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Abstract 

 A finite element analysis of frictionless indentation of an elastic-plastic half-space by a rigid 

sphere is presented to elucidate the deformation behavior during loading and unloading. The analysis 

yields dimensionless constitutive relations for the normal load, contact area, and mean contact 

pressure during loading for a wide range of material properties and for interference distances ranging 

from the inception of yielding to the initiation of fully plastic deformation. The boundaries between 

elastic, elastic-plastic, and fully plastic deformation regimes are determined in terms of interference 

distance, mean contact pressure, and reduced elastic modulus-to-yield strength ratio. Relations for 

the hardness and corresponding interference distance versus elastic-plastic material properties and 

truncated contact radius are introduced, and the shape of the plastic zone and maximum equivalent 

plastic strain are interpreted in the context of finite element simulation results. The unloading 

response of the spherical indenter is also analyzed to evaluate the validity of basic assumptions in 

traditional indentation approaches used to measure the hardness and reduced elastic modulus of 

materials. An alternative approach for determining the reduced elastic modulus, yield strength, and 

hardness of materials is proposed based on the obtained results. 

Submitted for publication in the ASME Journal of Applied Mechanics, December 18, 2002.
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1. Introduction 

The elastic-plastic indentation of a homogenous half-space by a rigid sphere is a fundamental 

problem in contact mechanics and of particular importance in numerous materials processing and 

mechanics applications, such as powder compaction, contact of rough engineering surfaces, and 

nanoindentation hardness measurement. In powder compaction, the prediction of the global force-

displacement behavior depends on knowledge of the local indentation response between particles 

(Vu-Quoc et al., 2000).  Likewise, models for contact (Komvopoulos and Ye, 2001), adhesion 

(Komvopoulos and Yan, 1998), and static and dynamic friction (Chang et al., 1998; Sahoo and Roy 

Chowdhury, 2000) of rough surfaces are based on single-asperity constitutive relations of the contact 

parameters. The high level of interest in these subjects is demonstrated by the impressive number of 

studies published to date (Bhushan, 1996, 1998; Liu et al., 1999; Adams and Nosonovsky, 2000). 

Indentation tests have been used from the beginning of the previous century to routinely 

measure the plastic properties of metals (Tabor, 1951). As opposed to a typical tension test, the 

indentation test is localized, and can be applied either to small material samples or fabricated 

machine parts and structural elements. In recent years, due to extensive development of depth-

sensing indentation techniques, nanoindentation has been used to evaluate the mechanical properties 

of surface layers and thin films of different materials (Herbert et al., 2001; Huber et al., 2001; 

Nayebi et al., 2002). However, current nanoindentation procedures are based on simplified 

assumptions about the material behavior during unloading and empirical relations of the contact area 

(e.g., Oliver and Pharr, 1992) with little input from analytical and numerical solutions. Therefore, it 

is unclear what properties can be measured using instrumented indentation techniques and what is 

the real indentation hardness of materials. 

The first indentation analysis for a purely elastic half-space is attributed to Hertz (Johnson, 
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1985). A solution for the spherical indentation of a rigid-perfectly plastic half-space was obtained by 

Ishlinsky (Johnson, 1985) using the slip-line method. Hill et al. (1989) and Biwa and Storåkers 

(1995) determined the similarity solution for a rigid-plastic half-space by using the deformation and 

flow theory, respectively. According to the similarity solution, the upper limit of the mean contact 

pressure, which is usually interpreted as the material hardness, is equal to three times the yield 

strength. However, the elasticity of real materials plays an important role in the indentation process, 

especially for a relatively blunt indenter such as a spherical indenter (Fischer-Cripps, 1997). Johnson 

(1985) analyzed the indentation response of elastic-perfectly plastic solids and reported the 

successive occurrence of elastic, elastic-plastic, and fully plastic deformation. Based on a simplified 

theoretical model and assuming fully developed plastic flow, Johnson (1985) derived a contact 

force-displacement relation. 

Theoretical treatment of elastic-plastic indentation is cumbersome and requires simplified 

assumptions because the shape and size of the elastic-plastic boundary is not known a priori. This 

has led to the use of the finite element method in numerous studies of elastic-plastic spherical 

indentation (e.g., Hardy et al., 1971; Follansbee and Sinclair, 1984; Kral et al., 1993; 

Giannakopoulos, 2000; Kucharski and Mroz, 2001). Recently, Komvopoulos and Ye (2001) used 

finite element results to derive dimensionless constitutive relations for the mean contact pressure and 

contact area for elastic-perfectly plastic half-space indented by a rigid sphere. In the fully plastic 

deformation regime the mean contact pressure was found to be constant and equal to 2.9 times the 

yield strength, which is close to the value obtained from the similarity solution.  

The use of a spherical indenter in hardness measurements is usually restricted to tests 

involving ductile materials. However, there is a class of nominally brittle materials that has been 

demonstrated to exhibit yielding in indentation tests with spherical indenters at modest loads 
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(Fischer-Cripps, 1997). Brittle materials, such as glass-ceramic, possess higher yield strains than 

ductile metals. The shape of the plastic zone in brittle materials is markedly different from that in 

metals. Mesarovic and Fleck (1999) have shown that the maximum value of the mean contact 

pressure (i.e., the material hardness) is never obtained with solids exhibiting sufficiently high yield 

strain. Moreover, the hardness and corresponding representative strain depend on the magnitude of 

the yield strain. 

The aforementioned dependency of the stress field and contact parameters on the yield strain 

raises questions about the validity of established constitutive relations used to predict the indentation 

response of a wide range of materials. Thus, the main objective of the present study was to analyze 

the deformation behavior of different elastic-perfectly plastic materials during indentation loading 

and unloading. Constitutive relations for dimensionless contact parameters were derived for a half-

space indented by a rigid sphere in the elastic-plastic deformation regime using finite element 

simulation results. The boundary between elastic-plastic and fully plastic deformation regimes, 

determined in terms of the mean contact pressure and corresponding interference distance, provides 

useful guideline for the measurement of the real material hardness in indentation experiments. In 

order to examine the validity of common approaches in indentation testing, finite element results for 

the unloading behavior are presented in terms of material properties. Simulation results are used to 

obtain an alternative approach for measuring the reduced elastic modulus, yield strength, and 

material hardness.  

2. Theoretical Background 

 Figure 1 shows a rigid sphere of radius R indenting an elastic-perfectly plastic half-space. 

The interference distance, δ , and contact radius, r, correspond to a normal load, P. The displacement 
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of the contact edge measured from the original surface, h, is assumed to be positive if the material 

deforms as shown in the figure. The mean contact pressure, pm, is defined as 

a
P

pm = ,                                                                                                 (1) 

where a is the contact area. For dimensionless analysis, the interference, contact area, and mean 

contact pressure are normalized by the radius of the truncated contact area, r ′ , truncated contact 

area, 'a , and material yield strength, Y, respectively. The truncated contact area is given by 

)2('' 2 δπδπ −== Rra .                      (2) 

For small interference, i.e., )//(78.1/ YEr <′δ , the indentation response is elastic, and according to 

Hertz theory,   
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where E is the reduced elastic modulus, given by ( ) ( )[ ] 1
2

2
21
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1 /1/1

−
−+−= EEE νν , in which 1E , 2E  

and 1ν , 2ν  are the elastic moduli and Poisson’s ratios of the two materials, respectively. In the case 

of a rigid indenter, ∞→2E . The dimensionless material parameter E/Y in Eq. (3) is related to the 

yield strain of the half-space, Y/E1. However, E1 is replaced by E in order to combine the two elastic 

properties (i.e., 1E  and 1ν ) into one elastic parameter, as suggested by Hertz. Experiments (Johnson, 

1970) and numerical results (Johnson, 1985) suggest that the reduced elastic modulus, E, adequately 

describes the elastic contribution to deformation in the elastic-plastic deformation regime. Mesarovic 

and Fleck (1999) observed that the reduced elastic modulus is appropriable for describing the contact 

area in the elastic-plastic deformation regime. 

 When the dimensionless interference reaches a critical value, )//(78.1/ YEr =′δ , yielding 

commences in the half-space below the center of the contact region and the corresponding mean 
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contact pressure is pm/Y = 1.07 (Komvopoulos and Ye, 2001). With increasing interference, the 

elastic-plastic indentation response is gradually dominated by plastic flow. The inception of fully 

plastic deformation is encountered when the mean contact pressure first reaches its upper limit, i.e., 

the material hardness, H. Johnson (1970) argued that deformation in elastic-plastic indentation 

depends on the ratio of the representative strain below the indenter, r/R, to the yield strain of the 

half-space, Y/E. Similarly to the elastic Hertz solution, two elastic properties are combined into one 

elastic parameter, E, and the indentation is characterized by a single dimensionless parameter, 

YREr / . However, Mesarovic and Fleck (1999) reported that for a given value of YREr / , different 

values of E/Y yield different results for the contact parameters. Moreover, the dimensionless 

parameter YREr / , suggested by Johnson (1970) to describe the indentation behavior, contains the 

unknown radius of the contact area, r. Mesarovic and Fleck (1999) have also shown that the 

boundary between the elastic-plastic and the fully plastic deformation regimes cannot be defined by 

a single dimensionless parameter, as in previous studies (Johnson, 1985; Komvopoulos and Ye, 

2001).  

The most frequently measured mechanical properties using load and interference sensing 

indentation techniques are the hardness and reduced elastic modulus. In a commonly used method 

(Oliver and Pharr, 1992), indentation load versus displacement data are obtained for one complete 

load/unload cycle of arbitrary maximum load, Pmax. The material hardness is then determined as 

H=Pmax/a, where a is the contact area corresponding to Pmax. Since a cannot be measured during 

loading, methods for estimating the contact area from the indenter shape function have been 

proposed (e.g., Oliver and Pharr, 1992). In the case of a relatively small interference, a spherical 

indenter can be approximated as a paraboloid of revolution and, according to the elastic analysis of 

Sneddon (1965) and Oliver and Pharr (1992), the contact depth, hc (Fig. 1), is given by 
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S
P

hc
max75.0−= δ ,                      

where S is the experimentally measured stiffness at the inception of unloading. From geometric 

considerations, the contact area, as (hereafter referred to as the shape function of the indenter), is 

( )ccs hRha −= 2π .                                  (4) 

Alternatively, the contact area can be approximated by the residual impression area, ai, assuming 

negligible surface recovery (Thurn et al., 2002).  

The analysis of the unloading data is based on the assumption that unloading is fully elastic 

and during the initial withdrawal of the indenter, the contact area remains constant. For this case, 

Hertz theory (Johnson, 1985) can be used to determine the reduced elastic modulus 

a
S

E
2
π

= ,                             (5) 

where a in Eq. (5) is the contact area corresponding to the arbitrary maximum indentation load, Pmax.  

3. Finite Element Modeling 

A finite element model of a rigid sphere indenting a homogeneous half-space was used to 

determine the mean contact pressure and contact area as functions of interference distance??The multi-

purpose code ABAQUS was used to perform the finite element simulations. The following 

assumptions were adopted in the finite element analysis: (a) perfectly smooth surfaces, (b) 

frictionless contact, (c) homogenous, isotropic, elastic-perfectly plastic half-space following the J2 

flow theory, (d) sufficiently small yield strain (i.e., less than 10%) in order for yielding to commence 

without the occurrence of finite deformation (Mesarovic and Fleck, 1999), and (e) negligible 

adhesion forces at the contact region. An elastic-plastic constitutive model that satisfies the J2 plastic 

flow theory was used in the finite element simulations, based on the assumption that the deformation 
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gradient can be decomposed into elastic and plastic parts using a multiplicative decomposition. 

According to the von Mises yield criterion, yielding occurs when  

02
2 =−= kJf ,               

where k is a material constant equal to 3/Y , and J2 is the second invariant of the deviatoric stress 

tensor, Sij, given by 

ijijSSJ
2
1

2 = , 

where kkijijijS σδσ
3
1

−= , in which, ijδ  is the Kronecker delta, and kkσ  is the sum of the three 

normal stress components. In terms of the uniaxial yield strength, the yield criterion reduces to 

YSS ijijeq =



=

2/1

2
3σ , 

where eqσ  is the von Mises equivalent stress. The material model used to describe plastic 

deformation was based on the flow rule 

 ij
p

ij Sdd λε = , 

where p
ijdε  are components of the plastic strain increment, and λd  is a function of the flow stress 

and the plastic strain rate. The equivalent plastic strain, eqε , is defined as 

∫
Ω





=

2/1

3
2 p

ij
p

ijeq dd εεε ,                           (6) 

where the integration in Eq. (6) is carried out over the strain path, Ω. The usual assumption of 

negligible plastic volume change was maintained. The J2 flow theory applies only to yielding 

material for which Yeq =σ . When Yeq <σ , the usual elastic constitutive equations are used. 

The rigid contact surface option was used to simulate the rigid indenter. The half-space was 
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modeled by 12,063 axisymmetric, eight-node, quadratic, isoparametric elements consisting of 

34,337 nodes (Fig. 2). Contact between the indenter and the half-space surface was detected by 

special contact elements. The nodes on boundaries y = 0 and x = 0 were constraint against 

displacement in the x-and y-direction, respectively. The resolution of the finite element mesh can be 

evaluated in terms of the half distance between two adjacent nodes divided by the determined 

contact radius. The resolution obtained with the mesh shown in Fig. 2 was better than 2.5% for all 

material properties and load cases simulated in the present study. To account for nonlinearities due 

to the material nonlinear behavior (plasticity), geometric nonlinearities (i.e., large displacements), 

and surface contact, an updated Lagrangian formulation was used in the finite element analysis. The 

typical computation time for a simulation on a Pentium III 550 computer was approximately 40,000 

CPU seconds.  

In order to generalize the numerical solutions and eliminate the dependency of the results on 

input parameters, the global contact parameters and material properties are presented in 

dimensionless form, i.e., pm/Y, aa /' , '/ rδ , and E/Y. The validity of this normalization was 

evaluated comparing finite element solutions obtained for different values of R, δ , E, and Y, 

yielding identical values of '/ rδ  and E/Y. The results for pm/Y and aa /'  versus dimensionless 

interference, '/ rδ , for a given E/Y value were always the same regardless of the selection of the 

indenter radius, interference distance, and elastic-plastic material properties. 

Figure 3 shows a comparison between results for the dimensionless mean contact pressure, 

pm/Y, obtained from the present finite element model and the classical Hertz theory (Eq. (3)) for    

E/Y = 11 in the elastic deformation regime (i.e., )//(78.1/ YEr <′δ ). The results are in good 

agreement, with the maximum difference being less than 6.5%. The inception of yielding occurs 

when 162.0)//(78.1/ ==′ YErδ , and the yield point is located below the center of the contact area, 
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as predicted by the Hertz theory (Johnson, 1985). Similar small differences between theoretical and 

finite element results were obtained for the dimensionless contact area, aa /' . The largest difference 

of 6.5% was found to be due to an overestimation of the analytical contact radius by 3.2%. It should 

be mentioned that for this specific material (E/Y = 11) the radius of the contact area at the inception 

of yielding is equal to 0.22R, which may violate the assumption in the Hertz analysis that the contact 

area is much less than the radius of the indenter. However, even for such relatively large contact 

radius of r/R = 0.22, the difference between theoretical and numerical results is less than 3% and the 

Hertz solution is still valid. The favorable comparison of the numerical and theoretical results 

illustrates the suitability of the finite element model and correctness of the assumed boundary 

conditions.  

4. Results and Discussion 

 In this section, results corresponding to the deformation behavior during indentation loading 

and unloading are presented separately in order to facilitate the analysis of the material response. 

Subsequently, an analytical treatment based on the obtained results is introduced to provide 

guideline for the accurate determination of the mechanical properties from the material indentation 

response.  

4.1 Loading Behavior 

The dependence of the mean contact pressure, pm/Y, on interference, r ′/δ , is shown in Fig. 

4 for different material properties in the range of 450/11 ≤≤ YE . The lower limit )11/( =YE  was 

chosen in order to satisfy the assumption of sufficiently small yield strain (section 3), while the 

upper limit (E/Y = 450) was selected due to the close agreement of the results with those of the 

similarity solution. The maximum dimensionless contact pressure for E/Y = 450 is pm/Y = 2.85, 
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which is quite close to that obtained from the similarity solution (Hill et al., 1989; Biwa and 

Storåkers, 1995), pm/Y = 3. For materials with E/Y > 450, well into the elastic-plastic deformation 

regime, the elastic strains can be neglected in favor of the plastic strains and the materials may be 

treated as rigid-perfectly plastic, for which the similarity solution is a good approximation.  

Figure 4 shows that yielding commences when pm/Y = 1.07, i.e., )//(78.1/ YEr =′δ , as 

predicted by the Hertz theory. This is the lower bound of the elastic-plastic deformation regime. The 

upper bound of the elastic-plastic deformation regime is defined by the inception of fully plastic 

deformation, determined by the interference distance at which the mean contact pressure reaches its 

maximum value for the first time (i.e., the material hardness). By curve fitting the numerical results 

of the maximum contact pressure, the hardness can be expressed in terms of the reduced elastic 

modulus and yield strength as, 

 1.685ln201.0 +





=

Y
E

Y
H ,                                                                                          (7) 

while the corresponding interference at the inception of fully plastic deformation is given by  

 
)/(037.01

1
' YEr +
=

δ
.                                                                                          (8) 

Figure 5 shows a comparison between finite element results (both individual data and the 

curve corresponding to Eq. (7) are plotted in the figure) and results from a previous study (Ye and 

Komvopoulos, 2003) for the dimensionless hardness, H/Y, versus material properties, E/Y. The 

results are in fair agreement, and the trend for the hardness to increase with the reduced elastic 

modulus-to-yield strength ratio is similar to that observed by Marsh (1964) from Vickers indentation 

tests with various materials. In general, the material hardness is a system property that depends on 

the indenter geometry, elastic properties of contacting materials (through the reduced elastic 

modulus), and yield strength of the indented material. For the limiting case of a spherical rigid 
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indenter and a rigid-perfectly plastic half-space, the hardness is given by the similarity solution and 

is equal to 3Y, i.e., independent of the elastic material properties. However, the hardness of materials 

with E/Y < 270 is much less than 3Y. The deviation from the similarity solution increases as E/Y 

decreases, demonstrating a significant effect of elastic deformation on the indentation behavior of 

these materials. For very small values of E/Y, the indentation response is dominated by the elastic 

response and the hardness approaches the maximum contact pressure predicted by the Hertz solution 

(pm/Y = 1.07). The results obtained from Eq. (7) are more accurate than those of a previous finite 

element analysis (Ye and Komvopoulos, 2003) due to the finer mesh used in the present study and 

the larger number of numerical data in the vicinity of the hardness point (Fig. 4) that improved the 

accuracy in the determination of the material hardness. The maximum discrepancy between the 

hardness predicted in this study and the previous analysis (Ye and Komvopoulos, 2003) is 18% and 

occurs for E/Y = 11.     

Figure 6 shows the boundaries of the elastic-plastic deformation regime with the fully plastic 

(Eq. (8)) and elastic ( )//(78.1/ YEr =′δ ) deformation regimes. The dimensionless interference, 

r ′/δ , at the inception of fully plastic deformation increases with decreasing E/Y, i.e., larger 

interference is required to reach fully plastic deformation in the case of materials exhibiting a 

dominant elastic behavior. The range of dimensionless interference corresponding to the elastic and 

elastic-plastic deformation regimes decreases with increasing E/Y. This is because high values of 

E/Y represent low yield strains, and, thus, the inception of yielding and fully plastic deformation 

occurs at relatively smaller interference distances. 

Figure 7 shows the dimensionless contact area, aa /' , as a function of dimensionless 

interference, '/ rδ , in the elastic-plastic deformation regime. The dimensionless contact area 

approaches values close to 1 with the increase of the interference, especially for higher values of 
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E/Y, where the material behavior can be approximated as rigid-perfectly plastic and the contact area 

is equal to the truncated area. As the ratio E/Y decreases, the contribution of the elastic response to 

the deformation behavior becomes dominant and the ratio aa /'  approaches values close to 2, 

corresponding to the elastic Hertz solution. The results shown in Fig. 7 indicate that the assumption 

that in the fully plastic deformation regime the edge of the contact area does not exhibit pile-up or 

sink-in (Johnson, 1985), and therefore 1/' =aa , is a good approximation when 270/ ≥YE . 

The simulation results shown in Figs. 4 and 7 were used to derive relations for the 

dimensionless mean contact pressure and contact area in terms of dimensionless interference and 

material properties. From curve fitting, the following constitutive relations were obtained for the 

elastic-plastic deformation regime, in which ( ) [ ]  )/(037.01'///78.1 1−+≤≤ YErYE δ , 


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The maximum differences between the results obtained from Eqs. (9) and (10) and the numerical 

results shown in Figs. 4 and 7 were found when E/Y = 11 (with average error equal to 5.3% and 

6.4%, respectively). The constitutive relation for the contact load, P, can be derived by multiplying 

the mean contact pressure (Eq. (9)) by the contact area (Eq. (10)). Hence, the dimensionless contact 

load, )'/( YaP , can be expressed as 
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Results for the mean contact pressure and contact area obtained from Eqs. (9) and (10), 

respectively, were found to be in good agreement with finite elements results reported by 

Komvopoulos and Ye (2001) for high E/Y values. However, large differences (up to 26%) were 

obtained with low E/Y values. In particular, the boundary between the elastic-plastic and fully 

plastic deformation regimes reported in the previous study (Komvopoulos and Ye, 2001), 

( )YEr //21'/ =δ , differs significantly from that found in this work (Eq. (8)). Presenting the results 

for the boundary between the elastic-plastic and fully plastic deformation regimes in terms of a 

single dimensionless parameter yields 4.25'/8.7 ≤≤ YrEδ  for materials with 450/11 ≤≤ YE . This 

shows that a single dimensionless parameter, '/YrEδ , is not adequate to uniquely determine the 

evolution of deformation in the elastic-plastic deformation regime. Therefore, it is essential to 

decompose the previous dimensionless parameter into two dimensionless parameters, '/ rδ  and 

YE / , in order to accurately describe the elastic-plastic response over a wide range of material 

properties. The large differences between the results of the present model and those of Komvopoulos 

and Ye (2001) may be due to the high magnitude of E/Y used in the earlier study, as evident from 

the high value of the mean contact pressure in the fully plastic deformation regime, i.e., pm/Y = 2.9. 

Therefore, the constitutive relation for elastic-plastic deformation of Komvopoulos and Ye (2001) 

may be considered to be a limiting case of the present general solution and adequate for materials 

with 379/ ≥YE .   

Similar to the global contact parameters, a strong effect of the material properties was found 

for the subsurface parameters, such as shape of plastic zone and magnitude and location of 

maximum equivalent plastic strain. Figures 8(a) and 8(b) show plastic regions below the spherical 

indenter at the inception of fully plastic deformation for E/Y = 11 and 450, respectively. For          

E/Y = 11, the plastic region is confined below the contact area, whereas for E/Y = 450, the plastic 
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region extends beyond the contact area to the surface of the half-space. It was found that the plastic 

region gradually grows outside the contact edge with the increase of E/Y. This transition is in good 

agreement with experimental results for mild steel and glass-ceramic specimens presented by 

Fischer-Cripps (1997). From Figs. 8(a) and 8(b) it can be observed that in the elastic-plastic 

deformation regime the contact edge either moves downward ( 1/' >aa ) or remains at the level of 

the original surface ( 1/' ≈aa ) when E/Y assumes relatively low or high values, respectively.  

Figure 9 shows the variation of the maximum equivalent plastic strain, max
eqε  (Eq. (6)), with 

material properties, E/Y, at the inception of fully plastic deformation. Results for the representative 

strain, YREr /  (Johnson, 1970), are also plotted for comparison. The increase of max
eqε  with E/Y 

confirms the dominance of plastic flow in materials exhibiting low yield strain. A plastic strain 

plateau 40)//(max ≈EYeqε  is reached when E/Y > 270. The representative strain has the same trend as 

max
eqε , and the value used by Johnson (1985) to determine the inception of fully plastic deformation, 

40/ ≈YREr , is a good approximation only for materials with 160/ ≈YE , while it largely 

overestimates the representative strain at the inception of fully plastic deformation when E/Y < 160. 

Figure 10 shows the dependence of the radial distance, x/a, of the material point with the 

maximum equivalent plastic strain on material properties at the inception of fully plastic 

deformation. For all materials, the initial location of max
eqε  at the inception of yielding is below the 

center of the contact area (x/r = 0), as predicted by the Hertz theory, and shifts gradually toward the 

location shown in Fig. 10 with the increase of the interference. When the indentation behavior is 

dominated by the elastic response (e.g., E/Y = 11), the location of max
eqε  is approximately below the 

center of the contact area, similar to the location of the equivalent elastic strain in the case of purely 
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elastic deformation (Hertz solution). However, the radial distance of max
eqε  increases with E/Y, 

reaching the edge of the contact area )1/( ≈rx  when E/Y > 160.  

Although the present work is mainly focused in the elastic-plastic indentation response, an 

interesting phenomenon worthy of discussion was observed in the fully plastic deformation regime. 

As shown in Fig. 4, for intermediate values of E/Y, the mean contact pressure decreases immediately 

after reaching a peak value, whereas for both low and high values of E/Y, it remains almost constant 

after reaching a maximum, at least for the examined interference range. The decrease of pm after 

reaching a peak value can be explained by considering the increase of the contact area due to the 

occurrence of pile-up at the contact edge. As shown in Fig. 8(a), plastic deformation in materials 

with low E/Y is restricted below the contact area and the free surface moves downward during 

indentation loading. However, materials with high E/Y are relatively more rigid and the movement 

of the free surface is negligible (Fig. 8(b)).   

4.2 Unloading Behavior 

 The unloading response of the indented half-space was analyzed from a maximum 

interference distance, iδ , corresponding to the inception of fully plastic deformation of each material 

case (unless otherwise stated) to an interference distance, fδ , corresponding to zero normal load. 

The surface recovery, global contact parameters, and equivalent plastic strain were tracked during 

unloading in order to evaluate the effect of material properties on the deformation behavior during 

the retraction of the indenter. For most material cases, the residual vertical displacement of the 

center point of the impression after complete unloading, rδ , was found to be equal to fδ . During the 

initial stage of unloading, the surface of the deformed medium begins to separate from the indenter 

at the edge of the contact area. With continuing unloading, the separation point moves toward the 
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center of the contact area and the last point to separate from the indenter is the center point of the 

residual impression; thus, fr δδ = . While surface separation during unloading for E/Y = 11 

commenced at the contact edge, as with the other material cases, it was found that rf δδ < . This is 

because the maximum equivalent plastic strain occurs approximately below the center of the 

impression, restricting the elastic recovery of this material point. During unloading, the elastic 

recovery at the center point is exhausted, while other surface points are still in contact with the 

indenter. A zero normal load is obtained at interference distance rf δδ <  when all the surface nodal 

points of the half-space have separated from the spherical indenter.  

The elastic recovery of the indented material can be characterized by the change of the 

displacement at the center of the contact area, δRE , defined as 

i

ri
RE

δ
δδ

δ
−

= .                                                     (12) 

Another parameter to quantify the elastic recovery is the ratio of the released energy during 

unloading and the total input energy during loading, REE , defined as 

( )

( ) δδ

δδ

δ

δ

δ

∫

∫
=

i

i

f

dP

dP

ERE

0

.                                         (13) 

While the elastic recovery can be easily determined from Eq. (12), this is based solely on the 

displacement of the center point of the residual impression that may not be representative of the 

recovery of the entire surface. However, estimation of the elastic recovery using Eq. (13) is 

representative of the global elastic recovery, although calculation is somewhat more complex. Figure 

11 shows a comparison between numerical results obtained from Eqs. (12) and (13) for the range of 

material properties examined in this study. The agreement between the results of the two methods is 
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fairly good. As expected, the elastic recovery decreases with increasing E/Y because less elastic 

strain energy is stored in materials exhibiting low yield strain. From curve fitting of the numerical 

results shown in Fig. 11, the material elastic recovery can be obtained from the following semi-

empirical relations 

156.0

591.0
−







=

Y
EERδ  and 

176.0

616.0
−







=

Y
EERE . 

Finite element results (not shown here for brevity) confirmed that, for all material cases, the elastic 

recovery increased when unloading was initiated from a smaller interference distance, reaching a 

value of 1 when unloading commenced from interferences in the elastic deformation regime. An 

opposite trend was found when the unloading process was initiated from interference in the fully 

plastic deformation regime. 

A few additional observations related to the profound elastic recovery of materials exhibiting 

low E/Y values are worthy of discussion. First, max
eqε  increased during unloading of materials with 

low E/Y, indicating that unloading was not purely elastic. The increase of the plastic strain was 

found to occur during the last stage of unloading only for E/Y = 11 and 22. For these material cases, 

reloading (after complete unloading) up to the inception of fully plastic deformation produced max
eqε  

higher than that obtained after the first full unloading. However, despite the occurrence of limited 

plasticity during reloading, the global contact parameters were similar to those obtained during 

unloading. Second, it was found that during the initial stage of unloading, the contact area is greater 

than that during loading at the same interference, despite the lower contact load during unloading at 

a given interference. This phenomenon could be significant in contact problems dealing with 

electrical and thermal conductivity, where establishing a large contact area under a given contact 

load is of importance. The present results suggest that this can be accomplished by an overloading of 
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the contacting surfaces, followed by a partial unloading to the desired load. Growth of the contact 

area during the initial stage of unloading was found to be negligible for materials with 270/ ≥YE . 

Third, as shown in Fig. 8(a), despite the downward displacement of the free surface during 

indentation loading of materials with low E/Y values, an upward movement of the surface (pile-up) 

was obtained upon unloading. However, for materials possessing high E/Y, this phenomenon is 

negligible (Fig. 8(b)). This can explain the increase of the contact area during the initial stage of 

unloading of indented materials with low E/Y, as discussed previously. The aforementioned 

behaviors and trends during unloading vanish when iδ  approaches values in the elastic deformation 

regime, even in the case of E/Y = 11. 

4.3 Determination of Mechanical Properties from the Material Indentation 

Response 

The present finite element analysis can be extended to examine the conditions under which 

the assumptions used in traditional indentation approaches for measuring the reduced elastic 

modulus and hardness are valid. The evaluation comprises indentation loading up to the inception of 

fully plastic deformation, where the material hardness should be measured, followed by full 

unloading. As discussed in section 2, a major assumption in indentation hardness measurement is 

that the impression area after unloading is similar to the contact area at maximum indentation load, 

i.e., the surface recovery after full unloading is negligible. However, as shown in Fig. 8(a), the 

elastic recovery may be significant, particularly for materials exhibiting low E/Y values. The area of 

the residual impression, ai, is calculated as the area of a circle with radius equal to the distance 

between the center point of the impression to the highest surface point after complete unloading. 

Figure 12 shows the error in contact area, ea, (determined from the residual impression area, ai, and 

the indenter shape function, as, both corresponding to the inception of fully plastic deformation) 



 20

versus material properties, E/Y. The error is greater for small values of E/Y because these materials 

exhibit significant sink-in and pile-up behaviors during loading and unloading, respectively (Fig. 

8(a)), thus producing a larger difference between the contact areas obtained under maximum 

indentation load, a, and after full unloading, ai. For E/Y > 50, the relative error is less than 5.7%, and 

therefore the impression area, ai, is a good approximation of the contact area in the case of these 

materials.  

Another approach is to use the contact area determined from the indenter shape function, as 

(Eq. (4)). As discussed in section 2, Eq. (4) is based on the assumption of purely elastic deformation 

and small surface interference because it includes hc, which is obtained from a linear elastic analysis. 

However, the interference distance and plastic region at the inception of fully plastic deformation 

may be large, depending on the magnitude of E/Y (Figs. 6 and 8(b)).  Figure 12 shows that the error 

between as and a is less than 5.7% when E/Y < 50 and, therefore, the approximation of the spherical 

indenter by a paraboloid of revolution is acceptable, even for a large interference distance. However, 

for E/Y > 50, the accuracy of Eq. (4) decreases, probably due to extension of the plastic region 

beyond the contact edge to the free surface of the half-space (e.g., Fig. 8(b)).  

Figure 13 shows the error between calculated and actual reduced elastic modulus, eE, versus 

material properties, E/Y. The reduced elastic modulus is calculated from Eq. (5), using the contact 

area at the inception of unloading, a, the area of the residual impression, ai, and the contact area 

obtained from the shape function of the spherical indenter, as (Eq. (4)), all corresponding to the 

inception of fully plastic deformation. According to finite element results (not shown here), during 

the initial withdrawal of the indenter the contact area remains almost constant, especially for low 

E/Y values, due to the transition from sink-in to pile-up of the surface (Fig. 8(a)). However, this 

effect becomes less pronounced with increasing E/Y due to the decrease of the elastic recovery (Fig. 
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11) and the more rigid-like behavior inhibiting pile-up formation at the contact edge (Fig. 8(b)). 

Therefore, the basic assumption behind Eq. (5) is satisfied, at least for small values of E/Y, and the 

reduced elastic modulus can be determined with good accuracy.  

When using the contact area, a, the accuracy of Eq. (5) increases with decreasing E/Y, i.e., 

material response is dominated by the elastic response. The accuracy for E/Y < 22, is slightly 

reduced, presumably due to plastic deformation during unloading, as shown by the increase of max
eqε . 

As explained previously, for high values of E/Y, the contact area does not remain constant during the 

initial stage of unloading, and, hence, the accuracy of Eq. (5) decreases. Regarding the error in Eq. 

(5) when using the impression area, ai, to determine the reduced elastic modulus, the error is 

relatively larger than that of the other two approaches, especially for materials with low E/Y. 

Significantly lower error is produced with the shape function, as. The reduced elastic modulus can be 

predicted from Eqs. (4) and (5) with accuracy better than 6.3% when the unloading is initiated from 

a maximum load in the elastic or elastic-plastic deformation regimes. However, unloading from 

interference distances well within the fully plastic deformation regime increases the error for all 

materials in the range of 450/11 ≤≤ YE  due to extensive plastic deformation.  

As discussed earlier, applying an arbitrary maximum indentation load for measuring the 

material hardness may yield a mean contact pressure less than the actual hardness. This problem may 

be encountered in the case of light indentation loads, as in hardness measurement of very thin films, 

where very shallow impressions must be produced to avoid the substrate effect on the hardness 

measurement (Ye and Komvopoulos, 2003). However, as shown in Fig. 4, if the dimensionless 

interference is less than the value corresponding to the inception of fully plastic deformation (Eq. 

(8)), the mean contact pressure is less than the material hardness. Alternatively, applying a 

dimensionless interference greater than the critical value given by Eq. (8) may yield a mean contact 
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pressure in the fully plastic deformation regime that might be much less than the material hardness, 

especially for intermediate values of E/Y.  

The dimensionless interference corresponding to the real material hardness is given by Eq. 

(8) and the corresponding indentation load can be calculated from Eq. (11). However, in order to use 

Eqs. (8) and (11), it is necessary to measure first the reduced elastic modulus and yield strength. As 

explained earlier, Eq. (5) yields fairly accurate estimates of the reduced elastic modulus over a wide 

range of E/Y. However, it is preferred to calculate the reduced elastic modulus from the elastic 

indentation response using the Hertz solution for a single load path, 

2/32/14
3

δR
P

E = .                                         (14) 

Equation (14) may also be used to find the indenter radius if the material elastic properties are 

known a priori. Then, the hardness may be determined from an iterative procedure involving an 

initial assumption for the value of Y, calculation of the dimensionless interference, '/ rδ , at the 

inception of the fully plastic deformation regime (Eq. (8)), and estimation of the corresponding 

dimensionless contact load, YaP '/  (Eq. (11)). Next, the new value of the interference distance is 

measured experimentally based on the estimated contact load, and the new value of Y is calculated 

from Eq. (8) (or Fig. 6). This procedure can be repeated until a convergence to a specific tolerance is 

reached. Finally, the material hardness can be determined by substituting the obtained values of the 

reduced elastic modulus and yield strength in Eq. (7) or from using Fig. 5.  

5. Conclusions 

 A finite element contact analysis of a rigid spherical indenter and an elastic-perfectly plastic 

half-space that is based on constitutive laws for the relevant deformation regime was performed in 

order to elucidate the effect of material properties on the indentation response during loading and 

unloading. The validity of the axisymmetric finite element model was verified by favorable 
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comparisons with the Hertz solution. Simple analytical expressions that extend the classical Hertz 

solution up to the fully plastic deformation regime were derived for a wide range of material 

properties. General solutions that are independent of specific material properties and radius of the 

spherical indenter were obtained based on a normalization scheme. In view of the presented results 

and discussion, the following main conclusions can be drawn. 

(1) The boundaries between elastic, elastic-plastic, and fully plastic deformation regimes were 

determined in terms of dimensionless interference, mean contact pressure, and material properties. 

The boundary between elastic-plastic and fully plastic deformation regimes is of particular interest 

because it provides a means of extracting the material hardness. It was shown that the hardness is 

less than the traditionally quoted value of three times the yield strength. Equations for the hardness 

and corresponding dimensionless interference were obtained in terms of material properties and 

truncated contact radius.  

(2) The shape of the plastic region and the magnitude and location of the maximum equivalent 

plastic strain, max
eqε , strongly depend on the reduced elastic modulus-to-yield strength ratio, E/Y. For 

high E/Y values, the plastic region extends beyond the contact edge to the free surface of the half-

space and max
eqε  occurs at the contact edge. For small E/Y values, the plastic region is confined below 

the contact area and max
eqε  arises below the center of contact near the axis of symmetry. At the 

inception of fully plastic deformation, a constant value of max
eqε  equal to )/(40~ EY  is reached for 

materials with E/Y > 270. The value of the representative strain, 40/ ≈YREr , suggested by Johnson 

(1985) for the inception of fully plastic deformation is a good approximation only for materials with 

160/ ≈YE ; however, it largely overestimates the actual value of the representative strain at the 

inception of fully plastic deformation when E/Y < 160.  
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(3) The unloading response of a spherical indenter was analyzed in order to examine the validity of 

basic assumptions invoked in traditional indentation approaches for measuring the hardness and 

reduced elastic modulus. Significant elastic recovery was found for materials possessing low E/Y. 

Good correlation was observed between the elastic recovery predicted based on the vertical 

displacement at the center of the contact area and the ratio of the elastic energy released upon 

unloading to the total energy stored in the material under maximum indentation load. The effect of 

the elastic recovery on subsurface plasticity, contact area, and transition from surface sink-in 

(loading) to pile-up (unloading) was explained in the context of results for different material 

properties.  

(4) The accuracy of approximate methods for calculating the contact area and reduced elastic 

modulus was examined, and the conditions under which these methods yield accurate predictions 

were determined. The common approach used to extract the reduced elastic modulus from 

indentation experiments yield accurate results. However, because of inherent limitations, an 

alternative approach for determining the mechanical properties from indentation measurements was 

introduced together with an iterative procedure to obtain the yield strength and hardness in terms of 

the measured reduced elastic modulus. 
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Fig. 1. Schematic of spherical indentation and pertinent nomenclature. 
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Fig. 2. Finite element model for indentation analysis. (The inset at the top shows the finesse of the 

mesh near the surface.). 

Rigid sphere 

x 

y 



 33

0.3

0.5

0.7

0.9

1.1

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Interference, '/ rδ  

M
ea

n 
co

nt
ac

t p
re

ss
ur

e,
 p

m
/Y

 

Finite element method 
Analytical (Hertz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of analytical (Hertz) and finite element results for the dimensionless mean 

contact pressure, pm/Y, versus dimensionless interference, '/ rδ , in the elastic deformation regime for 

E/Y = 11. 
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Fig. 4. Dimensionless mean contact pressure, pm/Y, versus dimensionless interference, '/ rδ , in the 

elastic-plastic and fully plastic deformation regimes for different material properties, E/Y. 
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Fig. 5. Dimensionless hardness, H/Y, versus material properties, E/Y.  
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Fig. 6. Deformation map of dimensionless interference, '/ rδ , versus material properties, E/Y, 

showing the boundaries between elastic, elastic-plastic, and fully plastic deformation regimes. 
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Fig. 7. Dimensionless contact area, aa /' , versus dimensionless interference, '/ rδ , in the elastic-

plastic deformation regime. 
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Fig. 9. Normalized strain versus material properties, E/Y, at the inception of fully plastic 

deformation. 
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Fig. 10. Radial distance of material point where the maximum equivalent plastic strain occurs at the 

inception of fully plastic deformation, x/r, versus material properties, E/Y. 
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Fig. 11. Elastic recovery, ER, upon unloading from the inception of fully plastic deformation 

determined from the displacement at the center of the residual impression (Eq. (12)) and the elastic 

strain energy release (Eq. (13)) versus material properties, E/Y. 
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Fig. 12. Error in contact area at the inception of fully plastic deformation, ea, versus material 

properties, E/Y. (The error is calculated as the difference between the area of the residual impression, 

ai, or the area determined from the shape function of the spherical indenter, as, and the real contact 

area at the inception of unloading, a.).  
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Fig. 13. Error in reduced elastic modulus at the inception of fully plastic deformation, eE, versus 

material properties, E/Y. (The error is calculated as the difference between the elastic modulus 

determined from Eq. (5) using the contact area at the inception of unloading, a, the residual 

impression area, ai, or the area determined from the shape function of the spherical indenter, as, and 

the real elastic modulus used in the finite element simulations.). 


