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ABSTRACT – This paper presents a nonlinear dynamic analysis of the head-disk 
interface by including intermolecular adhesion forces for sub- 5 nm flying air 
bearing sliders. Experimental evidence shows that one of the major roadblocks in 
achieving ultra-low flying-heights is the stability of the head-disk interface. It is 
found that the inclusion of intermolecular forces between the slider and disk in 
modeling the head-disk interface leads to dynamic instability of the slider. It is 
shown by a bifurcation diagram that a slider can easily be forced into unstable, 
high amplitude oscillations. It is also shown that the experimentally observed spin-
down – spin-up flying-height hysteresis, intermittent flying instability, and 
“snapping” from stable to unstable proximity can be explained by the inclusion of 
the intermolecular forces. A parametric study is conducted showing the 
dependence of stability/instability on the variables. By understanding the effect 
each parameter has on stability, we can achieve air bearing surface and disk 
morphology system design guidelines. From this study it is found that the head-
disk interface can become unstable due to intermolecular forces below a flying-
height of about 6 nm.  However, from the results of the parametric study, it is 
shown that a head-disk interface can be designed such that it maximizes stability, 
although the instability cannot be attenuated completely. By minimizing the 
intermolecular adhesion forces and the flying-height modulation, and by 
maximizing the air bearing stiffness and damping, we achieve maximum stability. 
Also, it is found that the stiffening effect of the air bearing film increases the 
stability. The implications of this study are that the head-disk interface stability is 
dramatically compromised in the sub- 6 nm flying-height regime and that the 
glide-height of “super-smooth” disks will not only be a function of the disk’s 
morphology but also the intermolecular adhesion force induced instability of the 
slider. 
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INTRODUCTION 

 In order to achieve a magnetic recording areal density of 1 Tbit/in2 it is expected 

that the physical spacing between the media and transducer or flying-height (FH) will 

have to be 3.5 nm [1]. For a head-disk interface (HDI) to perform reliably, both 

tribologically and magnetically, the fluctuations in the FH must be held to a minimum. 

One of the roadblocks thus far for realizing a 3.5 nm FH is the dynamic stability of the 

HDI. It has been seen experimentally that a slider can transition from stable to unstable 

proximity flying by decreasing the FH only slightly [2]. Also, it has been widely 

observed that a slider’s touchdown and takeoff FH’s are not equal. This “snapping” effect 

between stability and instability and the difference in a slider’s touchdown and takeoff 

FH’s are evidence of a complicated dynamical system when operating in the sub- 6 nm 

FH regime. As the slider and disk spacing is decreased, the interface surface interactions 

are evidently no longer negligible. Two adhesion models have been proposed to account 

for the interactions between the slider and the disk: one is based on lubricant interacting 

with the slider causing a meniscus force and the other is based on intermolecular forces 

between the two intimate surfaces.  

 Previous publications have studied the effects of lubricant on HDI stability and 

flying characteristics [3] - [6]. Kato et. al. used an equilibrium meniscus force model in 

simulations to account for the dynamic slider-lubricant interactions [4] - [6]. However, 

their use of this meniscus force model neglects some very important assumptions of the 

model: extremely thin liquid lubricant film thickness (> 15 Å) and the kinetic formation 

of a meniscus. Generally, lubricant is highly bonded to the disk surface, thus only a 

fraction of the lubricant layer is available to behave as a liquid in the formation of a 
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meniscus making a meniscus more energetically difficult to form. Also, on the time scale 

of interest for “bouncing” or unstable proximity of the air bearing slider, the liquid 

volume required to form the meniscus does not have time to be transported and is far 

from the equilibrium state according to a kinetic meniscus formation model [7].    

Intermolecular adhesion forces can be extremely large when two very flat 

surfaces come within proximity. In fact, it has been shown that intermolecular adhesion 

forces is the mechanism that allows gecko lizards to “stick” on molecularly smooth 

surfaces [8]. Therefore, when flying an extremely smooth air bearing slider over a 

“super-smooth” disk at ultra-low FH’s, intermolecular forces must be accounted for. 

Thus far, publications investigating the effect of intermolecular forces on the HDI have 

been based on static analysis [9] - [11]. It has been shown that for air bearing sliders 

flying in the sub- 5 nm regime, intermolecular forces can become important and cause a 

significant decrease in static FH [9]. However, the implications of intermolecular forces 

on the dynamic stability of the HDI have not been published.  

 In this paper we present some experimental evidence of the abrupt stable to 

unstable flying transition and the FH hysteresis, which are measures of instability for the 

HDI. We also show that even for non-lubricated disks HDI instability occurs, suggesting 

this phenomenon is more likely to be caused by intermolecular forces than by meniscus 

forces. By accounting for the intermolecular forces through a Lennard-Jones potential 

and modeling the HDI as a lumped parameter one degree-of-freedom (1DOF) model, we 

show that the system becomes highly nonlinear in the proximity region. It is shown that 

the dynamics of this nonlinear system are extremely complicated and can even be 

chaotically unstable. From a nonlinear dynamics analysis with nominal values and from a 
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parametric study, the variables implicating the HDI stability/instability are discussed 

including design guidelines to minimize HDI instability due to intermolecular forces.  

EXPERIMENTAL RESULTS 

It has been observed that when the FH of a slider is gradually reduced to within 

proximity of an extremely “super-smooth” disk the slider can be easily set into unstable 

high amplitude oscillations. Figure 1a shows the absolute displacement of the trailing 

edge center of slider 2 shown in Fig. 2 flying in proximity of the disk at linear velocities 

of 3.6, 3.4 and 3.2 m/s. This result is measured by a laser Doppler vibrometer (LDV) in 

the bandwidth of 10kHz – 2 MHz. It is seen that the slider transitions abruptly from 

stable to intermittently unstable and then further to indefinitely unstable as the velocity is 

lowered slightly. The high amplitude oscillations of the slider appear to be self-excited as 

opposed to asperity contact induced. This “snapping” effect from stable to unstable 

suggests complex dynamics of the HDI system. 

It has been widely observed that as a slider is forced into and back out of contact 

by decreasing and increasing disk speed or pressure, a FH hysteresis is present (i.e., 

touchdown FH ≠  takeoff FH) [12]. Experiments investigating HDI instabilities as a 

function of the FH were conducted on a TTi T1000 spinstand for various sliders and 

disks while controlling the FH with the spindle speed of the disk. The sliders instability 

and contact was initially measured by both LDV and an acoustic emission (AE) sensor, 

however, the LDV was found to be much more sensitive than the AE sensor. Therefore, 

the sliders vertical motion was measured by a LDV and highpass filtered at 60 kHz to 

obtain air bearing resonance vibration and slider body vibration modes to detect unsteady 

proximity and contact, respectively. This signal was then acquired through a RMS circuit 
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sampled at 4 kHz. A typical FH hysteresis can be seen in Fig. 1b, which shows the sliders 

RMS vertical velocity as the disk spindle RPM is lowered until the slider comes into 

unsteady proximity and/or contact with the disk (touchdown) and then the disk spindle 

RPM is increased and the slider ceases to contact and flies in steady proximity over the 

disk (takeoff). It has been observed that the touchdown RPM is lower than the takeoff 

RPM or the touchdown height (TDH) is less than the takeoff height (TOH). This 

difference in RPM or FH is what constitutes this hysteresis (TOH - TDH). Several sets of 

experiments were conducted using four different sub-ambient pressure pico sliders and a 

set of disks with varying lubricant thickness. The four air bearing surfaces (ABS) are 

shown in Fig. 2. Two types of disks were used in this experiment: B2 with Ra = 0.3 nm 

and B4 with Ra = 0.2 nm both with glide-heights of 2.5 to 4 nm. The disks were all 

processed in exactly the same manner with the only variation being the lubricant 

thickness: 0 (not lubricated), 8, 12, 16 and 20 Å. The lubricant is a perfluoropolyether 

(PFPE) with a high bonding ability to the disk of approximately 80%. For every test, new 

samples were used so as to not affect the experimental results by lubricant pickup on the 

slider, wear and other factors. Figures 3 through 6 summarize the experimental results for 

sliders 1 – 4. The bar graphs show the touchdown, takeoff, and hysteresis RPM’s as a 

function of lubricant thickness. It is interesting to notice that for all of the lubricant 

thicknesses tested, there is no trend in the FH hysteresis as a function of lubricant 

thickness. What is common among all the tests is that a FH hysteresis is present for all 

disks and sliders tested including the non-lubricated disks and that the takeoff RPM was 

always higher than the touchdown RPM. This FH hysteresis can be used as a measure of 

instability of the HDI. For example, take the case of slider 3 flying over the disk with 0 Å 
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of lubricant (see Fig. 5). If the slider is flying at any speed between 3500 RPM 

(touchdown) and 8000 RPM (takeoff) the slider has the ability to become unstable and 

remain unstable until the RPM is increased beyond the 8000 RPM (takeoff). Also, the 

intensity of the sliders vibration can be measured from the RMS value of the LDV signal. 

For sliders 1 – 3, the intensity of vibration saturated the data acquisition system. 

However, slider 4 exhibited very low vibration amplitude, as seen in Fig. 7 compared to 

the other sliders. The main difference between sliders 1 –3 and 4 is the small diamond-

like carbon pads distributed across the entire ABS. These small pads on slider 4 decrease 

the actual proximity/contact area substantially and lead to less adhesion force, which 

could explain the results seen in Fig. 7. Also, the sliders vibration amplitude in Fig. 1b is 

asymmetric, showing that the maximum slider vibration does not occur when the RPM is 

the lowest.     

Both the “snapping” effect from steady to unsteady proximity flying and the 

presence of a FH hysteresis are new phenomena not well understood. By simulating a 

quasi-static FH and the touchdown-takeoff process, accounting for all of the forces 

shown in the free-body diagram in Fig. 8, we would not predict this “snapping” effect 

from stable to unstable proximity or the FH hysteresis. Therefore to explain the above 

experimental observations, it appears that additional forces at the HDI can no longer be 

neglected for such low FH’s.  

ADHESION FORCES AT THE HDI 

With FH’s decreasing and the probability of contact increasing, a better 

understanding of the interface interactions are becoming more important in developing a 

reliable HDI. Also, with the intimate surfaces of the slider and disk becoming extremely 
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smooth (i.e., close to atomically smooth) and with the presence of a thin layer of lubricant 

on the disk surface, the interface interactions become very complicated. Generally the 

interface is a diamond-like carbon (DLC) coated slider surface – the air – a lubricant 

interface during flying, and a DLC coated slider surface – lubricant surface interface 

during contact. If the disk is not lubricated, the interface would include the DLC coated 

disk instead of the lubricant layer. The source and nature of the interface forces acting 

between the slider and the disk can be very complicated. Such forces can be generated 

through electrostatic charging, tribocharging, and adhesion. In this paper we will only 

consider adhesion forces acting at the interface.  

At least two types of adhesion forces can be generated at the HDI: capillary 

(meniscus) and intermolecular. In order for meniscus forces to be generated, a liquid 

layer must be present at the interface. In the case of the HDI, the liquid layer would 

consist of primarily the mobile lubricant and possibly a very thin condensed water vapor 

layer. Also, the formation of a meniscus force is kinetic, hence, highly time dependent 

[7]. It has been shown through experiments and simulation that the meniscus force is 

negligible when the slider and lubricant are in contact over a short enough time period 

and increases to a steady-state value over a time period on the order of minutes [7], [13]. 

Under dynamic instability of the slider, it can be seen from Fig. 1a that the slider is in 

contact with the lubricant layer for less than 800 ns; far too short to form a measurable 

meniscus force as predicted from a kinetic meniscus formation model and previous 

experimental results. Also, for the high velocity vibration of the slider under unstable 

proximity, it is still unknown if the lubricant behaves as a liquid or a solid when the slider 

impacts the lubricant. Our experimental results agree with the above analysis. If meniscus 
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forces were partially the cause of the additional interface forces, then we would expect 

the FH hysteresis to increase as the lubricant thickness increases, and little or no FH 

hysteresis should exist for an interface without lubricant. Our experimental results shown 

in Figs. 3 – 6, show no clear trend in the FH hysterisis with increasing lubricant thickness 

and that a FH hysterisis is present even for an interface without lubricant.  

Other lubricant interactions could possibly cause new dynamic HDI phenomena; 

however, the above experimental results showed very little correlation between a 

meniscus force effect and instability. For the following analysis the contribution of 

adhesion due to meniscus formation under the unsteady proximity regime seems unlikely 

and adhesion due to intermolecular forces, which is time independent for unsteady 

proximity of the HDI, is considered to be the sole contributor to adhesion. To get an idea 

of the magnitude of the adhesion force generated by intermolecular forces we focus on a 

particular system. For a flat area, As = 15,000 µm2 (approximate area of the alumina at 

the trailing edge of slider 2) placed parallel to a flat disk surface, the van der Waals 

intermolecular adhesion force as a function of separation distance, D, is [14] 

  sA
D

A
F ⋅








= 36π
             (1) 

where A is the Hamaker constant assumed to have a value between 0.4-4×10-19 J for 

condensed phases across air or vacuum [14]. Figure 9 shows the adhesion force as a 

function of separation distance for the range of Hamaker constants given above. It is seen 

that at a separation distance of 3 nm, the adhesion force can range from 0.12 – 1.2 gm, 

which is quite significant at the HDI. This example does not take into account the slider’s 

attitude, crown, camber and twist or roughness effects. In the following analysis we 
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account for the slider geometry parameters and will comment on the effect of slider/disk 

roughness in the discussion section. 

HEAD-DISK INTERFACE MODEL 

A. Modeling Intermolecular Forces 

For modeling of the intermolecular forces, we adopted the method of Lin and 

Bogy who implemented an additional force into the CML Static Air Bearing Simulation 

Code via the Lennard-Jones potential [9]. The Hamaker constant, A, was taken to be 10-19 

J and the repulsion constant, B, was taken to be 10-76 Jm6. This method takes the slider air 

bearing geometry and flying attitude into account, however, it assumes mathematically 

smooth surfaces. The fixed attitude solution is found by fixing the attitude of the slider 

(FH, pitch, and roll) and solving for the forces acting on the slider. When the forces and 

moments acting on the slider equal those of the suspension, the static solution is obtained. 

Figure 10a shows the resultant intermolecular force acting on the pico size ABS shown in 

Fig. 2 (slider 2) as a function of minimum FH for a roll angle of 1.5 µrad and pitch angle 

of 40 µrad; similar to the conditions under which slider 2 exhibits unstable proximity. It 

is seen that as the FH decreases, an attractive force becomes present around 5 nm and by 

further decreasing the FH, a strong repulsive force becomes present, as expected. The 

Lennard-Jones model does not allow for physical contact between the slider and disk. 

The Lennard-Jones modeled force becomes unbounded as the spacing goes to zero due to 

the repulsion term to simply model physical contact. This simplification in the repulsion 

term modeling physical contact will be commented on in the discussion section. 
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However, it will be shown that even though the Lennard-Jones repulsion and physical 

contact are modeled differently, they predict similar dynamic instability results. 

B. Static Force Analysis 

Figure 10b shows the resultant force exerted on the slider as a function of 

minimum FH for the fixed attitude solution. The force consists of the positive and 

negative (sub-ambient) air bearing forces and the adhesion and repulsion forces from the 

Lennard-Jones potential. When the intermolecular forces are accounted for there can exist 

up to three equilibria – two stable and one unstable. It is seen that for small perturbations 

about the nominal FH solution of 7 nm, the solution is stable. However, at 2.8 nm, there 

exists an unstable equilibrium and another stable equilibrium at 0.2 nm. These additional 

equilibria suggest a very complicated nonlinear system, which is the focus of the 

following dynamic analysis. 

C. Nonlinear One Degree-of-Freedom HDI Model 

In order to simplify the HDI for the following analysis, we used the simple 

lumped parameter 1DOF model depicted in Fig. 11. In this model, the air bearing slider 

system is modeled with a nonlinear spring, k(s), mass, m, and proportional damping, c. 

The nonlinear air bearing stiffness is a function of the slider – disk spacing, s, and takes 

the power-hardening form 

    
αβ ssk ⋅=)(                  (2) 

where α and β are constants found by matching with the CML dynamic simulation code 

[2]. The air bearing force can be found from 

  ( ) ( ) ( ) xdxFHxskxF ssab ⋅−+⋅−=⋅−= αβ           (3) 
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where FHss is the steady-state FH without accounting for the intermolecular force and x is 

the slider’s absolute displacement: x = s + d –FHss. The disk topography, d(t), can be 

modeled in various ways; as a numerically generated random wavy surface, a harmonic 

excitation, or using an experimentally measured disk topography. The intermolecular 

force, FvdW, acting on the slider takes the form 

( )
( ) ( )9393 dxFH

B

dxFH

A

s

B

s

A
sF

ssss
VdW −+

′
+

−+

′
−=

′
+

′
−=          (4)  

where A´ and B´ are constants found from curve fitting plots similar to Fig. 10a where the 

first term is the attraction force and the second term is the repulsion force. The equation 

of motion for this system can be written in terms of the sliders absolute displacement, x 

( ) ( ) 0=−−+−++ dcdkFxFkxcxm VdWVdW
&&&&             (5) 

Due to the intermolecular force in Eq. (4) and the nonlinear spring stiffness in Eq. (3), 

Eq. (5) becomes highly nonlinear, and due to the addition of the intermolecular force, the 

solution is not simple. 

 

HEAD-DISK INTERFACE NONLINEAR ANALYSIS 

A. Stability 

Stability of the HDI model can be analyzed by considering the energy of the 

system. If we assume no forcing, d(t) = 0, and no damping, c = 0, the system is 

conservative and a potential energy method can be used to show equilibria and local 

stability. The potential energy of the system, Usys, is comprised of the potential energy of 

the air bearing spring, Uab, and the potential energy of the intermolecular force, UvdW, 
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derived from the Lennard-Jones potential. These conservative forces are related to their 

potential energies through 

   ( )
x

U
xF

∂
∂

−=               (6) 

The total potential energy can be found by integrating the air bearing force, Fab, and the 

intermolecular force, FvdW 

[ ]
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αβ                    (7) 

The criteria for equilibrium, *
ix , is satisfied when the system’s potential reaches an 

inflection point 

    0=
∂

∂

x

U sys
                       (8) 

and the equilibrium point is stable if the potential evaluated at equilibrium is a local 

minimum 

    0
*

2

2

>
∂

∂

ix

sys

x

U
             (9) 

and is unstable if the potential evaluated at equilibrium is a local maximum 

    0
*

2

2

<
∂

∂

ix

sys

x

U
           (10) 

For the nominal coefficients used, as shown in Table 1, equilibria and stability as 

a function of FHss can be obtained. Figure 12 shows the potential energies of the air 

bearing, the Lennard-Jones potential and the total system potential at FHss = 7.75 nm as a 
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function of spacing. It is seen when the air bearing and the Lennard-Jones potentials are 

added, the system has one equilibrium, FHeq, and it is stable, where FHeq = xi
*+FHss. In 

Fig. 13, the total potentials for FHss = 7.75, 5.75, 4.75, and 1.25 nm are shown as a 

function of spacing. It is seen, at FHss of 7.75 nm, one stable equilibrium exists at FHeq = 

7.75 nm. At FHss = 5.75 nm, there exists two stable and one unstable equilibria at FHeq = 

5.75, 0.35, and 0.7 nm, respectively. At FHss = 1.25 nm, the air bearing is overcome by 

the intermolecular force and only one stable equilibrium exists, FHeq = 0.25 nm. The 

equilibria and stability as a function of FHss can be summarized in the bifurcation plot 

shown in Fig. 14. It is seen that when FHss is greater than 6.3 nm only one equilibrium 

exists, x1
*, the nominal FH solution. Between FHss of 1.35 nm and 6.3 nm, three 

equilibria exist – two stable, x1
* and x3

* and one unstable, x2
*. At FHss of 1.35 nm, only 

one stable equilibrium exists, x3
*. The regime where the three equilibria exist is of utmost 

interest – both theoretically and for practical application. 

Between FHss of 1.35 nm and 6.3 nm in Fig. 14 three equilibria exist and within 

this regime the potential energy takes on a special form generally called a “double-well” 

or “two-well” potential. Double-well potential systems have been studied for the past two 

decades in the field of nonlinear dynamics [15] - [18]. Many systems have exhibited 

double-well potentials with very interesting dynamics, from mechanical systems to super 

conductivity. Within this regime, the dynamics of the system are extremely complex and 

can even be chaotic [15] - [18]. A detailed nonlinear dynamics analysis of this system 

investigating periodic solutions, limit cycles, and transitions to chaos are interesting to 

study, however, the practical issues associated with the HDI would be over shadowed in 
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such a complete study. The details concerning the HDI stability and instability are of 

more interests to us here, and they are discussed in detail.  

B. Unforced System 

This system is considered to be unforced when the disk forcing is zero, d(t) = 0 

(e.g. for a perfectly smooth disk surface). From the bifurcation plot in Fig. 14 we observe 

one very important characteristic of the unforced system. This observation can be 

explained by a touchdown (TD) – takeoff (TO) simulation by decreasing and then 

increasing the FHss. From Fig. 14, the FHeq’s can be found as a function of FHss as the 

FHss is lowered from 10 nm to 1 nm and then increased back to 10 nm. As the FHss is 

decreased from 10 nm to 1.35 nm, the equilibrium follows the nominal solution, x1
* (a-b). 

However, at the FHss of 1.35 nm, the air bearing is overcome by the intermolecular force 

and the nominal solution is annihilated by x2
* and the slider “snaps” down to the other 

stable equilibrium, x3
* (b-c). Upon increasing the FHss back to 10 nm, the equilibrium 

solution will remain along x3
* until it is annihilated by x2

*, at a FHss of 6.3 nm (d-e). At 

FHss = 6.3 nm the equilibrium solution “snaps” from x3
* to x1

*, back to the nominal 

solution (e-f). This is illustrated in Fig. 15, which depicts an unforced TD – TO 

simulation showing the slider remaining “stuck” on the disk until the FHss reaches 6.3 

nm. The difference between the FHss at which the slider becomes “stuck” while 

decreasing the FHss and where the slider becomes “unstuck” while increasing the FHss is 

the unforced “FH hysteresis”. It is seen that for the unforced system the FH hysteresis is 

bound by the regime were multiple equilibria exist – namely the three equilibria, x1
*,  x2

*, 

and x3
*.  
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Figure 16 shows a sketch of the energy surface in state-space ( x  versus x& ) and 

the trajectories projected onto the state-space within the regime where the multiple 

equilibria exist, 1.35 < FHss < 6.3 nm. Since the unforced and undamped system is 

conservative, the systems trajectory remains on a level contour of the energy surface. 

Depending on the initial conditions the system will behave differently. In Fig. 16b, it is 

seen that for a relatively low energy state, E < E2, with initial conditions near x3
* or x1

*, 

the slider oscillates about x3
* or x1

*, respectively, with small amplitudes. However, if 

enough initial energy is applied, E > E2 the system remains in high amplitude oscillations 

about both x1
* and x3

*. The energy state that separates the oscillations about x1
* or x3

* and 

oscillations about both x1
* and x3

*,  E2, is defined as the homoclinic orbit or separatrix 

shown in Fig. 16. By adding damping, c, the systems trajectory would end up spiraling 

down into either x1
* or x3

* depending on the initial conditions as seen in Fig. 17. Two sets 

of initial conditions were chosen to illustrate the sensitivity to initial conditions: (FH , 

velocity) = (6.3 nm , -0.3945 mm/s) and (FH , velocity) = (6.3 nm , -0.394 mm/s). It is 

seen that one of the trajectories spirals into x1
* and the other spirals into x3

*. The 

dynamics associated with the unforced system are rather simple as described above. 

However, once this type of system is forced, the sliders response becomes very nontrivial 

and highly unpredictable. 

C. Forced System 

Forced double-well potential systems have been found to exhibit strange 

attractors causing chaos and sensitivity to initial conditions; however, the important 

result for the HDI can be summarized as follows [15] - [18]. As long as the model of the 

HDI exhibits a double-well potential the forced solution can be periodic, non-periodic, or 
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chaotic for simple harmonic forcing. The homoclinic energy level separating oscillations 

about x1
* or x3

* and x1
* and x3

* can no longer be used to approximately predict the slider’s 

response.  That is, for the nominal parameters used, this system can exhibit non-

predictable chaotic dynamics between FHss of 1.35 nm and 6.3 nm. The slider motion is 

defined as stable if it oscillates about the x1
* equilibrium and unstable of all other 

motions.  This choice of terminology describes the nominal flying condition as stable and 

large chaotic slider oscillations as unstable.   

 1. Touchdown – Takeoff Simulations 

The topography of a disk is composed of harmonic and non-harmonic content at 

all wavelengths or frequencies as the disk spins. Figure 18 shows the experimentally 

measured frequency spectral contents of two disk’s morphology as seen by the slider as 

the disk spins. Both disks are “super-smooth” media, however, it is seen that disk A is 

smoother than disk B across the entire spectral band. Figure 19 shows a TD – TO 

numerical simulation that is similar to that shown in Fig. 15, however the system is now 

forced with the measured disk topography from disk A. It is found that while decreasing 

FHss the slider “snaps” from stable motions about x1
* into chaotic high amplitude 

oscillations. Upon increasing FHss, stable slider motion is resumed about x1
*, exhibiting a 

FH hysteresis. Because this system exhibits strange attractors in the sub- 6 nm FH 

regime, the characteristics of the chaotic slider motion are highly dependent on the disk 

forcing. However, for all disk topographies investigated an unstable motion exhibiting a 

FH hysteresis was always present due to the intermolecular force. By qualitatively 

comparing the experimental result in Fig. 1b with the simulation results in Fig. 19 we see 
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that the maximum amplitude of vibration does not occur at the lowest FHss, but rather it 

occurs after the minimum FHss has been reached and increases with increasing FHss.    

2. Transition between stable and unstable flying 

Experimentally it was shown that by changing the FH only slightly the transition 

between stable and intermittent unstable flying was abrupt (see Fig. 1a). Numerical 

simulations have also been carried out showing this phenomenon in which the FHss is 

held fixed. Within the regime where the system exhibits a double-well potential, it has 

been shown that the slider can be easily forced into unstable high amplitude oscillations. 

Figure 20 shows the slider motion exhibiting intermittent instability at FHss = 3.35 nm. 

Figure 21 shows a similar simulation without including the intermolecular force. These 

two figures show that the intermittent instability here is due to the inclusion of the 

intermolecular force. By slightly increasing the FHss, the instability ceases to exist and by 

slightly decreasing the FHss, the instability will persist indefinitely. Under these 

conditions, the slider has the ability to oscillate about x3
*, x1

*, or both x3
* and x1

* and can 

switch between oscillation states chaotically. Figure 22 presents a plot of the state-space 

showing oscillations about x3
*, x1

*, and both x3
* and x1

*. Figure 23 shows the chaotic 

nature of the system as it switches between oscillation states. It is seen that when the 

system becomes unstable, the most likely oscillation state of the slider is oscillation about 

both x3
* and x1

*. It is possible for the slider to oscillate about x3
* but due to the disk 

forcing, the slider cannot continue oscillating about this equilibria. If a slider could 

remain in the state of oscillation about x3
*, a stable sub- 1 nm FH slider could be realized. 

However, due to disk waviness, roughness and glide-height, the result is high amplitude 

unstable oscillations.     
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PARAMETRIC STUDY 

 The above 1DOF system used to simulate the HDI is greatly simplified to give an 

understanding of the effects of adding intermolecular forces in the system and to show 

how certain parameters affect HDI dynamic stability. However, due to the assumptions 

made in reducing the HDI to a 1DOF system, the results must be viewed as merely 

qualitative. It is desired to make the HDI as stable as possible, and thus far it has been 

shown that stability can be highly compromised when flying in the sub– 6 nm regime due 

to the presence of intermolecular forces. Nominal values have been used in the 

simulations presented. Next we present some qualitative results on how these parameters 

affect the HDI stability as they are varied.  

It was shown that the slider has the ability to become unstable when multiple 

equilibria exist. Therefore, if it were possible to exclude this regime of multiple 

equilibria, the slider system dynamics would be much simplified, and not exhibit 

instability and a FH hysteresis due to intermolecular forces. However, the inclusion of the 

intermolecular forces in the modeling will always predict this regime. The bifurcation 

plot in Fig. 14 is useful in visualizing the regime where multiple equilibria exist, and the 

model elements controlling the location and length of this regime are both the 

intermolecular and the air bearing forces. 

(a) Intermolecular Force 

 The cause of the complicated dynamics of this system stems from the 

intermolecular force. By simply scaling the intermolecular force in Eq. (4) as shown in 

Fig. 24, we obtain the corresponding bifurcation plots as shown in Fig. 25, which clearly 
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illustrates its effect on HDI stability. It is seen that by decreasing the intermolecular force 

to one-fourth and one-half its nominal value, the multiple equilibria regime shrinks from 

1.35 < FHss < 6.3 nm to 0.9 < FHss < 1.8 nm and 1.1 < FHss < 3.3 nm, respectively. These 

decreases result in much smaller FH regimes where the system has the ability to become 

unstable. On the other hand, by increasing the intermolecular force by two times its 

nominal value, the multiple equilibria regime increases to 1.65 < FHss < 12.3 nm. Figure 

26 presents plots of the slider’s motion flying over a measured disk topography at a FHss 

of 3 nm for different amplitudes of the intermolecular force. It is seen that as the 

intermolecular force increases, so does the instability of the HDI. Figure 27 shows the TD 

– TO FH hysteresis simulation results as a function of intermolecular force amplitude. It 

is seen that as the intermolecular force is increases, so does the FH hysteresis. 

 Even though the intermolecular force cannot be attenuated completely, there are 

ways to reduce its effect. Decreasing the effective slider area within proximity of the disk 

is the most effective method (recall Eq. (1)). This reduction in area can come from 

texturing the ABS, through design of the ABS rails, form-factor (nano, pico, femto, etc.) 

and by slider attitude. Figure 28 shows the intermolecular force as a function of minimum 

spacing for different pitch angles and form-factors for two different ABS designs. It is 

seen that the larger the rear ABS rail within proximity of the disk surface, the higher the 

adhesion force. Also, other factors such as crown, camber and twist will substantially 

affect the adhesion force. By simply decreasing the rear ABS pads area, the adhesion 

force decreases, however, for manufacturability, flyability, stability, and other design 

criteria, the rear ABS pad has to have certain minimum dimensions. Also, the 

intermolecular force scales proportionally with the Hamaker constant. In this analysis, a 
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nominal value of A = 10-19 J was used, however, this value is only approximate. A more 

accurate value of the Hamaker constant needs to be obtained for the HDI. Also, surface 

chemistry could also change the Hamaker constant between various lubricants and DLC 

coatings. Some recently published values of the HDI Hamaker constant are A = 

0.724×10-19 J with lubricant on the disk surface and A = 1.80×10-19 J without lubricant at 

the interface [11]. These values are close to what has been used in this analysis; therefore 

it is expected that the adhesion force will always be present below 3.5 nm FH’s causing 

possible HDI instabilities. 

(b) Air Bearing Stiffness: nonlinear 

 The air bearing stiffness is another variable affecting the nature of multiple 

equilibria. The air bearing stiffness is a function of the ABS design, suspension pre-load, 

slider attitude, relative disk velocity, and other design parameters. Generally, the 

linearized “vertical” resonant mode of vibration of an air bearing – slider system is 

between 150 kHz and 400 kHz. For large oscillations, the slider exhibits a power 

hardening stiffness as modeled in Eq. (2). A change in the stiffness by factors in the range 

of 0.25 – 4 changes the linearized resonant frequency half to twice the nominal value: 

108.6 – 434.4 kHz. The bifurcation plots associated with the factors 0.25 and 4 are shown 

in Fig. 29.  A series of simulations was performed at a FHss of 3 nm showing how the 

stiffness affects the HDI stability. It is seen from the results shown in Fig. 30 that stability 

increases as the air bearing stiffness increases. Also, the TD – TO FH hysteresis was 

simulated as a function of air bearing stiffness, and the results are shown in Fig. 31. The 

trend between the FH hysteresis and air bearing stiffness does not appear to be 

monotonic. This is due to the complex disk forcing function and the varying air bearing 
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resonant frequency as the stiffness changes. The disk topography frequency spectra is not 

uniform across the frequency band, and at different resonant frequencies, the disk affects 

resonance differently. However, there is an overall decreasing trend of the FH hysteresis 

as the stiffness is increased. 

 

(c) Air bearing Stiffness: linear 

 If the air bearing stiffness were linear and not a power-hardening nonlinear spring 

as described in Eq. (2), the bifurcation plot would be affected as would be the stability. In 

Fig. 32 the bifurcation plots are shown for linear stiffnesses of ko= 3×106 N/m, k = ko∗2, 

and k = ko∗4. In comparing these results with those for a nonlinear air bearing stiffness in 

Fig. 29 we see that the FH regime where all three equilibria exist (unstable regime) is 

larger for the linear stiffness cases. By increasing the extent of the unstable regime, we 

know that the stability of the HDI would be less. We conclude that the power-stiffening 

air film of an actual air bearing is extremely beneficial in increasing the stability of the 

HDI. 

  

(d) Air bearing damping 

 As with the air bearing stiffness, air bearing damping is also a function of many 

parameters. Generally, the linearized “vertical” mode damping is between 1 % to 5 % of 

critical damping. In the previous two sections the bifurcation plots were used to show the 

degree of instability. On the other hand, air bearing damping does not change the 

bifurcation plots. In nonlinear systems, generally, more damping enhances stability. 

Indeed we find similar results here. Figure 33 presents the effect of damping on slider 
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instability at a FHss of 3.4 nm as the damping is varied from 0.46 to 3.64 %. It clearly 

shows that the higher the damping, the more stable the HDI becomes. Also, the 

dependence of the FH hysteresis on damping as determined by TD – TO simulations is 

summarized in Fig. 34, which shows that the FH hysteresis decreases as the damping is 

increased.  

(e) Disk topography 

 As seen in Fig. 18, disk topographies can vary substantially depending on 

substrate material, texturing, and other process conditions. The forcing and initial 

conditions of nonlinear systems of the type described here are the most sensitive 

variables to their chaotic nature that leads to the unstable oscillations. When the HDI 

model exhibits a double-well potential chaotic oscillations can arise even when it is 

forced by a single harmonic excitation. Figure 35 shows a plot of single frequency disk 

forcing amplitude, Ad, where the slider steady-state motion becomes unstable versus disk 

forcing frequency, fd, where d(t) = Adsin(2πfd) at initial conditions of (FH , velocity) = 

(3.4 nm , 0 mm/s) at a FHss =3.4 nm. Above the curve shown in Fig. 35, the slider’s 

response is unstable and below it, the response in stable for a single frequency excitation. 

It is observed that the most sensitive forcing frequency is around the systems linearized 

resonant frequency of approximately 175 kHz. Unfortunately a technique such as 

superposition cannot be used to extend the results in Fig. 35 to the complicated disk 

forcing by an actual disk.  Figure 36 compares the TD – TO FH hysteresis simulation 

results for the two disks A and B described in Fig. 18. It is observed that as the FHss 

transitions from 12.65 – 4.65 – 12.65 nm, disk B forces the HDI to transition into 

unstable slider oscillations while the forcing of disk A is too small at these FHss to 
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transition the slider into unstable oscillations. This result suggests that wavier and 

rougher disks result in HDI instability at much higher FHss values. By just varying the 

amplitude of disk A, another parametric study is performed, and the results are presented 

in Fig. 37, which shows the TD – TO FH hysteresis simulations for amplitude multiples 

of 0.25 to 4 times its original topography.  It is observed that as the disk topography 

amplitude is increased, the FH hysteresis remains relatively constant at ∆FH ≈ 1 nm, but 

the unstable response amplitude increases.  

 

DISCUSSION  

 Experimental evidence of low FH slider instabilities is evident from two effects: 

(1) the “snapping” effect from stable to intermittently unstable and further to indefinitely 

unstable proximity and, (2) the presence of the FH hysteresis. Adhesion forces due to 

capillary (meniscus) effects appear to unlikely be the cause of these instabilities due the 

short time duration the slider is in contact with the lubricant film. Also, the experimental 

FH hysteresis results showed no dependence on lubricant thickness, for the thickness 

range tested. On the other hand, the time independent intermolecular adhesion force was 

shown to be significant when a slider and disk come within proximity of each other. The 

Lennard-Jones model was used to incorporate additional adhesion and repulsion forces 

into the CML Static Air Bearing Simulation Code solutions and into a simple lumped 

parameter 1DOF model. The 1DOF model was used for investigating the experimentally 

observed nonlinear dynamics associated with the HDI. It was shown from bifurcation 

plots of the system, that as the FH approaches sub– 6 nm, multiple equilibria exist. Also, 

for lower FH, the intermolecular force overcomes the air bearing load capacity and the 
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slider “snaps” down onto the disk. From a static analysis, one would expect that the only 

effect caused by intermolecular forces are at low FH’s would be a static spacing loss, and 

by further decreasing the FH, the intermolecular forces would overcome the air bearing 

load capacity (Fig. 10b). However, a much greater implication arises when including the 

intermolecular force that has not been previously addressed – that of dynamic instability. 

It was shown that the possibility of the HDI becoming dynamically unstable is restricted 

to a regime where multiple equilibria exist, which extends into FH’s much higher than 

those resulting from static analysis. The dynamics associated with a double-well potential 

system can be quite complicated when the system is forced, as was shown. The chaotic 

characteristic of the system with a double-well potential is what causes the HDI 

instability due to intermolecular forces. By numerically investigating both constant FH 

and the hysteresis TD – TO process, we were able to reproduce the experimental findings 

of HDI instability and FH hysteresis. Also, several qualitative features demonstrated by 

the experimental and simulation results are in agreement, including the effect of adding 

small DLC pads to decrease the sliders instability vibrations (decreases adhesion forces) 

and the asymmetric slider vibration amplitude during the TD – TO process.    

These results imply that the HDI has a fundamental lower limit of FH at which 

the slider remains stable. This lower limit is a function of not only the disk morphology 

but also the ABS design and slider attitude. For the nominal values studied here, it was 

shown that the slider transitions into unstable oscillations at a FHss of 3 nm and 4.6 nm 

while flying over two different disks, A and B, respectively. It was shown by a 

parametric study that the FH at which instability occurs as well as the severity of the 

oscillations change with the parameters. The effect of the parameters discussed must be 
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understood to obtain a stable HDI design when flying extremely low. Also, it was shown 

that the power-stiffening feature of an air bearing increases the HDI stability. In order of 

importance, we found that the following parameters can be adjusted to obtain maximum 

HDI stability: (1) the intermolecular force should be reduced, (2) the disk morphology 

and slider should be optimized to produce minimum FHM, (3) air bearing stiffness 

should be increased, and (4) air bearing damping should be increased. It was shown for 

all the parameter values studied, HDI stability can always be compromised, however, by 

considering the findings in this paper, the instability due to intermolecular forces can be 

minimized.   

The analysis presented here is based on adhesion modeled by the Lennard-Jones 

potential. The functional form of the repulsion term in Eq. (4) stems from the need for a 

repulsion term as the two mating surfaces contact one another. This approach lacks 

physical basis due to the fact that the two surfaces never actually come into contact. A 

more physical and complicated approach would be to model the repulsion as a contact 

force, similar to what was done in the Derjaguin-Muller-Toporov (DMT) model and the 

extension that Cheng, Etsion and Bogy (CEB) made [19] - [21]. In the DMT and CEB 

models, the attractive force is similar to Eq. (4) but the repulsion force stems from 

physical contact as seen in Fig. 38. For a simple spherical asperity impinging on a flat 

surface the forces generated as a function of separation distance are [19], [20] 

( ) 26x
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           ( ) ( ) 23*
2 3
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6
xaRE

x
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where R is the radius of the spherical asperity, E* is the effective elastic modulus, and ao 

is the intermolecular distance usually taken to be about two angstroms. However, by 

comparing the additional force that is generated by Eq. (4) (see Fig. 24) and by the DMT 

and CEB models, we find that similar force curves are generated. Therefore, by using 

either the simplistic approach of the analysis in this paper in modeling the repulsion by 

Eq. (4) or by including a complex contact force from the CEB model, we would expect to 

find qualitatively similar dynamic instability results. 

 Another simplification of the modeling here was to neglect surface roughness 

effects. It can be seen from Eq. (1) that the adhesion force scales proportionally with the 

area within proximity. Due to the qualitative nature of the 1DOF HDI model, the 

roughness effect can be discussed only qualitatively. By including the surface roughness 

of the slider and disk, we would expect the adhesion force to be effectively decreased. 

This effect is covered in the parametric study of scaling the intermolecular force. 

Increasing roughness decreases the intermolecular force, hence, leads to an increase in 

HDI stability. However, in order to achieve a non-contact 3.5 nm FH HDI, the slider and 

disk surfaces must be extremely smooth.  

CONCLUSION 

Experimentally it is observed that as a slider flies within proximity of the disk 

HDI dynamic stability is lost. Additional forces due to capillary and intermolecular 

adhesion were considered. Due to the kinetic formation of a meniscus and the 

experimental results presented, we concluded that meniscus forces need not be 

considered in the dynamic modeling of the HDI. A nonlinear dynamic analysis of a 

modeled HDI incorporating intermolecular forces revealed a new kind of dynamics that 
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cannot be captured by static analysis. By analyzing the systems equilibria and stability, it 

was found that multiple equilibria exist in the sub – 6 nm FH regime associated with a 

double-well potential. Within this regime the sliders motion can be stable or chaotically 

unstable when it is externally forced by a disk topography. From the analytical and 

numerical analysis presented here, the experimentally measured FH hysteresis, the 

intermittent slider instability and the abrupt transition between stable and unstable 

proximity can be explained. A parametric study was used to show how the variables 

affect HDI stability. Also, the effect of the power-hardening air bearing stiffness was 

shown to be beneficial in increasing HDI stability. By optimizing the parameters such as 

the air bearing design and the disk morphology, the stability of the HDI can be improved. 

However, for practical values of the parameters, it is found that instability is likely to 

occur when flying below 6 nm. From these results, we are forced to conclude that there 

maybe a fundamental lower FH limit for a give slider – disk combination, below which 

the slider would not be able to fly due to HDI dynamic instability caused by 

intermolecular adhesion forces.  
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Parameter Nominal Value Parameter Nominal Value

β 244.1 [N/m] B' 2.7×10-88 [N·m9]

α -0.48 m 1.6158×10-6 [kg]

A' 1.8×10-30 [N·m3] c 0.08 [N·s/m]

Table 1. Nominal values of constants used. 
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Fig. 1. (a) Time trace of the stable, intermittently unstable, and indefinitely unstable 
slider motion measured by LDV. (b) Measurement of the FH hysteresis as the FH is 
lowered and increased by changing the disk RPM.  
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Fig. 2. Air bearing surface designs of four different pico size sub-ambient sliders. 

 

(a) (b) 



 32 

Touchdown, Takeoff, and delta RPM

0

200

400

600

800

1000

1200

1400

0 A :  B 4 8 A :  B 2 1 2 A :  B 3 1 6 A :  B 2 2 0 A :  B 2

L u b e  T h i c k n e s s

R
P

M

T o u c h d o w n  R P M

T a k e o f f  R P M

d e l t a ( R P M )

Touchdown, Takeoff, and delta RPM

0

200

400

600

800

1000

1200

1400

0 A :  B 4 8 A :  B 2 1 2 A :  B 3 1 6 A :  B 2 2 0 A :  B 2

L u b e  T h i c k n e s s

R
P

M

T o u c h d o w n  R P M

T a k e o f f  R P M

d e l t a ( R P M )

T o u c h d o w n  R P M

T a k e o f f  R P M

d e l t a ( R P M )

 

Fig. 3. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 1. 
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Fig. 4. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 2. 
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Fig. 5. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 3. 
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Fig. 6. Touchdown, takeoff, and FH hysteresis as a function of lubricant thickness for 
slider 4. 

 

Fig. 7. Typical time traces of the RPM and LDV RMS for sliders (a) 1- 3 and slider (b) 4. 
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Where :

F s:  Suspension force

F d :  Drag force

F a b :  Air  bearing force

F f:  Friction force

F c:  Contact  force

M s :  Suspension moment

Fs

Fc

Fa b

F d

Ms

Ff

 

Fig. 8. Free-body diagram of the air bearing – slider model.  
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Fig. 9. Intermolecular adhesion force as a function of separation distance for two parallel 
flat surfaces. 

 



 36 

- 6 0

- 3 0

0

3 0

6 0

9 0

1 2 0

0 5 1 0
M i n i m u m  F H  [ n m ]

A
d

h
e

s
io

n
 F

o
rc

e
 [

g
m

]

-10

-8

-6

-4

-2

0

2

4

6

8

1 0

0 5 1 0
Min imum FH [nm]

F
o

rc
e

 [
g

m
]

T o t a l  F o r c e  w / v d w

S t a t i c  F o r c e  B a l a n c e

Stable

Stable
U n s t a b l e

 

Fig. 10. (a) Intermolecular adhesion force modeled by the Lennard-Jones potential and 
(b) the resultant force acting on the air bearing as functions of the minimum FH. 
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Fig. 11. Schematic of the 1DOF nonlinear model.  
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Fig. 12. Potential energy curves of the air bearing, Lennard-Jones and the total system at 
a FHss of 7.75 nm. 
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Fig. 13. Total system potential energy curves at a FHss of 7.75, 5.75, 4.75, and 1.25 nm. 
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Fig. 14. Bifurcation plot showing FHeq as a function of FHss. ( – ) stable, and ( - - ) 
unstable. 
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Fig. 15. Unforced TD – TO simulation showing the FH hysteresis is bound by the 
multiple equilibria regime.  
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Fig. 16. (a) Sketch of the energy surface in state-space and (b) the trajectories projected 
onto the state-space plane for the unforced, undamped system.  
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Fig. 17. State-space trajectories of the unforced system showing sensitivity to initial 
conditions. 
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Fig. 18. (a) Topography of disk A and (b) its frequency content. (c) Topography of disk B 
and (d) its frequency content.  
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Fig. 19. Forced TD –TO simulation showing the (a) disk, FHss and FHeq and (b) the 
sliders velocity as functions of time. 
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Fig. 20. Forced constant FHss simulation showing the (a) disk and sliders displacement 
and (b) the sliders velocity as functions of time. 
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Fig. 21. Forced constant FHss simulation without including the intermolecular adhesion 
force showing the (a) disk and the sliders displacement and (b) the sliders velocity as 
functions of time. 
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Fig. 22. The state-space trajectories for the forced system showing the different 
oscillation modes. 
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Fig. 23. The state-space trajectories for the forced system showing the switching between 
all oscillation modes randomly or chaotically. 
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Fig. 24. Intermolecular adhesion forces used in the parametric study. 
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Fig. 25. Bifurcation plots for intermolecular adhesion forces equal to (a) FvdW*0.25, (b) 
FvdW*0.5, (c) FvdW*1, and (d) FvdW*2. ( – ) stable, and ( - - ) unstable. 
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Fig. 26. Constant FHss simulations for intermolecular adhesion forces equal to (a) 
FvdW*0.25, (b) FvdW*0.5, (c) FvdW*1, and (d) FvdW*2. 
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Fig. 27. FH hysteresis as a function of intermolecular adhesion force magnitude. 
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Fig. 28. Intermolecular adhesion force magnitude as a function of minimum spacing for 
(a) pico and (b) femto form-factors for two different ABS designs and two different pitch 
attitudes.  
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Fig. 29. Bifurcation plots for the nonlinear air bearing stiffness equal to (a) k*0.25, (b) 
k*4. ( – ) stable, and ( - - ) unstable. 
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Fig. 30. Constant FHss simulations for the nonlinear air bearing stiffness equal to (a) 
k*0.25, (b) k*4. 
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Fig. 31. FH hysteresis as a function of the nonlinear air bearing stiffness. 

0

2

4

6

8

1 0

1 2

1 4

0 2 4 6 8 10 12 1 4

FH ss [nm]

F
H

e
q
 [

n
m

]

0

2

4

6

8

1 0

1 2

1 4

0 2 4 6 8 1 0 1 2 1 4

F H ss [ n m ]

F
H

e
q

 [
n

m
]

0

2

4

6

8

1 0

1 2

1 4

0 2 4 6 8 1 0 1 2 1 4

F H ss [nm]

F
H

e
q
 [

n
m

]

k = ko k = ko*2 k = ko*4

 

Fig. 32. Bifurcation plots for the linear air bearing stiffness equal to (a) ko, (b) ko*2 and 
(c) ko*4. ( – ) stable, and ( - - ) unstable. 
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Fig. 33. Constant FHss simulations for air bearing damping equal to (a) c*0.5, (b) c, and 
(c) c*2. 
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Fig. 34. FH hysteresis as a function of air bearing damping. 

0.1

1

10

0 100 200 300 400 500

Frequency [kHz]

D
is

k
 A

m
p

. 
[n

m
]

Unstable

Stable

 

Fig. 35. Stable - unstable boundary for harmonic disk excitation. 
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Fig. 36. TD-TO simulations forced by (a) disk A and (b) disk B. 
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Fig. 37. TD – TO simulations by forcing the slider by disk A multiplied by: (a) 0.25, (b) 
0.5, (c) 1, and (d) 1.75.   
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Fig. 38. Additional force generated by including the DMT model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


