = Ksensec
′
ki (2)

where yk is the strain gage output voltage and cki is the magnitude of strain, ε at the sensor location resulting from mode i, c′ki,

times the sensor gain, Ksense in V/ε.

The modal dynamics are driven both by the VCM and disturbances:

ν̈i + 2ξiωiν̇i + ω2
i νi =

l
∑

k=1

bikω2
i wk + ω2

i uV CM (3)

.

Here, the dynamics of each mode are described by its natural frequency, ωi, and damping ration, ξi. The modal coordinates

are normalized to ω2
i times the VCM input for convenience in later manipulation. The bik coefficients adjust disturbance k for

its influence relative to the VCM on mode i, due to differeing location and frequency weighting.

The microactuator dynamics have a similar description,

ẍMA + 2ξMAωMAẋMA + ω2
MA

xMA = KMAuMA (4)

with ωMA and ξMA the natural frequency and damping ratio of the microactuator, and KMA the microactuator gain.

In state space, the system may be described in the form

ẋ = Ax + Bu + Bww (5)

y = Cx + v (6)

z = Dx (7)

E[wT w] = wIl×l E[vT v] = vIr×r (8)
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As before, z ∈ R is the off-track error at the slider and y ∈ R
r+1 is the output from r strain gages plus an additional

measurement of relative position error signal (RPES) measured by the microactuator. The inputs are l white disturbances in

w ∈ R
l with spectral density w and two actuated inputs, from the VCM and microactuator, included in u ∈ R

2. Sensor noise

is v ∈ R
r, white with spectral density v. A number of experimental results have verified that airflow excitation has broadband

frequency spectrum and can be accurately modelled by zero-mean input white noise [10] [11].

The state vector x ∈ R
2n+2 consist of the modal and microactuator coordinate displacements and normalized velocities,

x2i−1 = νi x2i =
ν̇i

ωi

(9)

x2N+1 = xMA x2N+2 =
ẋMA

ωMA

(10)

The state matrices are

A=
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(11)

Ai =


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0 ωi
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
(12)
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(13)

C(Φ) =



















c11(Φ1) 0 c12(Φ1) 0 · · · c1n(Φ1) 0 0 0

...
...

...
...

...
...

cr1(Φr) 0 cr2(Φr) 0 · · · crn(Φr) 0 0 0

0 0 0 0 · · · 0 0 ces 0
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


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







(14)

D=

[

d1 0 d2 0 · · · dn 0 1 0

]

(15)
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bij and di are defined as before, while cij(Φj) is the strain from mode j measured at strain gage i, written explicitly as

function of the location and orientation, Φi, of the sensor. ces is the RPES signal gain from the microactuator.

2.1 Optimization Theory

Our objective is to choose a sensor location and orientation that minimizes off-track error of the closed-loop system. We choose

to minimize the H2 norm of the system when implementing the optimal linear quadratic gaussian, or LQG, controller and filter.

min
Φ

JH2 = min
Φ

{

min
K,F (Φ)

E

[∫ ∞

0

zT z + uT Rudt

]}

(16)

with K the optimal linear, stationary controller, F (Φ) the optimal linear, stationary filter for a given C(Φ), and R a weighting

function on the inputs. Vector Φ includes all coordinates and orientations of sensors that may be varied during optimization.

K and F are obtained by solving Riccati equations. The linear controller, K, for this system is not dependant on sensor

location:

u = −Kx̂ (17)

K = R−1BT P (18)

AT P + PA − PBR−1BT P + DT D = 0 (19)

The optimal linear filter, F , is a Kalman filter and does depend on sensor location

˙̂x = Ax̂ + Bu + MC(Φ)T v−1 [ŷ − C(Φ)x̂] (20)

F = MC(Φ)T v−1 (21)

AM + MAT − MC(Φ)T v−1C(Φ)M + BwwBT
w = 0 (22)

The value of the objective function with this controller and filter is

JH2 = tr
[

PKvKT + MDT D
]

. (23)

Since the range of motion of both the VCM and microactuator is very large relative to suspension vibration, we solve the

above equations for the case of cheap control, R → 0. From loop transfer recovery (LTR) results [14], in this situation P → 0

and

JH2 → tr
[

MDT D
]

=
∑

i

∑

j

m2i−1,2j−1didj . (24)

The drawbacks of this optimization method are requirements on knowledge about the system and computational complexity.

Reasonable results require reliable estimates of disturbance and noise magnitudes. Even when this information is available,

solving the Riccati equation at many locations requires a large amount of computation time. In the following section, we derive

an approximation for the Riccati equation in a system described by the modal components described previously.
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An alternative to LQG optimization is to optimize some measure of the observability of the system. The observability

gramian for a state space system is

Q =

∫ ∞

0

yT (t)y(t)dt, (25)

which for asympotically stable systems satisfies

AT Q + QA + C(Φ)T C(Φ) = 0. (26)

The eigenvalues of the observability gramian are a measure of the energy from each mode for a given sensor placement, and

can thus be used as a basis for locating sensors. Various objective functions based on eigenvalues of the observability gramian

have been proposed, as in [5] and [4]. However, as will be discussed later, observability approaches may neglect the relative

importance of the modes in causing off-track error, and not necessarily provide the best signal in a closed-loop system.

2.2 Approximate Riccati Solution

While an exact analytical solution to the Riccati equation exists, it requires a large number of calculations and can make

optimization impractical, especially for a large numbers of variables. A 2n-eigenvalue problem must be solved to obtain the

estimation error covariance matrix M at each location Φ. Observability-based approaches are also relatively complex, requiring

solution of an n-eigenvalue problem. This makes sensor optimization difficult for systems with large numbers of modes or many

potential sensor locations.

To mitigate this problem, we have derived a set of approximations for the terms of M that appear in the objective function

under cheap control, as shown in (46). For a system with the state space form above, bounds may be placed on certain terms

of matrix M , including all those which appear in objective function (46). Under certain conditions, these bounds approximate

the values of the diagonal terms in M and show them to be much larger than the off-diagonal terms. The full derivation of the

approximations is included in the appendix.

The chief approximation result is that if for all i and j,

1. Modes are widely spaced:

|ωi − ωj | � 0 (27)

2. Sensor noise is large relative to other parameters:

|cji|
(

l
∑

k=1

|bik|
)

w

v
� 1 (28)

then, for all i, in an undamped system

m2i−1,2i−1 ≈

√

∑l
p=1 b2

ipωi

√
wv

√
∑r

k=1 c2
ki

(29)
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and in a lightly damped system

m2i−1,2i−1 ≈
−4ξiωi +

√

(4ξiωi)
2 +

4ω2
i
w

v

(
∑

r
k=1 c2

ki

)

(

∑

l
p=1 b2

ip

)

2
v

∑

r
k=1 c2

ki

(30)

.

Furthermore, in both cases, for all i and j,

m2i−1,2i−1 � m2i−1,2j−1. (31)

Therefore, the objective function for low cost control can be approximated as

JH2 ≈
n
∑

i=1

d2
i m2i−1,2i−1 (32)

given by (29) or (30). This result is also true for a discrete time system derived from the continuous time model described

above, under the same conditions and with high sampling frequency.

Approximating the objective function in this manner has several advantages. Its main effect is that it greatly simplifies the

computation of the objective function. It reduces the problem of solving for n eigenvalues to a straightforward algebraic compu-

tation. This is especially useful for a system with many modes or sensor location variables. However, the approximate solution

also provides insight into the physical trade-offs between parameters of the system, and reduces the amount of knowledge

needed about the system beforehand.

First, we comment on the conditions under which the approximation holds. Widely-spaced modes are a common requirement

for simple analysis of modal systems. More interesting is the second condition, (28), which indicates that the approximation

applies to systems with large sensor noise. In fact, it seems to imply that the signal from the sensors will be below the noise

floor of the system, but the addition of multiple modes and the presence of resonant peaks can raise the signal well above the

noise floor while (28) remains satisfied. Furthermore, many of the bounds used to derive the approximation are loose, so that

the approximation may be reasonable even for smaller noise levels. However, the approximation should be checked against the

exact solution for several test cases if this is attempted.

When the approximation does perform well, the relative significance of the parameters in the system model is visible, which

can be useful for design and interpretation; a criticism of the use of Kalman filter methods for optimizing sensor locations is

lack of a physical interpretation of the result. The best sensor locations will have large strains, or in other words large cki

coefficients, as one would expect. However, in a choosing between strain contributions from different modes when there is a

trade-off, a more optimal location will emphasize the mode with a larger contribution to off-track error, as computed from the

sum of input coefficients to that mode, the bip’s, and the modal displacement coefficient at the slider, di. Adding damping to

the system diminishes the difference between modal contributions.

We can compare our proposed method to the observability methods. For a lightly-damped system, the eigenvalues of the

observability grammian can be approximated as

λ2i−1, λ2i ≈
∑r

k=1 c2
ki

4ξiωi

. (33)
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Maximizing the minimum eigenvalue is equivalent to minimizing the maximum inverse eigenvalue, or,

Jopt = min
C(Φ)

[

max
i

{

4ξiωi
∑r

k=1 c2
ki

}]

. (34)

The value to be minimized in the observability case is qualitatively similar to the LQG filter result, but the relative importance

of each mode to off-track error is lacking. As a result, the observability approach will locate sensors so as to best detect modes

with small strain contributions, ignoring more easily detected modes. If one of these modes causes proportionally larger off-

track error than strain signal, it may be lost by the sensor at levels that cause significant off-track error. One solution, used in

[[6]], is to weight the eigenvalues by their modal contribution to off-track error. This tends to give close agreement with LQG

results, though it still neglects input coefficients and requires more computation.

Finally, the approximate solution shows that, for a noisy system, the optimal sensor location is independent of the exact noise

and disturbance strength. Each of the diagonal terms in M is multiplied by the same
√

(wv) constant. This means that only

enough knowledge about the stochastic properties of the system to validate the approximate solution is required. The exact

noise and disturbance levels need not be known prior to design of the system.

3 Optimization Results for Disk Drive Suspension

3.1 Optimization Implementation

A Hutchinson Technology, Inc. (HTI) 3430 suspension was modelled in ANSYS for finite element analysis of vibration modes.

A modal analysis was performed to identify the natural frequencies of vibration, followed by a harmonic analysis near those

frequencies to obtain the frequency response of the structure. The analysis provided transfer functions from VCM input to

off-track displacement and to x-normal, y-normal, and xy-shear components of strain at any model element.

Z(s)

U(s)
=

n
∑

i=1

diωi

s2 + 2ξiωis + ω2
i

(35)

Yk(s)

U(s)
=

n
∑

i=1

c′kiωi

s2 + 2ξiωis + ω2
i

(36)

(37)

Here, U(s) is the VCM input in the frequency domain, Z(s) is the frequency response of off-track error, and Yk(s) is the

component of strain at sensor k from any single strain direction. Damping ratios, modal weights, and gains giving di and c′ki

were obtained via the circle fit method for modal identification.

The x-, y-, and xy- components of strain at each element were projected to a voltage output for an arbitrary strain gage

oriention θ using Mohr’s equation and the estimated gage sensitivity Ksense,
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Table 1: System Model Parameters

Variable Units Value

w mN2 1 × 10−7

v V 2 1 × 10−15

Ksense V/ε 60

b11 : b41 1

b51 0.5

b61 0.1

C = Ksense

[

1+cos 2θ
2

1−cos 2θ
2

sin 2θ
2

]













Cx

Cy

Cxy













, (38)

where Cx, Cy, and Cxy are the sensor output coefficients for the three strain components.

Stochastic parameters of the system (w,v) are estimated from strain gain models and experimental measurements of suspen-

sion vibration in other disk drives. We use a single disturbance and set input coefficients b11 to b41 equal to one, and reduce

b51 and b61 to 0.5 and 0.1, respectively to reflect lower windage measurements at frequencies above 10 kHz. A more accurate

model would include adjustments to all bi’s to match both spatial and frequency domain properties of the input disturbance, but

this information is not well known. Table 1 lists the major optimization parameters to be specified.

Because the microactuator mode is uncoupled with the rest of the servo system in our model, we neglect it during sensor

optimization. In reality, there may be some coupling between suspension vibration and microactuator displacement and corre-

lation between disturbances to the suspension and microactuator. This could provide additional information about suspension

vibration and thus influence sensor selection, but we choose not to assume that this information will be available.

3.2 Location Optimization Results

We evaluated the LQG cost function at 100 high-strain elements in the hinge region of the HTI 3430 suspension at sensor

orientations from 0 to 180 degrees. The cost function was evaluated for both the exact solution for the Kalman filter Riccati

equation and for the approximate solution discussed above. Fig. 4 shows the full ANSYS model of the suspension with the

hinge regions highlighted. Fig. 5a and 5b show the 20 best elements for strain gage installation using both evaluations. Both

the exact solution and the approximation identify element 1346 as optimal, with the strain gage oriented at 11 degrees for the

exact solution and 10 degrees for the approximation.

The dynamic response from disturbance to sensor output and off-track error is shown in Fig. 6. The best sensor location
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Figure 4: Ansys model of 3430 suspension

Figure 5: Optimal sensor locations (dark to light)

will have both a high level of strain and a large ratio of strain to off-track response at each mode. This results in a position

that approximately matches the importance of modes at the sensor to their importance to off-track error at the slider. For this

sensor location, the most difficult mode to detect is mode 5, a torsion mode, for which a disturbance producing one nanometer

off-track displacement would produce 56 nanostrain at the sensor.

It is also clear from Fig. 5 that the approximate solution to the LQG cost function gives results that are very similar to the

exact solution. This agreement can also be seen a individual sensor locations as a function of orientation. Fig. 7 plots the cost

function as a function of angle for optimal element 1346. Both methods show undesirable orientations at 75 and 122 degrees,

Figure 6: Frequency response of sensors and off-track disturbance
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Figure 7: Cost function by sensor orientation, element 1346

Table 2: Comparison of exact and approximate Riccati solution

Mode i ωi (Hz) m2i−1,2i−1 Approximation Error

1 5275 1.27 1.38 7.9%

2 6457 1.58 1.78 12.7%

3 9144 1.12 1.49 33.3%

4 10698 0.0271 0.0274 1.1%

5 5275 0.208 0.215 3.5%

6 5275 0.0368 0.0385 4.6%

and close agreement elsewhere.

The approximation we have developed is applicable to this situation because the strain in the system is very small, ranging

from 10 to 100s of nanostrain for the level of disturbance anticipated. This results in very small cki coefficients that help satisfy

(28). The largest value for a quantity in (28) is 0.16, large enough to cause some discrepancy between exact and approximate

Riccati solutions, but still giving generally good agreement. Table 2 is an example of this: while the error between estimated

and exact diagonal coefficients is as high as 33%, this is a small discrepancy for a set of diagonal terms of M that range over 3

orders of magnitude. Additionally and as expected, the largest off-diagonal term is much smaller, at m7.9 = 1.7 × 10−8.

4 Piezoresistive Sensors

To capitalize on identification of optimal sensor locations, a procedure for fabricating a strain gage precisely at those locations

is required. We want to detect nanometer off-track error contribution from each mode; from our optimization of location, this

corresponds to 56 nanostrain resolution at the sensor. Lithographically patterned piezoresistors are a common MEMS structure

used to detect strain. Piezoelectric materials are also stain sensitive, and have also been used to form micro-scale devices. In

this section we define the requirements on a piezoresistive or piezoelectric strain sensor based on the optimization results above.
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4.1 Theory

The primary limitations on a piezoresistive strain gage are bias of the sensor resulting from temperature changes and intrinsic

thermal noise in the sensor resulting from the resistivity of the sensor itself. The temperature dependence of the sensor may

be greatly reduced by placing the sensor in a wheatstone bridge configuration. In our case, we assume a wheatstone bridge

configuration with two opposing piezoresistors. The sensitivity of a strain gage to strain ε in this configuration can be calculated

from

S =
Vo

ε
=

KVi

2
(39)

where Vi is the input voltage to the bridge, Vo is the output voltage, and K is the gage factor of the piezoelectric material

used in the sensor. Meanwhile, the thermal noise in the piezoresistor is

Vn =
√

4kTRB (40)

where k is Boltzmann’s constant, T is the temperature in Kelvin, R is the resistance of the gage, and B is the bandwidth

being observed. The resolution, r of the bridge is given by

r =
S

Vn

(41)

Table 3 shows estimates for various sensor materials. For these estimates, we assume a gage length of 100 µm to match our

FEA model element size, a minimum length to width (L/W) ratio of 5 to limit the influence of longitudinal gage factor, and a

minimum resistance of 200 Ω to ensure that gage resistance is at least 10 times higher than interconnect resistance. For this

example, the sensor bandwidth is 20 kHz and the operating temperature is 300 K. We estimate input noise at the electronics to

be 5 nV/
√

Hz.

Here, Constanten is a conventional metal strain gage material, SCS is p-type single crystal silicon [15], p-poly is p-type

as referenced in [16], n-poly is n-type polysilicon (tested in U.C.Berkeley Microlab), and α-Si:H is hydrogenated amorphous

silicon, first studied for its piezoresistive properties in [19].

From the table, we see that to detect strain in the 10−8 range with a piezoresistive sensor, a high gage factor material is

needed. Metal strain gages lack the sensitivity to detect very small signals without extremely clean electronics. Instead, we

propose to use a semiconductor, either single-crystal or poly- silicon, to take advantage of their large gage factors. The drawback

to semiconductor sensors is a higher resistivity, increasing thermal noise. To obtain an adequate sensor for our devices, we need

to balance the resistivity and gage factor of deposited films, in the context of a procedure that is compatible with a stainless steel

substrate. We discuss methods of installing highly sensitive semiconductor films on steel substrates in the following sections.
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Table 3: System Model Parameters

Material Constanten SCS p-poly n-poly α − Si : H

Gage Factor 2.1 150 30 10 20

Sbridge (V/ε) 12.6 900 180 60 120

Film Thickness (µm) 0.5 2.0 2.0 1.0 1.0

Resistivity (Ω-cm) 4.9 × 10−5 0.05 1.0 0.006 1.0

Gage resistance (kΩ) 0.49 2.5 25 0.3 25

Total noise (µV) 1.1 1.4 3.1 1.1 3.1

Resolution (nε) 91 1.6 17 19 26

4.2 Fabrication procedures

Using stainless steel as the substrate for MEMS-type semiconductor devices presents special constraints on a fabrication pro-

cess. In a disk drive, the stiffness of the steel suspension is critical to producing a predictable and stable flying height for the

read-write head. The sensor must not add significant stiffness to the suspension, and its fabrication process should not alter the

properties of the stainless steel. This calls for a fabrication process that takes place at temperatures below typical steel phase

transition temperatures. We choose to avoid processing steps that take place above 600◦ C. In addition, if the sensor is to be

built in the high strain hinge region, it must be able to withstand being strained as much as 10% during the metal forming

process. The fabrication procedure must either withstand this treatment or produce a structure with sufficient sensitivity to be

located at a sub-optimal location.

We examine two methods of forming piezoresistive strain gages on steel. The first is to deposit piezoresistive material on

the steel substrate directly, via a low-temperature polysilicon or amorphous silicon deposition process. The second is to build

sensors on a silicon handle substrate and transfer the sensors to the steel substrate via a bonding process. The first method

is much simpler, but the materials available are limited, while the second method is more complicated and possibly more

expensive, but permits the use of a wider range of materials, particularly single crystal silicon.

Fig. 8 shows the process flow for a piezoresistive film deposited directly on the steel substrate. In this case, the steel substrate

is immediately coated with an insulating layer and the piezoresistive film (a). Potential insulating layers include spin-on-glass,

PECVD silicon oxide, anodized aluminum, and spin-on polymers. Potential piezoresistive films include PECVD poly- or

amorphous silicon and sputtered silicon films. The sensors are patterned by a wet silicon etchant (b) and an aluminum film is

evaporated onto the wafer to form leads and bond pads (c). After interconnect patterning (d), the sensors and leads are protected

by photoresist during patterning of the hinge from the wafer, also performed by wet etching.

Fig. 9 shows the proposed process flow for bonded sensors, using metal-to-metal bonding techniques of Microassembly
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Technologies, Inc. A wafer with handle, sacrificial, and piezoresistive layers is used to form the sensors (a). The piezoresistive

film is patterned into sensors connect to larger anchor pads by thin tethers (b). The sensors are undercut by etching the sacrificial

layer, leaving them connected just by the tethers to the fixed tethers (c). A special metal alloy bonding material is deposited (d)

and patterned into bumps at the bond locations (e). Meanwhile, an insulting film and a thin landing layer of gold or platinum

are deposited onto the steel substrate and patterned as interconnects and external bond pads. The two substrates are then aligned

and pressed together at 300◦ C, forming a low temperature weld where bumps meet the landing layer (f). Finally, the handle

wafer is removed, breaking the tethers and leaving the sensors attached to the steel substrate (g).

Figure 8: Fabrication procedure for directly deposited piezoresistive film

Figure 9: Fabrication procedure for bonded piezoresistive film
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4.3 Experimental results

Our first tests of direct piezoresistor deposition involved highly-doped, sputtered silicon, followed by performed several ex-

periments to improve the quality of the resulting film. Sputtered silicon was selected for it’s extreme simplicity of deposition

and compatibility with steel substrates. In our initial feasibility test, we deposited silicon from a lightly doped silicon target

onto a substrate coated with PECVD silicon oxide. We patterned the sensors with Bell Labs silicon etchant (33% H2O:3%

NH4F :64% HNO3) and used aluminum interconnects, etched with Type A Aluminum Etchant. Fig. 10 shows one completed

strain gage. The steel wafer was then cut into cantilever beams, and changes in resistance for fixed deflections measured at a

probe station. We measured an excellent gage factor for the completed sensors of 25, but a resistivity of approximately 5000

Ohm-cm, producing an unacceptable level of thermal noise for high resolution sensing.

Figure 10: Strain gage fabricated from sputtered silicon

Subsequent tests with sputtered silicon focused on reducing resisitivity of the sputtered film. A Boron-doped target with bulk

resistivity of 0.0002 Ω was installed for these tests. Base pressure, sputtering pressure, and sputtering power were varied for

20 minute sputtering periods. The lowest resistivity obtained on a consistent basis was 120 Ω, obtained at sputtering pressure

of 10 mTorr at a low sputtering power, 100 W. We also observed that for the more conductive film, gage factor dropped to 15.

Projected sensor resolution for a 2 µm thick film under these conditions is approximately 200 nanostrain, still several times

higher than desired.

Conductivity of a sputtered semiconductor film is limited by the unordered nature of the film, low dopant activation, and

inclusion of sputtering gas in the film. We also observed that base pressure of the sputtering machine prior to deposition was of

critical importance to film quality (Fig. 11). This implies that contamination during the sputtering process is a major limitation

to the process. We attempted to improve the film quality. conditions through both rapid thermal annealing (RTA) and long

low temperature furnace anneals. For RTA, we annealed samples of the sputtered film in forming gas for time periods ranging

from 30 seconds to 6 minutes, at temperatures from 400 C to 1000 C. At best, conductivity of the sputtered film increased by 5
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% after a 1 minute anneal at 600◦C, while above 800 C, the film abruptly stopped conducting, also suggesting problems with

contamination. A very similar improvement was measured after annealing for 24 hours at 400◦ in Nitrogen.

Figure 11: Strain gage fabricated from sputtered silicon

More conductive low-temperature polycrystalline and amorphous silicon films have been demonstrated for transistor appli-

cations via techniques such as very-high frequency plasma-enhanced chemical vapor deposition [], catalytic chemical vapor

deposition [17], and laser crystallized polysilicon [18]. Hydrogenated amorphous silicon (α-Si:H) deposited by glow dis-

charge, in particular, has been evaluated for its piezoresistive properties [19]. These techniques are more expensive than simple

sputtering, but they may be explored as alternative direct deposition methods.

Protoype sensors fabricated by the bonding method are currently under construction. For this procedure, a standard LPCVD

polysilicon film deposited on a silicon oxide sacrificial layer or a silicon-on-insulator (SOI) wafer with single crystal device

layer may be used. In these cases, the gage factors and resistivities of the films are well-defined, and the Microassembly, Inc.

bonding procedure is well-established for standard semiconductor substrates. The primary item of interest is the suitability of

the bonding procedure for a steel substrate with a potentially non-standard insulating layer. The current batch of test structures

includes steel wafers coated with spin-on-glass, anodized aluminum, and oxidized titanium insulating films, all of which may

be deposited or formed at temperatures below 600 C.

5 Piezoelectric Sensors

An alternative to piezoresistive strain sensing is the use of piezoelectric films, which produce a voltage change when strained.

In this section, we explore the use of piezoelectric materials as a strain gages in an instrumented suspension.
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5.1 Theory

When a piezoelectric element is strained, the internal dielectric polarization is altered, producing an electric displacement and

electric field across the element. For a thin film strained in the in-plane direction, the electric displacement is approximately

D3 = d31E11ε1 (42)

D3 is the electric displacement in the out-of-plane direction in Coulombs/m2, d31 is the piezoelectric constant from the

in-plane to out-of-plane direction, E11 is the elastic modulus of the film in the in-plane direction, and ε1 is the in-plane strain.

The resulting change in voltage depends on the capacitance of the sensor, giving voltage change

V =
d31E11t

ε33
(43)

where t is the thickness of the sensor and ε33 is the dielectric constant of the film in the out-of-plane direction. The sensitivity

of the sensor is then

S =
V

ε1
=

d31E11t

ε33
(44)

It is clear from this equation that reducing a piezoelectric material to a thin film greatly reduces its potential sensitivity.

However, the intrinsic noise in the sensor is that of an equivalent capacitor, and hence negligible when low frequencies are

filtered out. As a result, the piezoelectric sensor does not suffer from the intrinsic noise limitations of the piezoresistive sensors

discussed in the previous section.

Table 4 lists estimated sensitivities and resolutions for piezoelectric thin films, assuming electronics noise of 9 nV/
√

Hz over

a 20 kHz bandwidth, and negligible instrinsic noise. The sensors are assumed to be 2 µm thick and 100 µm square. Under these

conditions, most strong piezoelectrics appear capable of nanometer-level strain resolution. Lead-zirconium-titanate (PZT) is a

very common material, but thin film deposition is complex. Instead, we have begun experimentation with zinc oxide, which

also meets our performance specifications, but is more easily deposited in a piezoelectric form. Polymer PVDF is also easily

applied, but requires a large polarizing electric field.

5.2 Fabrication procedure

The fabrication procedure for zinc oxide sensors on a steel substrate is shown in figure ??. Spin-on-glass is first applied to

planarize the wafer surface. A chrome adhesion layer and gold seed layer prepare the substrate for zinc oxide deposition and

act as the lower electrode of the sensor (a). Zinc oxide is then sputtered in 50:50 Ar : O2 plasma at 200 C. The zinc oxide is

capped with a metal film that acts as an etch stop during wet etching (b). Sensors are patterned and etched in by a wet etchant.

A second layer of spin on glass is applied to separate the upper and lower electrodes and contact holes are patterned and etched
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Table 4: System Model Parameters

Material PZT Zinc Oxide PVDF

d31 (C/N × 10−12) -123 5.2 23

Young’s modulus (GPa) 53 210 3

Relative permitivity 1700 12 12

Sensitivity (V/ε) 1200 24500 1300

Noise (µV) 1.3 1.3 1.3

Resolution (nε) 1.1 0.5 1.0

in dilute hydroflouric acid (d-e). Finally, an aluminum layer is evaporated and patterned aluminum etchant to form the upper

electrode (f).

Figure 12: Fabrication procedure for zinc oxide piezoelectric strain gage

5.3 Experimental results

Zinc oxide films have been deposited on both single-crystal silicon and stainless steel wafers by the sputtering process described

above. The piezoelectric response of the films was tested using a tapper that measures the current generated by an oscillating

probe indenting the ZnO film from above an electrode. Tapper measurements indicated a piezoelectric coefficient on the single

crystal silicon substrate of 5 × 10−12C/N .

The roughness of a stainless steel wafer, with mean value of approximately 20 nm rms, prevents the formation of a high

19



quality zinc oxide film directly on steel. However, we find that spin-on-glass provides adequate planarization of the wafer

surface to obtain a piezoelectric response. Excellent results were obtained in unpatterned specimens for spin-on-glass that was

densified at 350 C in the sputtering chamber prior to zinc oxide deposition. From tapper measurements, we estimate the d31

coefficient for these samples to be 1 C/N . The reduction in performance is likely a result of imperfections of the zinc oxide

film from any remaining surface imperfections after spin-on-glass application, but even this level of piezoelectric response

projects to resolution better than 1 nanostrain. Fig. 13 shows a cross-section of the deposited zinc oxide over spin-on glass.

The planarization from the lowest layer, steel, to middle glass layer is visible, as is the columnar structure of the top zinc oxide

layer.

Figure 13: Zinc oxide film on steel wafer planarized with spin-on glass

We are currently testing patterned sensors to confirm sensitivity of the film after performing the remaining processing steps

of the fabrication procedure.

6 Conclusions and Future Work

In this paper we have examined the design and fabrication of an instrumented disk drive suspension. We proposed the opti-

mization of sensor location based on the cost function of an LQG controller and filter. An approximation for the cost function

is derived for low-cost control in a noisy system to reduce computational complexity and gain insight into optimization results.

The optimal location for a single strain gage on the Hutchinson 3430 suspension was identified on the upper inside of the hinge

region, with good agreement between exact and approximate optimization methods.

Both piezoresistive and piezoelectric films were discussed as sensor materials, with testing of both types of sensor ongoing.

Sputtered silicon films on steel were found to have adequate gage factor but intrinsic noise limitations due to low conductivity.
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Bonded silicon films will provide more precise control of film properties and even higher sensitivities. Prototype bonded strain

gages are currently under construction. Piezoelectric zinc oxide films have also been deposited on steel wafers with excellent

sensitivity, and are currently being evaluated after complete sensor patterning.

Future improvements to the instrumented suspension design involves refinement of both sensor optimization and fabrica-

tion. The simplifying approximations introduced for the optimization scheme may be used to quickly evaluate multiple sensor

schemes. To accomodate more robust controller designs, it will also be useful to adapt the optimization scheme to reject strain

sources, such as suspension bending modes, that do not correspond to off-track motion at the read/write head. Meanwhile,

additional piezoresistive materials may be evaluated for directly deposited sensors, and new combinations of underlying insu-

lators and bonding conditions may be examined to improve reliability of bonded sensors. With regards to piezoelectric sensors,

response and measurement in an electronically-noisy environment must be evaluated. Finalized sensor locations and fabrication

techniques will be used to assemble a full instrumented suspension for integration in a dual-stage disk drive servo system.
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[]

We derive analytical bounds for certain terms of the error coefficient matrix M of of the Kalman filter Riccati equation

AM + MAT − MC(Φ)T v−1C(Φ)M + BwwBT
w = 0 (45)

for a system in modal coordinates with force inputs and displacement outputs. Under certain conditions, the bounds on the

will lead provide an approximation for the LQG objective function with cheap control, which simplifies to

JH2 → tr
[

MDT D
]

=
∑

i

∑

j

m2i−1,2j−1didj (46)

The system to be examined has state space form

ẋ = Ax + Bu + Bww (47)

y = Cx + v (48)

E[wT w] = wIl×l (49)

E[vT v] = vIr×r (50)

(51)

with

A =



















A1 0 · · · 0

0 A2

...
...

. . .

An



















(52)

Ai =







0 ωi

−ωi −2ξiωi






(53)

Bw =







































0 · · · 0

b11ω1 · · · b1lω1

0 · · · 0

b21ω2 · · · b2lω2

...
...

0 · · · 0

bn1ωn · · · bnlωn







































(54)
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C(Φ) =













c11(Φ1) 0 c12(Φ1) 0 · · · c1n(Φ1) 0

...
...

...
...

...
...

cr1(Φr) 0 cr2(Φr) 0 · · · crn(Φr) 0













(55)

We will first perform the approximation for a undamped SISO system with n = 2 to demonstrate procedure. Then we will

consider undamped and damped MIMO cases and finally apply the results in discrete time.

.0.1 2 modes, undamped

Consider a system of 2 undamped modes with a single disturbance and sensor. The Riccati equation in (45) results in the

following set of 10 equations for the 10 independent components of matrix M :

Diagonal block 1,1:

(1, 1) : 2ω1m12 − (c1m11 + c2m13)
2 1

v
= 0 (56)

(1, 2) : ω1(m22 − m11) − (c1m11 + c2m13)(c1m12 + c2m23)
1

v
= 0 (57)

(2, 2) : −2ω1m12 − (c1m12 + c2m23)
2 1

v
+ b2

1ω
2
1w = 0 (58)

Diagonal block 2,2:

(3, 3) : 2ω2m34 − (c1m13 + c2m33)
2 1

v
= 0 (59)

(3, 4) : ω2(m44 − m33) − (c1m13 + c2m33)(c1m14 + c2m34)
1

v
= 0 (60)

(4, 4) : −2ω2m34 − (c1m14 + c2m34)
2 1

v
+ b2

2ω
2
2w = 0 (61)

Cross-term block 1,2:

(1, 3) : ω1m23 + ω2m14 − (c1m11 + c2m13)(c1m13 + c2m33)
1

v
= 0 (62)

(1, 4) : ω1m24 − ω2m13 − (c1m11 + c2m13)(c1m14 + c2m34)
1

v
= 0 (63)

(2, 3) : −ω1m13 + ω2m24 − (c1m12 + c2m23)(c1m13 + c2m33)
1

v
= 0 (64)

(2, 4) : −ω1m14 − ω2m23 − (c1m12 + c2m23)(c1m14 + c2m34)
1

v
+ b1b2ω1ω2w = 0 (65)

From (56) and (59), we know

m12 ≥ 0 (66)

m34 ≥ 0 (67)

Since

(c1m12 + c2m23)
2 ≥ 0 (68)

(c1m11 + c2m13)
2 ≥ 0 (69)
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each of the first two terms in (58) must be less than or equal to b2
1ω

2
1w, giving

m12 ≤ b2
1ω1w

2
(70)

and combining (56) and (58):

|c1m11 + c2m13| ≤ |b1|ω1

√
wv (71)

|c1m12 + c2m23| ≤ |b1|ω1

√
wv (72)

Similarly, from the second diagonal block:

m34 ≤ b2
2ω2w

2
(73)

|c1m13 + c2m33| ≤ |b2|ω2

√
wv (74)

|c1m14 + c2m34| ≤ |b2|ω2

√
wv (75)

Now multiply (63) by −ω2 and (64) by ω1 and add them together, to get

m13(ω
2
2 − ω1

1) = −ω2(c1m11 + c2m13)(c1m14 + c2m34)
1

v

+ ω1(c1m12 + c2m23)(c1m13 + c2m33
1

v
(76)

Using the largest possible bounds from (71),(72),(74), and (75) ,

|m13| ≤
|b1b2|ω1ω2w(ω2 + ω1)

ω2
2 − ω2

1

=
|b1b2|ω1ω2w

ω2 − ω1
(77)

Similarly,

|m24| ≤
|b1b2|ω1ω2w(ω2 + ω1)

ω2
2 − ω2

1

=
|b1b2|ω1ω2w

ω2 − ω1
(78)

Including the b1b2ω1ω2w term in (65) raises the bound on m14 and m23:

|m14| ≤ |b1b2|ω1ω2w(ω2 + 2ω1)

ω2
2 − ω2

1

(79)

|m23| ≤ |b1b2|ω1ω2w(2ω2 + ω1)

ω2
2 − ω2

1

(80)

Now, return to (58) and solve for m12

m12 =
1

2ω1

{

b2
1ω

2
1w − (c1m12 + c2m23)

2 1

v

}

(81)

Using the bounds from (70) and (80) in ( 81),

25



m12 ≥ 1

2ω1

{

b2
1ω

2
1w − (|c1|max(m12) + |c2|max(m23))

2 1

v

}

(82)

=
1

2ω1

{

b2
1ω

2
1w −

(

|c1|
[

b2
1ω1w

2

]

+ |c2|
[ |b1b2|ω1ω2w(2ω2 + ω1)

ω2
2 − ω2

1

])2
1

v

}

(83)

Factoring out like terms

m12 ≥ b2
1ω1w

2

{

1 − w

v

( |c1b1|
2

+ |c2b2|
ω2(ω1 + 2ω2)

ω2
2 − ω2

1

)2
}

(84)

In full, we have from (70) and (84)

b2
1ω1w

2
≥ m12 ≥ b2

1ω1w

2

{

1 − w

v

( |c1b1|
2

+ |c2b2|
ω2(ω1 + 2ω2)

ω2
2 − ω2

1

)2
}

(85)

If the terms inside the brackets in (85) are small, we have a narrow bound on the value of m12. Furthermore, minimum value

of m12 may be used to estimate m11 by comparing the size of the terms in (56). If

2ω1m12 � (c2m13)
2

v
(86)

then

2ω1m12 ≈ (c1m11)
2

v
(87)

Equation (86) is satisfied if

2ω1 min(m12) �
(c2 max(m13))

2

v
(88)

Writing out (88) with (84) gives

b2
1ω

2
1w

{

1 − w

v

( |c1b1|
2

+ |c2b2|
ω2(ω1 + 2ω2)

ω2
2 − ω2

1

)2
}

� c2
2b

2
1b

2
2ω

2
1ω2

2w2

(ω2
2 − ω2

1)2v
(89)

and simplified,

1 −
(

1

2
|c1b1|

√

w

v
+

ω2(ω1 + 2ω2)

ω2
2 − ω2

1

|c2b2|
√

w

v

)

� ω2
2

ω2
2 − ω2

1

|c2b2|
√

w

v
(90)

For a system with well-spaced natural frequencies, (90) is true if

|c1b1|
√

w

v
� 1 (91)

|c2b2|
w

v
� 1 (92)

Under these conditions, we also see that m12 can be approximated by its upper bound in (85) and then used to solve for m11

from (87):
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m11 ≈ |b1

c1
|ω1

√
wv (93)

Finally, compare the approximate value of m11 to the maximum value of m33. Adding the condition

|c1b2|
√

w

v
� 1 (94)

implies that for widely spaced natural frequencies

m11 ≈ |b1|
|c1|

ω1

√
wv � |b1b2|ω1ω2w

ω2 − ω1
≥ m13 (95)

To summarize, under the conditions of widely spaced natural frequencies and proper sizes of w,v,c1,c2,b1, and b2, we have

an approximation for m11 and confidence that m11 � m13. A similar derivation, with a fourth condition

|c2b1|
√

w

v
� 1 (96)

would give

m22 ≈ |b2

c2
|ω2

√
wv � m13 (97)

This provides information about all of the coefficients of M that appear in the LQG cost function for cheap control, and

thus we could evaluate the approximate value of the cost function without solving any Riccati equations. The following section

generalizes these results for a MIMO system.

.0.2 MIMO, undamped

Now consider the undamped MIMO case with n modes, l disturbances, r sensors, and ξi = 0 ∀i. We will again examine the

Riccati equation in (45) to form bounds similar to those from the 2x2 SISO case.

First, the nonzero BwWBw terms in the MIMO Riccati equation can be bounded as

(bi1bj1 + · · · + bilbjl)ωiωjw ≤ (|bi1| + · · · + |bi1|)(|bj1| + · · · + |bjl|)ωiωjw (98)

ωiωjw

l
∑

k=1

bikbjk ≤ ωiωjw

l
∑

k=1

|bik|
l
∑

p=1

|bjp| (99)

This is a loose bound but has little effect on the final conclusion and simplifies notation using variables b′

b′i =
l
∑

k=1

|bik| (100)

The 2 by 2 on-diagonal block of the Riccati equation corresponding to mode i gives the equations:
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(2i − 1, 2i − 1) : 2ωim2i−1,2i−1 −
1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i−1,2p−1

)2

= 0 (101)

(2i − 1, 2i) : ωi(m2i,2i − m2i−1,2i−1) −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2i,2q−1

)]

= 0 (102)

(2i, 2i) : −2ωim2i−1,2i −
1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i,2p−1

)2

+ ω2
i w

l
∑

k=1

b2
i1 = 0 (103)

As for the SISO case, the squared terms from MCT v−1CM imply that m2i−1,1 > 0 for all i, and therefore none of the

terms in (103) can exceed ω2
i w
∑l

k=1 b2
ik. Hence,

m2i−1,2i ≤
ωiw

2

l
∑

k=1

b2
i1 ≤ (b′i)

2 ωiw

2
(104)

Each of the CT M terms may also be bounded

∣

∣

∣

∣

∣

n
∑

p=1

ckpm2i−1,2p−1

∣

∣

∣

∣

∣

≤ (b′i)ωi

√
wv (105)

∣

∣

∣

∣

∣

n
∑

p=1

ckpm2i,2p−1

∣

∣

∣

∣

∣

≤ (b′i)ωi

√
wv (106)

The off-diagonal blocks of the Riccati equation between two modes, i and j, give the block of four equations

(2i − 1, 2j − 1) : ωim2i,2j−1 + ωjm2i−1,2j −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2j−1,2q−1

)]

= 0 (107)

(2i − 1, 2j) : ωim2i,2j − ωjm2i−1,2j−1 −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2j,2q−1

)]

= 0 (108)

(2i, 2j − 1) : −ωim2i−1,2j−1 + ωjm2i,2j −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i,2p−1

)(

n
∑

q=1

ckqm2j−1,2q−1

)]

= 0 (109)

(2i, 2j) : −ωim2i−1,2j − ωjm2i,2j−1 −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i,2p−1

)(

n
∑

q=1

ckqm2j,2q−1

)]

+ωiωjw

(

l
∑

k=1

bikbjk

)

= 0 (110)

Manipulating these equations to produce single ωm first terms, then bounding them with the largest possible combinations

of bounds from (104) and (105) gives

|m2i−1,2j−1| ≤ |b′ib′j |ωiωjw
rωi + rωj

|ω2
j − ω2

i |
(111)

|m2i,2j | ≤ |b′ib′j |ωiωjw
rωi + rωj

|ω2
j − ω2

i |
(112)
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|m2i−1,2j | ≤ |b′ib′j |ωiωjw
(r + 1)ωi + rωj

|ω2
j − ω2

i |
(113)

|m2i,2j−1| ≤ |b′ib′j |ωiωjw
rωi + (r + 1)ωj

|ω2
j − ω2

i |
(114)

Solving for m2i−1,2i from (103) gives

m2i−1,2i =
1

2ωi







ω2
i w

(

l
∑

k=1

b2
ik

)

− 1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i,2p−1

)2






(115)

≥ 1

2ωi







ω2
i w

(

l
∑

k=1

b2
ik

)

− 1

v

r
∑

k=1

(

n
∑

p=1

|ckp|max(m2i,2p−1)

)2






(116)

=
1

2ωi











ω2
i w

(

l
∑

k=1

b2
ik

)

− 1

v

r
∑

k=1





n
∑

p=1,p6=i

|ckp||b′ib′p|ωiωpw
rωi − (r + 1)ωp

|ω2
p − ω2

i |
+ |cki|(b′i)2

ωiw

2





2










(117)

=
ωiw

2

(

l
∑

k=1

b2
il

)







1 − w

v

r
∑

k=1





n
∑

p=1,p6=i

|ckpb
′
p|

|b′i|
√

∑l
q=1 b2

iq

ωp

rωi − (r + 1)ωp

|ω2
p − ω2

i |
+

+
1

2
|ckib

′
i|

|b′i|
√

∑l

q=1 b2
iq

2

(119)

For balanced inputs and widely spaced modes, the magnitudes of |b′i|
√

∑

l
q=1 b2

iq

and ωp
rωi−(r+1)ωp

|ω2
p−ω2

i
|

are typically low order.

Then the size of the terms in this equation are driven by the magnitude of |ckpb
′
p|2 w

v for any combination of k and p. These

terms are small when the magnitude of sensor noise, v, is large compared to the combined mode excitation, (b2
p1 + · · ·+ b2

pl)w

multiplied by the sensor gains, |ckp|. In this case, where

|ckqb
′
p|2

w

v
� 1 (120)

for all k and p,

m2i−1,2i →
ωiw

2

(

l
∑

k=1

b2
il

)

(121)

Now consider (101) and the importance of m2i−1,2i−1 relative to the other terms of M . If for all k and all j 6= i,

1

v
(|ckj |m2i−1,2j−1)

2 � 2ωim2i−1,2i (122)

then MCT terms are dominated by the diagonal elements of M. Using the approximation in (121), this condition may be

stated as
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1

v
(|ckj |max(m2i−1,2j−1))

2 � (b2
i1 + · · · + b2

il)ω
2
i w (123)

or

1

v

(

|ckj ||b′ib′j |ωiωjw
rωi + rωj

|ω2
j − ω2

i |

)

� (b2
i1 + · · · + b2

il)
2ω2

i w (124)

|ckjb
′
j |2

w

v





b′i
√

∑l
k=1 b2

il





(

rωj

ωj − ωi

)2

� 1 (125)

This condition is fulfilled by the same conditions imposed to get the approximation of m2i−1,2i: widely-spaced modes,

balanced inputs, and (120) satisfied. Therefore, m2i−1,2i−1 does indeed dominate (??) under such conditions. Assuming all

other terms from M are negligible and solving the (101) for m2i−1,2i−1 with m2i−1,2i from (121), we obtain

m2i−1,2i−1 ≈

√

∑l

p=1 b2
ipωi

√
wv

√
∑r

k=1 c2
1i

(126)

The objective function for low cost control is now

JH2 =

n
∑

i=1

d2
ii

√

∑l

p=1 b2
ipωi

√
wv

√
∑r

k=1 c2
1i

(127)

.0.3 Damping

When damping is included in the system, the blocks of equations from the Riccati equation become:

(2i − 1, 2i − 1) : 2ωim2i−1,2i−1 −
1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i−1,2p−1

)2

= 0 (128)

(2i − 1, 2i) : −2ξiωim2i−1,2i + ωi(m2i,2i − m2i−1,2i−1)

− 1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2i,2q−1

)]

= 0 (129)

(2i, 2i) : −4ξiωim2i,2i − 2ωim2i−1,2i −
1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i,2p−1

)2

+ ω2
i w

l
∑

k=1

b2
i1 = 0 (130)

(2i − 1, 2j − 1) : ωim2i,2j−1 + ωjm2i−1,2j −
1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2j−1,2q−1

)]

= 0 (131)

(2i − 1, 2j) : −2ξjωjm2i−1,j + ωim2i,2j − ωjm2i−1,2j−1

− 1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2j,2q−1

)]

= 0 (132)

(2i, 2j − 1) : −2ξiωim2i,2j−1 − ωim2i−1,2j−1 + ωjm2i,2j
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− 1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i,2p−1

)(

n
∑

q=1

ckqm2j−1,2q−1

)]

= 0 (133)

(2i, 2j) : −2(ξiωi + ξjωj)m2i,2j − ωim2i−1,2j − ωjm2i,2j−1

− 1

v

r
∑

k=1

[(

n
∑

p=1

ckpm2i,2p−1

)(

n
∑

q=1

ckqm2j,2q−1

)]

+ ωiωjw

(

l
∑

k=1

bikbjk

)

= 0 (134)

It is no longer possible to obtain a minimum bound on the m2i−1,2i terms due to the appearance of an unbounded m2i,2i term

in the (2i, 2i) equations. However, since the undamped system is the limiting case as ξ → 0, we know that for small enough

xi’s, the diagonal terms of M will come to dominate as before.

First, notice that the bounds on off-diagonal terms from the undamped case are approximately correct for light damping. By

positive-definiteness, ∀ i,

m2i,2i ≥ 0 (135)

Thus, as before from equation (2i, 2i),

m2i−1,2i ≥ 0 (136)

Therefore, the bounds on the components of MCT in (105) still hold. Now consider the coefficients of the off-diagonal

terms of M that appear in the off-diagonal equation blocks (131) to (134) from AM + MAT . To solve for a single term of M

in order to apply bounds as was done in (111) through (114), we could invert the matrix



















0 ωj ωi 0

−ωj −2ξjωj 0 ωi

−ωi 0 −2ξiωi ωj

0 −ωi ωj −2(ξiωi + ξjωj)



















(137)

and multiply the inverse times equations (131) to (134). However, we will simply note that for ξi, ξj � 1, the inverted matrix

is approximately the same as for the undamped case, ξi, ξj = 0 , so we will take equations (111) to (114) to be approximately

correct for lightly damped as well as undamped systems.

Returning to the diagonal equation blocks, from (130) and (129) and using the bounds from (105), we obtain

ω2i−1(m2i,2i − m2i−1,2i−1) =
ξi

v

r
∑

k=1

(

n
∑

p=1

ckpm2i−1,2p−1

)2

+
1

v

r
∑

k=1

(

n
∑

p=1

ckpm2i−1,2p−1

)(

n
∑

q=1

ckqm2i,2q−1

)

(138)

|m2i,2i − m2i−1,2i−1| ≤ (b′i)
2ωiw(1 + ξi) (139)

Now, assume |m2i,2i −m2i−1,2i−1| ≈ 0 and also that diagonal terms dominate M . If true, the sum of (130) and (??) reduces

to
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1

v

r
∑

k=1

(cikm2i−1,2i−1)
2

+ 4ξiωim2i−1,2i=1 − ω2
i w

l
∑

p=1

b2
ip ≈ 0 (140)

From the quadratic equation,

m2i−1,2i−1 ≈
−4ξiωi +

√

(4ξiωi)
2

+
4ω2

i
w

v (
∑r

k=1 c2
ik)
(

ω2
i w
∑l

p=1 b2
ip

)

2
v

∑r

k=1 cik2
(141)

If m2i−1,2i−1 obtained from this equation is much larger than the bounds on the off-diagonal terms from (111) to (114) and

the bound on |m2i,2i − m2i−1,2i−1| from (138), then this approximation is valid. Furthermore, it is clear that as ξi → 0,

m2i−1,2i−1 →

√

∑l

p=1 b2
ipωi

√
wv

√
∑r

k=1 c2
1i

(142)

,

same as the undamped system.

.0.4 Discrete time

Now consider a discrete time model of the system formed by the continuous system in (??) passed through a zero-order hold

with step time 4Ts:

x(k + 1) = Adx(k) + Bdu(k) + Bwdw(k) (143)

y(k) = Cdx(k) (144)

z(k) = Ddx(k) (145)

Let the objective function for this system be

JH2,d = min
Kd,Fd(Φ)

E

[

∞
∑

k=0

z(k)T z(k) + u(k)T Ru(k)

]

(146)

with optimal linear controller Kd and filter Fd obtained from digital Riccati equations

Kd =
[

R + BT
d PdBd

]−1
BT

d PdAd (147)

Fd = MdC
T
d

[

CdMdC
T
d + vI

]−1
(148)

Pd = AT
d PdAd + DT

d Dd − AT
d PdBd

[

BT
d PdBd + R

]−1
BT

d PdAd (149)

Md = AdMdA
T
d + BwdwBT

wd − AdMdC
T
d

[

CdMdC
T
d + vI

]−1
CdMdA

T
d (150)

(151)
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The objective function can be evaluated as

JH2,d = tr
[

Pd(BdKdZdA
T
d + BwdwBT

wd)
]

(152)

where Zd is the estimation error covariance matrix

Zd = Md − MdC
T
d

[

CdMdC
T
d + vI

]−1
CdMd (153)

Md = AdMdA
T
d + BwdwBT

wd (154)

In the singular case R → 0, from [12] and [13],

Pd → DT
d Dd (155)

Kd → (DdBd)
−1DdAd (156)

Inserting the limits of Pd and Kd in (152) and substituting for Zd from (154) results in the same summation of Md and Dd

terms as for the continuous time case

JH2,d = tr
[

DT
d DdBd(DdBd)

−1DdAdZdA
T
d + DT

d DdBwdwBT
wd

]

(157)

= tr
[

DT
d Dd(AdZdA

T
d + BwdwBT

wd)
]

(158)

= tr
[

DT
d DdMd

]

(159)

=
∑

i

∑

j

m2i−1,2j−1didj (160)

Futhermore, the continuous time solution of the Riccati equation is the limiting case of the discrete Riccati equation when

4Ts → 0. When the sampling frequency is high relative to the natural frequencies of the modes,

Md → M4Ts (161)

Therefore, Md is proportional to the continuous M for small step times, in which case the approximations described previ-

ously may be used to obtain optimal sensor locations.
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