
Dynamic Indentation of an Elastic-Plastic Multi-Layered 
Medium by a Rigid Cylinder 

 
J. Yang, Graduate Student  

K. Komvopoulos, Professor (Fellow ASME)  
Department of Mechanical Engineering 

University of California 
Berkeley, CA 94720 

 

Abstract 

A plane-strain analysis of dynamic indentation of an elastic-plastic multi-layered medium by a 

rigid cylinder was performed using the finite element method. Conversely to plane-strain static 

contact analysis, the solutions of dynamic contact analysis within a given subsurface domain 

adjacent to the contact region are independent of the mesh size, provided it is sufficiently large 

such that the time required for propagating waves to be reflected from the artificial boundaries 

back into the analyzed domain to be greater than the analysis time. Simulation results for the 

normal force, contact pressure distribution, subsurface stresses, and evolution of plasticity in the 

multi-layered medium are presented in terms of the speed and radius of the rigid indenter. The 

likelihood of mechanical failure due to excessive plastic deformation and cracking is interpreted 

in terms of finite element results for the von Mises equivalent stress, first principal stress, and 

equivalent plastic strain obtained for different values of the indenter speed and radius of 

curvature.   
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1. Introduction  

Hard and tough surface layers are traditionally used in engineering components to 

improve the contact fatigue resistance and tribological properties of interacting surfaces and to 

protect the substrate medium from the accumulation of inelastic deformation and the occurrence 

of cracking. Fundamental knowledge of the stress and strain fields in layered media subjected to 

surface traction is critical to the endurance of electromechanical devices undergoing repetitive 

contact, such as relays, switches, vibromotors, and micromirror displays. Early studies dealing 

with normal contact of layered media provided analytical treatments for the elastic response due 

to indentation loading. Burmister (1945) obtained solutions for the stresses and displacements in 

an elastic single-layered medium subjected to axisymmetric surface loading. Dhaliwal and Rau 

(1970) obtained a solution for the axisymmetric Boussinesq problem of an elastic layer on an 

elastic foundation. Gupta and Walowit (1974) developed a plane-strain elastic theory for a 

layered medium under both normal and tangential surface loadings. King and O’Sullivan (1987) 

extended the previous theory to obtain analytical solutions for an elastic layered medium under 

sliding contact loading. Brock and Georgiadis (1994) presented a dynamic analysis of a linear-

elastic half-plane indented by either a wedge or a parabolic rigid indenter. 

Despite valuable insight into the mechanics of indented media derived from previous 

analytical studies, it is difficult to apply the approaches of these works to the analysis of elastic-

plastic contact of layered media. Consequently, numerical techniques based mainly on the finite 

element method were advanced to deal with more complicated contact geometries and more 

realistic constitutive laws. One of the first finite element analysis of elastic-plastic indentation of 

layered media is attributed to Kennedy and Ling (1974) who investigated the effects of layer 

thickness, mechanical properties of the layer and substrate materials, and interfacial contact 
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conditions on plastic deformation in the layered medium. Komvopoulos (1989) investigated the 

plane-strain problem of a rigid cylinder indenting an elastic-plastic substrate coated with a harder 

and stiffer layer using the finite element method. Plastic deformation was found to initiate at the 

layer/substrate interface and the contact pressure profile was significantly flattened with 

increasing plastic deformation. In a finite element analysis of an elastic-plastic layered medium 

penetrated by an elastic indenter performed by Montmitonnet et al. (1993) the stress field in the 

layered medium was interpreted in terms of the layer thickness, and the highest tensile stress was 

reported to occur at the surface of the medium. Kral et al. (1995a, 1995b) presented a finite 

element contact analysis of a layered medium exhibiting either perfectly plastic or isotropic 

strain hardening post-yield behavior repeatedly indented by a rigid sphere and interpreted the 

propensity for crack initiation during the first indentation cycle in the context of the obtained 

finite element results.   

More recently, Gan and Ben-Nissan (1997) examined the influence of the mechanical 

properties of a ductile substrate coated with a hard layer on the indentation load and reported a 

significant effect of the yield strength and strain hardening properties and a minor effect of the 

elastic modulus on the applied normal load. Faulkner et al. (1998) compared finite element 

results for an elastic-plastic layered medium in contact with a rigid or deformable indenter and 

observed higher contact pressures in the elastic regime and lower peak radial tensile stress in the 

case of the rigid indenter. Sen et al. (1998) used the finite element technique to model 

indentation of an elastic-work hardening layered medium by an elastic sphere and obtained 

elastic and elastic-plastic solutions for the contact pressure distribution. Souza et al. (1999) 

reported a greater likelihood for film cracking in systems with elastic-plastic substrates coated 

with thin layers of high elastic modulus. Stephens et al. (2000) obtained finite element results for 

 3



the initial yield behavior of a hard coating/soft substrate system subjected to elliptical normal and 

friction forces revealing a significant increase of the durability of the layered system with 

interface exhibiting graded mechanical properties. 

The review of the literature indicates that the majority of the analytical and numerical 

solutions of various indentation problems involving elastic and elastic-plastic layered media are 

restricted to quasi-static contact conditions. Although important insight into the mechanics of 

layered media has been derived from these studies, the solutions cannot be applied to dynamic 

contact problems, such as in nano-/micro-indentation hardness testing. Consequently, the 

objective of the present study was to develop a comprehensive finite element analysis of 

dynamic indentation of elastic-plastic multi-layered media. The mesh selection method for 

unbiased contact analysis due to sound wave reflection from the mesh boundaries is described 

first, followed by finite element results demonstrating the effects of indentation speed and radius 

of the rigid cylindrical indenter on the normal force, contact pressure distribution, and subsurface 

stress-strain field in a multi-layered medium under dynamic indentation loading.  

2. Finite Element Mesh for Dynamic Contact Analysis 

Sound wave propagation may play an important role in dynamic contact analysis. Two 

types of bulk waves can propagate in infinite solids: longitudinal waves (also known as 

dilatational waves because they are characterized by a volume change) and transverse (or shear) 

waves (Pollard, 1977). In seismology, these two types of waves are often referred to as P 

(primary) and S (secondary) waves, respectively. In isotropic elastic solids, the propagation 

speed of a plane dilatational wave, cp, and a plane shear wave, cs, are given by 
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where ρ is the material density, and λ and G are the Lamé constants, expressed in terms of the 

elastic modulus, E, and Poisson’s ratio, ν, as  

)21)(1( νν
νλ
−+

=
E    ,    

)1(2 ν+
=

EG . 

It is obvious from the above relations that a plane dilatational wave propagates much 

faster than a plane shear wave. In addition to these two types of bulk waves, surface waves, such 

as Rayleigh and Love waves, may be encountered in the case of bounded solids. Since in general 

the propagation speeds of these surface waves are comparable to those of shear waves (Beltzer, 

1988), the attention in this study is restricted to the faster propagating dilatational waves. 

2.1 Finite Element Mesh for Homogeneous Medium.  In static analysis of infinite half-space 

media subjected to surface (contact) loads, a reference point is needed in order to obtain 

displacements due to the singularity of the displacement field under plain strain conditions 

(Johnson, 1985). This reference point is usually selected to be far away from the contact region. 

Hence, in plane-strain contact analysis the solution depends on the position of the reference 

point. However, in dynamic analysis if the displacements in a given region occur within a certain 

time to, then at a fixed point remote from this region there would be no disturbance before the 

arrival of the propagating waves, i.e., the displacement at any material point ahead of the 

reflected wave front is zero (Johnson, 1985). Therefore, in dynamic plane-strain contact analysis, 

if the reference point is selected at a distance sufficiently remote from the contact region such 

that the waves do not reach this point by the end of the analysis, then the numerical results will 

be independent of the position of the reference point. Figure 1 shows schematically a 

propagating dilatational wave in a semi-infinite homogeneous solid. At time to, contact is first 

established at the region around the origin (x = y = 0). The dash line represents the dilatational 
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wave front at time t1. There is no disturbance in the region ahead of the wave front (region II). 

Thus, choosing any point in region II as the reference point yields identical simulation results 

throughout region I for time period [to, t1]. In finite element analysis, a finite mesh is used to 

simulate the semi-infinite half-space. If no waves are generated from the artificial boundaries 

(i.e., fixed and/or free boundaries), any mesh larger than region I should produce identical results 

at every point of the mesh within a given time period. Furthermore, the simulation results would 

be independent of the forces and/or displacements applied on the artificial boundaries to which 

the waves do not have enough time to propagate. In most applications, the region near the 

contact interface, where the highest stresses and strains occur, is of interest. In this subsurface 

region, identical simulation results can be obtained by using a sufficiently large mesh such that 

the wave(s) reflected from the artificial boundaries do not reach the region of interest before the 

end of the analysis. 

In view of the previous considerations, finite element simulations of dynamic contact 

were performed with the code ABAQUS using the four meshes shown in Fig. 2. An elastic 

homogeneous half-space indented by a rigid cylinder at a constant speed of 1 × 10-3 cp was 

modeled in all simulations. Special contact elements were used to model contact between the 

rigid indenter and the elastic medium. The dimensions of the four meshes, normalized by the 

radius of the rigid cylinder, R, were chosen to be equal to 6.4 × 6.4, 12.8 × 6.4, 6.4 × 12.8, and 

12.8 × 12.8. Because the left boundary of each mesh is a symmetry axis, all the nodes of this 

boundary (x = 0) were constrained against displacement in the x-direction. The nodes of the 

bottom boundary were constrained against displacement in the y-direction. All the nodes of the 

other boundary and the surface were allowed to move freely. The characteristic length of a mesh, 

lc, is defined as its smallest dimension. Thus, the characteristic length of the meshes shown in 
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Figs. 2(a), 2(b), and 2(c) is equal to 6.4R and that of the mesh shown in Fig. 2(d) is equal to 

12.8R. In the following discussions, lc
(i) is used to denote the characteristic length of the ith mesh. 

Obviously, lc
 (1) = lc

 (2) = lc
 (3)  < lc

 (4). Since in the far field a cylindrical dilatational wave 

propagates at a speed comparable to that of a plane dilatational wave, the critical time for a 

dilatational wave propagating from the origin (x = y = 0) to the nearest boundary of the meshes 

shown in Figs. 2(a)-2(c) can be estimated from relation tcr
(1) ≈ lc

 (1)/cp, and the critical time for a 

wave reflected from the nearest boundary to reach a point in a region close to the origin is 

approximately equal to 2tcr
(1).  

Figure 3 shows the dimensionless contact load, P/ER, and maximum von Mises stress, 

/E, in an elastic half-space as functions of dimensionless time, t/tmax
Mσ cr

(1), from the onset of 

indentation, where E is the elastic modulus of the half-space. Since P and  are mainly 

related to the stress field in the subsurface region close to the origin, it is clear that for t ≤ 2t

max
Mσ

cr
(1) 

the results should be independent of the mesh size. This is confirmed by the results shown in Fig. 

3. However, for t > 2tcr
(1) the solutions begin to deviate. For the mesh shown in Fig. 2(c) the 

dilatational wave reflected from the free boundary at x/R = 6.4 propagated back first, while for 

the mesh shown in Fig. 2(b) the dilatational wave reflected from the fixed boundary y/R = -6.4 

propagated back first. For the mesh shown in Fig. 2(a), the two dilatational waves reflected from 

the boundaries propagate back to the origin at about the same time. The relatively small 

discrepancies in the results for the contact force and Mises stress obtained with the meshes 

shown in Figs. 2(a) and 2(b) and, similarly, those obtained with the meshes shown in Figs. 2(c) 

and 2(d) indicate that the wave reflected from the bottom boundary exhibits a dominant effect. 

Both Figs. 3(a) and 3(b) show that discrepancies in the results due to the reflected waves occur at 

about the same time for the meshes shown in Figs. 2(a) and 2(b) and a little later for the mesh 
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shown in Fig. 2(c). This implies that the critical time of a mesh (i.e., tcr or ~2tcr if the whole mesh 

or only a small region of the mesh close to the origin are of interest, respectively) provides a 

conservative estimation of the maximum time of analysis.  

2.2 Finite Element Mesh for Multi-Layered Medium.  Similar simulations were performed for 

an elastic-plastic multi-layered medium using the meshes shown in Fig. 4. The thickness 

(normalized by the indenter radius) and material properties of the multi-layered medium, given 

in Table 1 (Kaye et al., 1986; Komvopoulos, 2000), are representative of thin-film disks used in 

magnetic recording. The material properties and size of the bottom (forth) layer are the same 

with those of the homogeneous half-space discussed in the previous section. The normalized (by 

the indenter radius) dimensions of the meshes shown in Figs. 4(a)-4(d) are 6.4 × 7.46, 12.8 × 

7.46, 6.4 × 13.86, and 12.8 × 13.86, respectively. Since for the load range analyzed in this study 

the plastic zone is predicted to be very small compared to the mesh dimensions, the elastic 

properties of the layered medium control the propagation velocity of the acoustic waves. Figure 

5(a) shows that the variation of in the surface layer with time and the critical time that the 

results begin to deviate are similar to those obtained for the elastic homogeneous half-space (Fig. 

3(b)). This suggests that wave propagation in the thick (forth) layer plays a predominant role in 

the stress-strain calculations. Figure 5(b) reveals that the results for the maximum equivalent 

plastic strain, , in the second soft layer begin to deviate at roughly the same critical time as 

that of . This is due to the fact that the locations of and  are close to each other 

and both occur in a subsurface domain adjacent to the contact region.   

max
Mσ

max
eqε

max
Mσ max

Mσ max
eqε
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3. Dynamic Indentation of an Elastic-Plastic Multi-Layered Medium 

3.1 Finite Element Modeling and Material Properties of Multi-Layered Medium.  Dynamic 

indentation of a multi-layered medium by a rigid cylinder was analyzed with the finite element 

code ABAQUS. Contact between the rigid indenter and the multi-layered medium was modeled 

with rigid surface and second-order contact elements, which were assigned a common reference 

node that defined the motion of the rigid surface. The rotational and horizontal displacements of 

the reference node were fully constrained. Indentation was modeled by advancing the rigid 

surface profile against the deformable mesh using a displacement-control incremental approach. 

In view of the marginal effect of friction in normal contact (Komvopoulos, 1988), only 

frictionless indentations were considered in this study. The multi-layered medium was modeled 

with eight-node, bi-quadratic, plane-strain elements. A 3 × 3 Gaussian integration was used in 

each element. Because of the symmetry of the geometry and boundary conditions, only one-half 

of the multi-layered medium (Fig. 6) was modeled, and the nodes on the symmetry axis (x = 0) 

were constrained against displacement in the x-direction. The nodes of the bottom boundary were 

constrained against displacement in the y-direction. The mesh near the surface was refined, as 

shown in Fig. 6. The radius of the cylindrical indenter was selected to be equal to 0.2R, 1.0R, and 

2.0R, i.e., normalized indenter radius R~  = 0.2, 1.0, and 2.0. Hereafter, all the length parameters 

are normalized by the intermediate indenter radius, R, and are presented in dimensionless form. 

The smallest elements adjacent to the surface were squares of sides equal to 0.00625R. The mesh 

size (51.2R × 52.26R) was selected such that during the time of analysis the reflected waves did 

not propagate back to the region of interest. The normalized thickness and material properties of 

the multi-layered medium are listed in Table 1. For simplicity, all layers were assumed to have 
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Poisson’s ratio equal to 0.3. Each layer was modeled as an elastic-perfectly plastic material. The 

classical von Mises yield criterion was used throughout the simulations.  

3.2 Simulation of Dynamic Indentation.  Dynamic indentation was modeled by applying 

incremental displacements to the rigid surface in a controlled fashion that was identical for both 

loading and unloading. The speed of the indenter was constant during the loading and unloading 

simulation steps. Simulations were performed for three different indenter speeds of 1 × 10-3 )4(
Pc , 

2 × 10-3 , and 4 × 10)4(
Pc -3 , where c  is the propagation speed of the plane dilatational 

waves in the thick substrate (fourth layer). Results are presented in terms of dimensionless 

indenter speed, V

)4(
Pc )4(

P

~ , obtained by dividing the indenter speed by the wave speed c . The 

maximum indentation depth was selected to be equal to 0.02R. While the damping effect was 

ignored in the simulations of indentation loading and unloading, to obtain solutions for the 

residual stress-strain field, dashpot elements were added to the mesh after full unloading. The 

damping coefficients of the dashpot elements were arbitrarily selected to achieve fast 

equilibrium. 

)4(
P

4.  Results and Discussion  

Finite element solutions for the contact pressure distribution and subsurface stress and 

strain fields in the multi-layered medium are presented for different values of normalized 

indentation depth, δ~ , speed, V~ , and indenter radius, R~ . The propensity for plastic flow and 

cracking is interpreted in the context of results for the maximum von Mises stress, equivalent 

plastic strain, and maximum tensile stress in the multi-layered medium during loading and 

unloading.  
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4. 1 Contact Force and Contact Pressure Distribution  

Figure 7 shows the variation of the contact force, P, with indentation depth, δ, for 

different values of normalized indentation speed and indenter radius. The contact force is 

normalized by the critical load, PY, corresponding to the inception of yielding in the multi-

layered medium due to indentation by a rigid cylinder of intermediate radius ( R~  = 1.0) 

penetrating at a relatively high speed (V~  = 4 × 10-3). Figure 7(a) shows that the contact force 

increases monotonically with indentation depth and speed. In dynamic normal contact, a fraction 

of the external work is dissipated in the form of kinetic energy in the multi-layered medium. 

Consequently, the higher the indentation speed, the higher the kinetic energy of the system and, 

hence, the external work supplied to the deforming medium. Moreover, a higher indentation 

speed produces larger gradients in the displacement field adjacent to the contact region. 

Therefore, the strains and strain energy intensify with the increase of the indentation speed. 

Consequently, a higher indentation speed results in a higher contact force for the same surface 

penetration distance. Figure 7(b) demonstrates that, for a given indentation depth, a lower contact 

force is obtained with the sharper indenter, evidently due to the correspondingly smaller contact 

area.  

Figure 8 illustrates the dependence of the contact pressure, p, on dimensionless 

indentation depth, speed, and radius of the rigid indenter. The contact pressure is normalized by 

the yield strength of the surface layer, σY1, and the distance x from the center of contact (x = 0) 

by the intermediate indenter radius, R. The effect of the various dimensionless parameters on the 

contact pressure distribution can be explained in terms of the dependence of subsurface plastic 

deformation on these parameters (discussed in detail in the following section). As shown in Fig. 

8(a), increasing the indentation speed intensifies the contact pressure distribution and increases 
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the contact area, in accord with the contact force results shown in Fig. 7(a). The increase of the 

maximum contact pressure is a result of the larger strains occurring in a region close to the 

contact interface, while the increase of the contact area with indentation speed is a consequence 

of the slower downward movement of the surface of the deforming multi-layered medium 

compared to the penetrating indenter. Figure 8(b) shows the effect of the indenter radius on the 

contact pressure distribution for constant indentation depth (δ~ = 0.02) and speed (V~  = 4 × 10-3). 

As expected, a higher peak pressure and a smaller contact radius were obtained with the sharper 

indenter. In the case of the indenter with intermediate radius ( R~  = 1.0), the peak pressure shifts 

toward the contact edge due to excessive plastic deformation in the second soft layer, conversely 

to the relatively blunt ( R~  = 2.0) and sharp ( R~  = 0.2) indenters producing a peak pressure at the 

center of the contact region. This trend is also associated with the effect of the indenter radius on 

the subsurface stress-strain field. It will be shown later that, due to the much higher yield 

strength of the surface layer (Table 1), plastic deformation is encountered only in the second 

(soft) layer. In the case of the large indenter radius, the small value of ratio δ/R leads to less 

plastic deformation. Regarding the small indenter radius (sharp indenter), the high ratio of the 

thickness of the surface layer to the contact radius (t1/a > 1) promotes the dominance of elastic 

deformation in the multi-layered medium and, thus, the peak pressure arises at the center of 

contact. 

4.2  Subsurface Stresses and Evolution of Plasticity 

Contours of normalized von Mises equivalent stress, σM/σY1, in the multi-layered medium 

obtained from high indentation speed (V~  = 4 × 10-3) simulations with an indenter of intermediate 

radius ( R~  = 1.0) are shown in Fig. 9. In this figure, as well in subsequent stress (strain) contour 

figures, stress (strain) contours are shown within the first two layers, where the higher stresses 
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(strains) were encountered in all simulation cases. Stress discontinuities occur at the interface 

due to the mismatch between the material properties of the first and second layer. For the 

simulated range of indentation depth (δ~ ≤  0.02), the hard surface layer exhibited purely elastic 

deformation. For relatively small indentation depth (δ~ = 0.0025), occurs in the surface layer 

at a depth about half of the contact radius (Fig. 9(a)). However, increasing the indentation depth 

causes to shift toward the interface (Fig. 9(b)). After yielding in the soft layer (

max
Mσ

max
Mσ δ~ > 0.005), 

 arises always at the bottom of the hard surface layer near the interface with the plastically 

deformed soft layer (Figs. 9(b)-9(d)).  

max
Mσ

σ

Mσ

max
M

Figure 10 illustrates the effects of indentation speed and indenter radius on the evolution 

of /σmax
M

max

Y1 in the surface layer during the advancement of the rigid indenter into the multi-

layered medium. As expected, the Mises stress intensifies with increasing indentation depth, 

indicating a higher likelihood for yielding in the multi-layered medium, specifically in the soft 

layer possessing a relatively low yield strength. The trend for to increase with indentation 

speed (Fig. 10(a)) is similar to that observed for the contact force (Fig. 7(a)). The higher values 

of produced with the relatively sharp indenter (Fig. 10(b)) are associated with the high δ/R 

ratio and the bending effect of the stiffer and harder surface layer.  

σ

To further interpret the likelihood of subsurface cracking under both loading and 

unloading, contours of the normalized first principal (maximum tensile) stress, σI/σY1, in the 

multi-layered medium are plotted in Fig. 11 for the case of relatively high indentation speed (V~  

= 4 × 10-3) and intermediate indenter radius ( R~  = 1.0). Similar to the von Mises stress (Fig. 9), 

the maximum tensile stress occurs always in the surface layer. In particular, during indentation 

loading the maximum tensile stress arises at the surface near the contact edge (Figs. 11(a) and 
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11(b)), while during partial unloading (Fig. 11(c)) and full unloading (Fig. 11(d)) it occurs below 

the center of the contact region at the interface of the two layers. The results presented in Fig. 11 

suggest a greater probability for surface and interfacial cracking during indentation loading and 

unloading, respectively, depending on the fracture strength of the hard surface layer and the 

indentation speed and radius of the indenter that affect the magnitude of the maximum tensile 

stress. This is illustrated in Fig. 12 where the maximum tensile (first principal) stress, , in 

the surface layer is plotted as a function of indentation depth for different values of indentation 

speed and radius of the indenter. The effects of indentation speed and indenter radius on 

become significant at a critical indentation depth 

max
Iσ

max
Iσ δ~ > 0.01. The variation of  reveals 

trends similar to those observed for  (Fig. 10). As shown in Fig. 12(a),  in the hard 

surface layer increases with indentation speed, suggesting a higher propensity for cracking in 

indentation experiments performed at relatively high loading rates. Cracking may also be 

enhanced in indentation experiments involving relatively sharp indenters (Fig. 12(b)). Thus, 

caution should be exercised in nanoindentation hardness tests with thin and hard layers requiring 

ultra-sharp indenters to avoid the effect of the substrate deformation on the measurement of the 

layer hardness and elastic modulus. 

max
Iσ

max
Mσ max

Iσ

The evolution of subsurface plasticity in the multi-layered medium may be studied in 

terms of the equivalent plastic strain, εeq, contours plotted in Fig. 13 for intermediate indenter 

radius ( R~  = 1.0), high indentation speed (V~  = 4 × 10-3), and different indentation depths. Due to 

the higher yield strength of the surface layer plastic deformation is confined only in the soft 

layer. At relatively small indentation depth (δ~ = 0.0075), a small plastic zone is produced in the 

soft layer at the interface with the hard surface layer below the center of contact (Fig. 13(a)). As 
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the indenter advances deeper into the multi-layered medium (δ~ = 0.0125), the plastic zone grows 

downward into the soft layer, while continues to occur along the axis of symmetry (Fig. 

13(b)). Deeper penetration of the indenter (

max
eqε

δ~ = 0.0175) causes further expansion of the plastic 

zone and a shift of  toward the interface with the hard surface layer (Fig. 13(c)). At even 

larger indentation depth (

max
eqε

δ~ = 0.02),  commences at the interface of the two layers at a 

distance about one-third of the corresponding contact radius (Fig. 13(d)). The evolution of  

in the present dynamic contact analysis is qualitatively similar to that observed in quasi-static 

indentation simulations of a homogeneous half-space indented by a rigid sphere (Kral et al., 

1993).   

max
eqε

max
eqε

max
Mσ Iσ

To demonstrate the dependence of plasticity in the soft layer on indentation parameters, 

results for obtained at different indentations depths during loading and unloading are plotted 

in Figs. 14 and 15, respectively. Increasing the indentation speed and the sharpness of the 

indenter contributes to the premature yielding of the soft layer. For the range of parameters 

examined in this study, the critical indentation depth at the inception of yielding is predicted to 

be between 0.004 and 0.011, depending on the speed and radius of the indenter (Fig. 14). The 

dependence of on indentation parameters (i.e., 

max
eqε

max
eqε δ~ , V~ , and R~ ) exhibits trends similar to 

those observed for  (Fig. 10) and  (Fig. 12). Figure 15 shows that reyielding during 

unloading depends on the speed and radius of the indenter. Dynamic unloading from a maximum 

depth 

max

δ~  = 0.02 is fully elastic for all simulation cases except for that involving the relatively 

sharper indenter ( R~  = 0.2) and higher load/unload speed (V~  = 4 × 10-3). For this case, additional 

plastic deformation begins to accumulate in the soft layer as soon as the indenter is retracted to a 
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depth δ~  ~ 0.01. The region where reyielding occurs in the soft layer is below the center of 

contact, close to the interface with the hard surface layer.  

4.3 Residual Stress-Strain Field 

As mentioned previously, damping was not included in the dynamic simulations of 

indentation loading and unloading. Consequently, after dynamic unloading, the multi-layered 

medium continued to oscillate without ever reaching equilibrium due to the reflection of waves 

from the boundaries. Therefore, as mentioned in section 3.2, to enable the analysis of the residual 

stress-strain field due to dynamic indentation, dashpot elements were added to the finite element 

mesh after full unloading. The damping coefficients of these elements were selected such that the 

vibration of the unloaded medium decreased in a short time. Since additional plastic deformation 

due to the vibration of the multi-layered medium does not occur, the residual stress-strain field 

can be obtained as soon as equilibrium is reached. Contours of residual σM and eqε are shown in 

Figs. 16 and 17, respectively, for different values of normalized indenter radius and indentation 

speed. The results obtained for the same indenter radius ( R~  = 1.0) reveal that increasing the 

indentation speed causes intensification of the residual stress field in the hard surface layer 

(especially at the interface with the soft layer) (Figs. 16(a)-16(c)) and promotes the development 

of higher residual plastic strains and larger plastic zone in the soft layer (Figs. 17(a)-17(c)) below 

the center of contact. A comparison of Figs. 16(c) and 17(c) with Figs. 16(d) and 17(d), 

respectively, shows that the residual stresses and plastic strains in the hard and soft layers, 

respectively, increase significantly with the sharpness of the indenter, while the size of the plastic 

zone in the soft layer decreases slightly. The development of at the bottom of the hard layer 

below the center of contact is attributed to bending of the elastically deformed hard layer as the 

max
Mσ
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soft layer flows plastically. The resulting large stress gradients across the interface are associated 

with the occurrence of in the soft layer adjacent to the region of at the bottom of the 

hard surface layer. 

max
eqε max

Mσ

Summarizing, the results of this study demonstrate the effect of indentation depth, speed, 

and sharpness of the indenter on the elastic-plastic deformation and likelihood of cracking in 

multi-layered media. The dimensionless form of the results allows interpretation of a large 

number of cases matching the dimensionless indentation parameters. The findings of this work 

provide explanation to phenomenological observations of mechanical failure in layered media 

due to excessive plastic flow and cracking in indentation experiments. The present finite element 

model can be easily extended to account for strain hardening and strain rate sensitivity effects 

under dynamic contact loading. 

5. Conclusions 

A plane-strain dynamic contact analysis for an elastic-plastic multi-layered medium 

indented by a rigid cylinder of varying radius was performed using the finite element method. 

Solutions for the contact force, contact pressure, and subsurface stresses and strains were 

obtained in terms of penetration depth, indenter radius, and indentation speed for both loading 

and unloading. Based on the presented results and discussion, the following main conclusions 

can be drawn from this study. 

(1) For dynamic contact analysis of semi-infinite half-space media with the finite element 

technique, a sufficiently large mesh is required in order for the faster propagating 

dilatational waves reflected from the mesh boundaries not to reach the region of analysis 
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within the time of analysis. In this region, the simulation results are independent of the 

mesh dimensions, and specifying a reference node for the displacements is not necessary. 

(2) Wave propagation in the multi-layered medium examined in this study was dominated by 

the material properties of the thick substrate (forth layer) of the half-space medium. 

(3) The contact load, contact pressure, and subsurface stresses and plastic strains (both 

loading and residual) increase with indentation depth and speed. Higher indentation speed 

leads to premature yielding and plastic zone formation in the second (soft) layer and 

higher tensile stresses in the elastically deformed (for the simulated material properties 

and indentation parameters of this study) surface (hard) layer.  

(4) A sharper indenter yields a smaller critical indentation depth at the inception of yielding, 

higher peak contact pressure, lower contact load, and intensified subsurface stress-strain 

field. Due to the high yield strength of the surface layer the peak value of the maximum 

von Mises equivalent stress occurs always in this layer, whereas the peak equivalent 

plastic strain arises always in the soft layer.   

(5) Results for the peak values and locations of the maximum von Mises equivalent stress, 

first principal stress, and maximum equivalent plastic strain as well as the evolution of the 

plastic zone during indentation loading and unloading obtained in terms of dimensionless 

indentation parameters. The dimensionless solutions provide insight into the propensity 

for plastic flow and cracking in dynamically indented multi-layered media.  
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Table 1.  Thickness and material properties of the layered medium* 

Medium Normalized 
thickness  

(t/R) 

Elastic 
modulus  

(GPa) 

Yield 
strength  

(GPa) 

Density  

(kg/m3) 

Layer 1 0.05 168 13.0 2266 

Layer 2 0.156 130 2.67 8800 

Layer 3 0.08 140 2.58 7000 

Layer 4 6.4, 12.8, 51.2 160 2.67 8000 

               * Sources: Kaye et al. (1986); Komvopoulos (2000); ν = 0.3 (for all layers). 
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Fig. 1 Schematic representation of wave propagation in a semi-infinite half-space.  

Fig. 2 Finite element models used to study the mesh size effect on the dynamic response of 

an elastic homogeneous half-space indented by a rigid cylinder. The mesh dimensions 

normalized by the indenter radius are (a) 6.4 × 6.4, (b) 12.8 × 6.4, (c) 6.4 × 12.8, and 

(d) 12.8 × 12.8. 

Fig. 3 (a) Contact force and (b) maximum von Mises equivalent stress versus time from the 

initiation of normal contact for an elastic homogenous half-space indented by a rigid 

cylinder moving at speed V = 1 × 10-3cp.    

Fig. 4 Finite element models used to study the mesh size effect on the dynamic response of 

an elastic-plastic multi-layered medium indented by a rigid cylinder. The mesh 

dimensions normalized by the indenter radius are (a) 6.4 × 7.46, (b) 12.8 × 7.46, (c) 

6.4 × 13.86, and (d) 12.8 × 13.86. 

Fig. 5 (a) Maximum von Mises equivalent stress in the surface (hard) layer and (b) 

maximum equivalent plastic strain in the second (soft) layer versus time from the 

initiation of contact for an elastic-plastic multi-layered medium indented by a rigid 

cylinder moving at speed V = 1 × 10-3 )4(
Pc , where  is the propagation speed of the 

plane dilatational waves in the thick substrate (fourth layer).    

)4(
Pc

Fig. 6 Finite element mesh for dynamic contact analysis of an elastic-plastic multi-layered 

medium indented by a rigid cylinder. 

Fig. 7 Contact force on elastic-plastic multi-layered medium indented by a rigid cylinder 

versus indentation depth for (a) varying indentation speed and constant indenter 
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radius ( R~  = 1.0) and (b) varying indenter radius and constant indentation speed (V~  = 

4 × 10-3). 

Fig. 8 Contact pressure distribution on elastic-plastic multi-layered medium indented by a 

rigid cylinder for (a) varying indentation depth and speed and constant indenter radius 

( R~  = 1.0) and (b) varying indenter radius and constant indentation depth (δ~ = 0.02) 

and speed (V~  = 4 × 10-3).   

Fig. 9 Contours of von Mises equivalent stress in elastic-plastic multi-layered medium 

indented by a rigid cylinder of intermediate radius ( R~  = 1.0) at constant indentation 

speed (V~  = 4 × 10-3) for indentation depth (a) δ~ = 0.0025, (b) δ~ = 0.0075, (c) δ~ = 

0.015, and (d) δ~ = 0.02. 

Fig. 10 Maximum von Mises equivalent stress in the surface (hard) layer of an elastic-plastic 

multi-layered medium indented by a rigid cylinder versus indentation depth for (a) 

varying indentation speed and constant indenter radius ( R~  = 1.0) and (b) varying 

indenter radius and constant indentation speed (V~  = 4 × 10-3).  

Fig. 11 Contours of first principal stress in elastic-plastic multi-layered medium indented by a 

rigid cylinder of intermediate radius ( R~  = 1.0) at constant indentation speed (V~  = 4 × 

10-3) for indentation depth (a) δ~ = 0.01 (loading), (b) δ~ = 0.02 (loading), (c) δ~ = 0.01 

(partial unloading), and (d) δ~ = 0 (full unloading). 

Fig. 12 Maximum tensile (first principal) stress in the surface (hard) layer of an elastic-plastic 

multi-layered medium indented by a rigid cylinder versus indentation depth for (a) 

varying indentation speed and constant indenter radius ( R~  = 1.0) and (b) varying 

indenter radius and constant indentation speed (V~  = 4 × 10-3).  
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Fig. 13 Contours of equivalent plastic strain in elastic-plastic multi-layered medium indented 

by a rigid cylinder of intermediate radius ( R~  = 1.0) at constant indentation speed (V~  

= 4 × 10-3) for indentation depth (a) δ~ = 0.0075, (b) δ~ = 0.0125, (c) δ~ = 0.0175, and 

(d) δ~ = 0.02. 

Fig. 14 Maximum equivalent plastic strain in the second (soft) layer of an elastic-plastic 

multi-layered medium indented by a rigid cylinder versus indentation depth for (a) 

varying indentation speed and constant indenter radius ( R~  = 1.0) and (b) varying 

indenter radius and constant indentation speed (V~  = 4 × 10-3).  

Fig. 15 Maximum equivalent plastic strain in the second (soft) layer of an elastic-plastic 

multi-layered medium indented by a rigid cylinder during unloading versus 

indentation depth for varying indentation speed and indenter radius.   

Fig. 16 Contours of residual von Mises equivalent stress in elastic-plastic multi-layered 

medium indented by a rigid cylinder after full unloading for different values of 

indentation speed and indenter radius: (a) V~  = 1 × 10-3, R~  = 1.0, (b) V~  = 2 × 10-3, R~  

= 1.0, (c) V~  = 4 × 10-3, R~  = 1.0, and (d) V~  = 4 × 10-3, R~  = 0.2.  

Fig. 17 Contours of residual equivalent plastic strain in elastic-plastic multi-layered medium 

indented by a rigid cylinder after full unloading for different values of indentation 

speed and indenter radius: (a) V~  = 1 × 10-3, R~  = 1.0, (b) V~  = 2 × 10-3, R~  = 1.0, (c) 

V~  = 4 × 10-3, R~  = 1.0, and (d) V~  = 4 × 10-3, R~  = 0.2. 
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