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ABSTRACT 

 

This report investigates a new partition strategy for the DIRECT algorithm, which is 

locally biased. Several numerical experiments show that the new partition strategy can 

significantly increase the convergence rate for the DIRECT algorithm and its variations. It is 

then applied to slider ABS optimization and the improvements in the design process are 

discussed.  
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1. INTRODUCTION 

 

The DIRECT algorithm is a global deterministic optimization algorithm that is 

guaranteed to converge rapidly (Jones et al., 1993). It can generally find the global minimum 

points very quickly as compared with other algorithms such as Simulated Annealing and 

Genetic Algorithm (Jones et al., 1993; Gablonsky, 1998, 2001).  

 

We presented the details of the DIRECT algorithm, the results of numerical 

experiments, and its application to slider Air Bearing Surface (ABS) optimization in CML 

technical report 01-003. The results verified the very fast convergence rate of the DIRECT 

algorithm and showed that it is suitable for slider ABS optimization. 

 

We also presented three locally biased variations of the standard DIRECT algorithm 

in CML technical report 01-007. These investigations showed that the three locally biased 

variations of the DIRECT algorithm generally have higher convergence rates than does the 

standard DIRECT algorithm. The variations perform especially well in some situations and 

they may dramatically reduce the time needed to find the global minimum points.  

 

In the CML technical report 01-013 we discussed two modifications to the standard 

DIRECT algorithm: one to handle tolerances (minimum side lengths) and one to deal with 

hidden constraints. These two modifications of the DIRECT algorithm improve its efficiency 

and make it more flexible. 
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In this report, we propose a new partition strategy for the DIRECT algorithm and its 

variations. After presenting the new partition strategy, we conduct some numerical 

experiments and then discuss the results. We apply the new partition strategy to slider ABS 

optimization, present some results and draw our conclusions.  

 

2. PARTITION STRATEGY 

2.1 Review of the standard partition strategy 

 

The standard partition strategy of the DIRECT algorithm is defined as follows:  

 

Any potentially optimal box (either a hyper-cube or a hyper-rectangle) is only 

partitioned along its longest sides or dimensions. Assume m0 is the center point of the box, δ 

is 1/3 of the longest side length of the box and ei is the ith Euclidean base-vector for the 

dimension of longest side. Then we generate sample points at m0 ± δ ei . Define si = min { f ( 

m0 – δ ei ), f ( m0 + δ ei ) }, and partition in the order given by sj, starting with the smallest sj. 

In this way, the box is first partitioned along the direction with the smallest si, and then the 

remaining field is partitioned along the direction of the second smallest si, and so on until the 

partition is done for all the directions with the longest side. 

 

To demonstrate the partition strategy, we consider a 2-D test function defined as: 

 F(x1, x2)=(x1 – 0.4)2 + (x2 – 0.2)2   where x1, x2∈[0,1]. 
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Figures 1A ~ 1D show the initial state and the first 3 iterations of the DIRECT 

algorithm (with the standard partition strategy) for this 2-D case. In these figures, the unit 

square is the search space. The shadowed areas are the potentially optimal boxes (can be 

squares or rectangles) just partitioned. The dots represent the center points of the boxes and 

the circular dot shows the sample point with the smallest function value. The numbers under 

those dots are the function values at those sample points. 

 

From Fig. 1B we see that 

s1 = min {0.144, 0.278}    = 0.144 

s2 = min {0.0111, 0.411}  = 0.0111 

So the x2 direction gets partitioned first, and then the x1 direction gets partitioned. 

 

From Fig. 1C we see that the rectangles were only partitioned along their longest side. 

 

2.1 New partition strategy 

 

Here we propose a new partition strategy for DIRECT as follows: 

 

Any potentially optimal box (either a hyper-cube or a hyper-rectangle) is partitioned 

only along its dimensions with the longest side length. Suppose n dimensions of a N-

dimensional potentially optimal box (n ≤ N) have the longest side length. Assume m0 is the 

center point of the box, δ is 1/3 of the longest side length of the box and ei is the ith Euclidean 

base-vector for the dimension with the longest side, where i = 1, 2, …n, then we partition the 
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box in n steps. There are only two sample points generated at each step. At the ith step, we 

generate the sample points at mi-1 ± δ ei and partition the box containing mi-1 evenly along the 

direction i into three boxes with the three sample points mi-1,  mi-1 ± δ ei  as the center points. 

We define mi as the center point of a box which will be used to generate new sample points 

and be partitioned at step  i+1  as  f ( mi ) = min { f ( mi-1 – δ ei ), f ( mi-1 ),  f ( mi-1 + δ ei ) }. 

The partition process is repeated until the partition is done for all the directions with the 

longest side. 

 

From the above description it is apparent that the standard partition strategy always 

generates all the sample points first. After that the next partition is carried out according to 

the evaluation results of the sample points. The new partition strategy presented here only 

generates two sample points at a time along a certain direction and then conducts the 

partition. The partitioned box containing the minimum point is then chosen to generate new 

sample points subsequently. It follows that the new partition strategy focuses more on local 

minimum points and it is therefore locally biased as compared with the standard partition 

strategy. 

 

Figures 2A ~ 2D show the initial state and the first 3 iterations of the DIRECT 

algorithm using the new partition strategy for the same 2-D case just mentioned. 

 

In Fig. 2B, two sample points were first generated along the x1 direction and the 

search space was partitioned evenly into three rectangular boxes. Since min {0.144, 0.1, 

0.278} = 0.1, the box containing the original midpoint was then chosen to be partitioned 
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along the x2 direction. After two more sample points were generated around it along the x2 

direction, the box was again partitioned evenly into three square boxes. 

 

In Fig. 2C, two boxes (a square box and a rectangular box) were chosen to be the 

potentially optimal boxes and subsequently partitioned. For the square box, since we have 

min {0.00123, 0.0111, 0.0457} = 0.00123 after two sample points were generated along the 

x1 direction, the box containing the sample point of minimum value 0.00123 was then chosen 

to be partitioned along the x2 direction subsequently. From Fig. 2C we also see that the 

rectangular box was only partitioned along its longest side. 

 

3. NUMERICAL EXPERIMENTS 

 

To investigate the performance difference between the new partition strategy and the 

standard one, we will conduct some numerical experiments in this section. For each test 

function, we use 4 versions of the DIRECT algorithm: 

 

DIRECT : DIRECT algorithm with the standard partition strategy  

DIRECT + : DIRECT algorithm with the new partition strategy  

DIRECT-III : Locally biased variation of the DIRECT algorithm with standard 

partition strategy  

DIRECT-III + : Locally biased variation of the DIRECT algorithm with new 

partition strategy  
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The “+” sign represents the new partition strategy. DIRECT-III is a locally biased 

variation of the DIRECT algorithm and it has the highest convergence rate among DIRECT 

and its three locally biased variations. More details of DIRECT-III can be found in CML 

technical report 01-007. 

  

3.1 Test functions with one global minimum point  

3.1.1   Easy test function cases 

 

The easy functions used here include 2-D, 3-D, 5-D, 10-D, 20-D and 40-D quadratic 

functions and a 2-D Easom function. These functions are monotonic and have only one 

global and local minimum point. The minimum values of these functions are 0. The quadratic 

test functions are defined as follows: 

 

2-D:     F(x1, x2) = (x1 – 0.4)2 + (x2 – 0.2)2.     

3-D:     F(x1, x2, x3) = (x1 – 0.2)2 + (x2 – 0.3)2+ (x3 – 0.4)2 .     

5-D:   F(x1, x2, x3, x4, x5) = (x1 – 0.1)2 + (x2 – 0.3)2 +(x3 – 0.5)2 +  

 (x4 – 0.7)2 +(x5 – 0.9)2.  

10-D:   F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 – 0.1)2 + (x2 – 0.2)2 + (x3 – 0.3)2 +  

 (x4 – 0.4)2 + (x5 – 0.5)2 + (x6 – 0.6)2 + 

(x7 – 0.7)2 + (x8 – 0.8)2 + (x9 – 0.9)2 + 

(x10 – 1.0)2.  
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20-D:   F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20) =  

                          (x1 – 0.05)2 + (x2 – 0.1)2  +  (x3 – 0.15)2 +   (x4 – 0.2)2 + 

                          (x5 – 0.25)2 + (x6 – 0.3)2  +  (x7 – 0.35)2  +  (x8 – 0.4)2 +  

                          (x9 – 0.45)2 + (x10 – 0.5)2 + (x11 – 0.55)2 +  (x12 – 0.6)2 + 

                          (x13 – 0.65)2 + (x14 – 0.7)2 + (x15 – 0.75)2 +  (x16 – 0.8)2 +  

                          (x17 – 0.85)2 + (x18 – 0.9)2 + (x19 – 0.95)2 +  (x20 – 1.0)2. 

40-D:   F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, 

x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40) = 

(x1 – 0.025)2 + (x2 – 0.05)2 + (x3 – 0.075)2 +  (x4 – 0.1)2 +  (x5 – 0.125)2 + 

(x6 – 0.15)2 + (x7 – 0.175)2 + (x8 – 0.2)2 + (x9 – 0.225)2 + (x10 – 0.25)2 +  

(x11 – 0.275)2 +  (x12 – 0.3)2 + (x13 – 0.325)2 + (x14 – 0.35)2 + (x15 – 0.375)2 +  

(x16 – 0.4)2 +  (x17 – 0.425)2 + (x18 – 0.45)2 + (x19 – 0.475)2 + (x20 – 0.5)2 + 

(x21 – 0.525)2 + (x22 – 0.55)2 + (x23 – 0.575)2 + (x24 – 0.6)2 + (x25 – 0.625)2 +  

(x26 – 0.65)2 + (x27 – 0.675)2 + (x28 – 0.7)2 + (x29 – 0.725)2 + (x30 – 0.75)2 +  

(x31 – 0.775)2 + (x32 – 0.8)2 + (x33 – 0.825)2 + (x34 – 0.85)2 + (x35 – 0.875)2 +  

(x36 – 0.9)2 + (x37 – 0.925)2 + (x38 – 0.95)2 + (x39 – 0.975)2 + (x40 – 1.0)2. 

 

For these cases, xi∈[0,1],  i = 1,…40, f min = 0. 

 

Figures 3 ~ 8 show the convergence comparison among DIRECT, DIRECT+, 

DIRECT-III and DIRECT-III + for the 2-D, 3-D, 5-D, 10-D, 20-D and 40-D quadratic test 

functions, respectively. In all these cases, the new partition strategy results in a higher 

convergence rate than does the standard partition strategy with respect to either DIRECT or 
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DIRECT-III algorithm. Especially, when the new strategy is applied to DIRECT-III, the 

resulting DIRECT-III + has the highest convergence rate among the four algorithms. As the 

dimensions of a problem increase, the search space becomes much larger, and the difference 

among the convergence rates of those four algorithms becomes more obvious. We see from 

Figs. 6~8 that for the 10-D, 20-D and 40-D cases, DIRECT-III + shows superior 

performance.  

 

The 2-D Easom function is defined as:  

))()((
2121

2
2

2
1)cos()cos(1),( ππ −+−−⋅⋅−= xxexxxxF , where x1, x2∈[0,5].  

It has a minimum value 0 at (π,π). 

 

The contour lines and the surface shape of the normalized Easom function are shown 

in Figs. 9 and 10, respectively. In Fig. 9 the round dot denotes the location of the global 

minimum point. The convergence comparison showed by Fig. 11 exhibits the same trend as 

the results from the quadratic function cases.  

 

Figures 12 ~ 15 show the optimization results obtained by using DIRECT, DIRECT 

+, DIRECT-III and DIRECT-III + respectively. The tiny dots represent the sample points 

generated and the circular dots represent the best points found by the algorithms. From Figs. 

12 ~ 15 it’s clear that all four algorithms converge to the global minimum point. Comparing 

Figs. 12 and 14, we see that, since DIRECT-III is a locally biased variation and it focuses 

much more on a local search than DIRECT, it leaves a relatively larger unexplored area. 

Since the new partition strategy focuses more on the local search than does the standard 
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partition strategy, by applying it to DIRECT and DIRECT-III, DIRECT becomes locally 

biased and DIRECT-III becomes even more locally biased. Therefore, results of DIRECT + 

and DIRECT-III + show relatively larger unexplored areas than those of DIRECT and 

DIRECT-III, respectively.  

 

3.1.2   Tough test function cases 

 

The so-called “tough” functions are the ones whose global minima are difficult for 

the optimization technique to find. This is mostly caused by either multiple local minima or a 

wide “flat” area around the global minimum point. These features make the optimization 

difficult since it’s easy for the process to get trapped at a local minimum, or, conversely, 

because it’s hard to reach the global minimum point.  

 

We investigated the Goldstein Price function, Rastrigin function, Ackley’s Path 

function and Rosen Brock functions in this section. They are defined as following: 

 

Goldstein Price function: 
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where x1,x2∈[-2,2], f min = f (0, -1) = 0. 

 

Rastrigin function: 
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where x1,x2∈[-4,6], f min = f (0, 0) = 0. 

 

Ackley’s Path function: 

,2020),( )))2cos()2(cos(5.0())(5.02.0(
21
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where x1,x2∈[-4,6], f min = f (0, 0) = 0. 

 

2-D, 3-D and 4-D Rosen Brock functions: 
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where n=2, 3, 4, x1…xn∈[-2.048, 2.048], f min = f (1, …1) = 0. 

 

Figures 16 and 17 show the contour lines and the surface shape of the normalized 

Goldstein Price function, respectively. The round dot in Fig. 16 denotes the location of the 

global minimum point. We see that the global minimum point is located in a wide flat valley, 

which is why it is difficult for the optimization algorithm to find the global minimum. 

 

Figure 18 shows the convergence comparison among DIRECT, DIRECT+, DIRECT-

III and DIRECT-III + for the 2-D Goldstein Price function case. We see that the new 

partition strategy results in a higher convergence rate than does the standard partition strategy 

with respect to either DIRECT or DIRECT-III algorithm. And DIRECT-III + has the highest 

convergence rate among the four algorithms. 
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Figures 19 ~ 20 show the optimization results obtained by using DIRECT, DIRECT 

+, DIRECT-III and DIRECT-III + respectively. Again, the tiny dots represent the sample 

points generated and the circular dots represent the best points found by the algorithms. We 

see that all four algorithms converge to the global minimum point. However, since the new 

partition strategy focuses more on the local search than does the standard partition strategy 

and DIRECT-III is a strongly locally biased variation of DIRECT, results of DIRECT-III + 

leave relatively the largest unexplored areas in the square search space than the other three 

algorithms.  

 

The Rastrigin function is a highly multimode function with lots of local minima. 

Figures 23 and 24 show the contour lines and the surface shape of the normalized Rastrigin 

function, respectively. The convergence comparison in Fig. 25 shows that in the early stage, 

which is before 350 function evaluations in this case, DIRECT + shows the highest 

convergence rate. But after that, once DIRECT-III + got close to the global minimum, it 

exhibits much higher convergence rate than does DIRECT +. Figures 26 ~ 29 show the 

optimization results obtained by using DIRECT, DIRECT +, DIRECT-III and DIRECT-III + 

respectively after 400 function evaluations. All four algorithms converge to the global 

minimum point. 

 

Ackley’s Path function is also a widely used multimode test function. Figures 30 and 

31 show the contour lines and the surface shape of the normalized Ackley’s Path function, 

respectively. Figure 32 shows the convergence comparison after 200 function evaluations. 

DIRECT-III + shows the highest convergence rate among the four algorithms. Figures 33 ~ 
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36 show the optimization results obtained by using DIRECT, DIRECT +, DIRECT-III and 

DIRECT-III + respectively. Again, all four algorithms converge to the global minimum 

point. 

 

The Rosen Brock function, also known as the Banana function, provides a classic 

optimization problem. The global minimum point is inside a long, narrow, parabolic shaped 

flat valley. To find the valley is trivial. However, convergence to the global minimum is very 

difficult and hence this problem has been repeatedly used in assess the performance of 

optimization algorithms. We investigate 2-D, 3-D and 4-D Rosen Brock functions here. 

 

Figures 37 and 38 show the contour lines and the surface shape of the normalized 2-D 

Rosen Brock function, respectively. Figure 39 shows the convergence comparison after 500 

function evaluations. DIRECT-III + shows the highest convergence rate among the four 

algorithms. Figures 40 ~ 43 show the optimization results obtained by using DIRECT, 

DIRECT +, DIRECT-III and DIRECT-III + respectively. We see that all four algorithms 

converge to the global minimum point and the sample points generated in each case clearly 

demonstrate the “banana” shaped valley of the Rosen Brock function.  

 

Figures 44 and 45 show the convergence comparison for the 3-D and 4-D Rosen 

Brock functions, respectively. The 3-D case shows the similar convergence pattern as in the 

2-D case. In the 4-D case, after DIRECT-III + approached the global minimum after 1200 

function evaluations, it shows higher convergence rate than DIRECT +. 
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3.2 Test functions with multiple global minimum points 

3.2.1   Easy test function cases 

 

We consider two test functions. The first test function is called “six-hump” function, 

defined as: 

F(x1, x2) = 4x1
2 – 2.1x1

4 + (1/3)x1
6 + x1x2 – 4x2

2 + 4x2
4, 

where x1∈[-2, 2], x2∈[-1, 1]. This function has two global minimum points and 4 other local 

minimum points. If we normalize the range of variables x1 and x2 into [0,1], then its global 

minimum points are (0.52246, 0.14367) and (0.47754, 0.85633) and its global minimum is -

1.03163. 

 

The contour lines and the surface shape of the six-hump function are shown in Figs. 

46 and 47. The round dots in Fig. 46 represent the global minimum points. We can clearly 

discern the six “humps” from these two figures. Figures 48 ~ 51 show the optimization 

results obtained by using DIRECT, DIRECT +, DIRECT-III and DIRECT-III +, respectively. 

The tiny dots represent the sample points in the center of the boxes. The centers of the circles 

represent the location of the global minimum points. We can observe the strongly locally 

biased property of DIRECT-III and DIRECT-III + by looking at their large unexplored areas. 

 

It’s clear from Figs. 48 ~ 51 that sample points cluster around the two global 

minimum points for all four algorithms. Thus, all algorithms found the two global minimum 

points.  
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The second test function we considered is the Branin function, defined as: 

F(x1, x2) = [1 – 2x2 + (1/20) sin(4π x2) – x1]2 + [x2 – (1/2) sin(2π x1)]2 , 

where x1, x2∈[-10,10]. This function has five global minimum points and the global 

minimum is 0. If we normalize the range of variables x1 and x2 into [0,1], then the five global 

minimal points are (0.55, 0.5), (0.50743, 0.52010), (0.52013, 0.51437), (0.57987, 0.48563) 

and (0.59257, 0.47990).  The contour lines and the surface shape of the Branin function are 

shown in Figs. 52 and 53, respectively. The five round dots in Fig. 52 represent the global 

minimum points.  

 

Figures 54 ~ 57 show the optimization results after 500 function evaluations using 

DIRECT, DIRECT +, DIRECT-III and DIRECT-III +, respectively. The tiny dots in the 

figures on the left represent the sample points. The figures on the right are the local zoom-ins 

of the ones on the left, around the global minimum points. The centers of the circles denote 

the locations of the global minimum points. 

 

Figures 54 and 55 show that DIRECT and DIRECT + found all of the five global 

minimum points at this stage. Figure 56 shows that only four global minimum points were 

found by the strongly locally biased DIRECT-III. Since the new locally biased partition 

strategy is applied to DIRECT-III, DIRECT-III + becomes even more locally biased than 

DIRECT-III and it only found three global minimum points, which is shown in Fig. 57. 

 

3.2.2   Tough test function case 
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The test function we considered here is an extremely “nasty” function called Shubert 

function. This function not only has 9 global minima, but it also has a total number of 400 

local minimum points! The Shubert function is defined as follows: 

∑∑
==

+++++−=
5

1
2

5

1
121 )))1sin(())1sin(((),(

ji
jxjjixiixxF  , 

where x1, x2∈[-10, 10]. If we normalize the range of variables x1 and x2 into [0,1], then its 9 

global minimum points are: 

(0.1612712,   0.1612712), 

(0.1612712,   0.4754305), 

(0.1612712,   0.7895897), 

(0.4754305,   0.1612712), 

(0.4754305,   0.4754305), 

(0.4754305,   0.7895897), 

(0.7895897,   0.1612712), 

(0.7895897,   0.4754305), 

(0.7895897,   0.7895897). 

 

The global minimum is -24.062499. The 3-D surface and 2-D contour of the Shubert 

function are shown in Figs. 58 and 59, respectively. The nine solid dots in Fig. 58 denote the 

nine global minimum points. 

 

Figures 60 ~ 63 show the optimization results after 2500 function evaluations using 

DIRECT, DIRECT +, DIRECT-III and DIRECT-III +, respectively. The tiny dots in these 
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represent the sample points generated and the centers of the circles denote the locations of 

the global minimum points. 

 

Figures 60, 61 and 62 show that DIRECT, DIRECT+ and DIRECT-III found all of 

the nine global minimum points at this stage, while Fig. 63 shows that only eight global 

minimum points were found by the most locally biased DIRECT-III +. 

 

In order to find all nine global minima by using DIRECT-III +, we present two ways 

here. The first method is quite straightforward: increasing the number of function 

evaluations. Figure 64 shows the results after 4500 function evaluations by using DIRECT-

III +. We see that all nine global minimum points were found. The second method is to 

introduce some globally biased factors for the DIRECT-III + to compensate some of its 

strongly locally biased properties. Here we define 0.01 tolerance for both x1 and x2 variables. 

Figure 65 shows the results after 2500 function evaluations by using DIRECT-III +. It is 

clear that by defining the tolerance, DIRECT-III + found all the global minima within the 

same number of function evaluations. 

 

3.3 Summary of the numerical experiments  

 

We performed extensive numerical experiments by using test functions with single 

global minimum and multiple global minima.  
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For test functions with single global minimum point, all the four algorithms, namely 

DIRECT, DIRECT +, DIRECT-III and DIRECT-III + found the global minimum point for 

each case. In all the cases, the new partition strategy results in a higher convergence rate than 

does the standard partition strategy with respect to either DIRECT or DIRECT-III. 

Especially, when the new strategy is applied to DIRECT-III, the resulting DIRECT-III + has 

the highest convergence rate among the four algorithms. 

 

For test functions with multiple global minimum points, DIRECT-III + fails to find 

all the global minimum points for tough test function compared with the other three 

algorithms. This is due to its highly locally biased property. The remedy for that is either to 

increase the number of function evaluations, or, more effectively, to adopt some globally 

biased features such as defining the tolerance. 

 

Next we will discuss the performance of DIRECT, DIRECT+, DIRECT-III and 

DIRECT-III + in the slider Air Bearing Surface (ABS) optimization. 

 

4. SLIDER AIR BEARING DESIGN OPTIMIZATION CASE 

4.1 Air bearing design optimization problem  

 

The optimization problem defined here is: given a prototype slider ABS design, 

optimize it to get uniform flying heights near the target flying height and a flat roll profile 

across the disk. Also increase its air bearing stiffness if possible. 
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Here the NSIC 7nm flying height slider is used as the prototype slider. The rail shape 

and the 3-dimensional rail geometry are shown in Figs. 66 and 67, respectively. 

 

The slider is a Pico slider (1.25×1.0mm), which flies over a disk rotating at 7200 

RPM. Its flying heights are all around 7nm from OD to ID. Now we want to lower its flying 

heights to the target flying height, i.e. 5nm and at the same time maintain a flat roll profile at 

the three different radial positions OD, MD and ID. The objective function or cost function is 

defined as: 

1× (FH Max Difference term) + 9 × (FH term) + 1 × (Roll term) +  

1 × (Roll Cutoff term) + 1 × (Pitch Cutoff term) + 1 × (Vertical Sensitivity term) +  

1 × (Pitch Sensitivity term) + 1 × (Roll Sensitivity term) + 1 × (Negative Force term) . 

 

So the goal of the optimization is to minimize this multi-objective function under the 

given constraints. Note that since we are primarily concerned with the flying heights, we put 

a heavier weight (9) on that term. All the objective terms are normalized and their definitions 

can be found in CML technical report 01-016. 

 

Figure 68 shows that 2 original constraint points are defined for this case. These 2 

constraint points can move along the length direction within the intervals prescribed. To 

maintain a symmetric ABS design and the fixed local rail shape we also defined the 

symmetric constraints and the relative constraints.  

 



20 

4.2 Optimization results  

 

Using the initial design, constraints and objective function, we carried out the 

optimization using DIRECT, DIRECT +, DIRECT-III and DIRECT-III +, respectively. 

Figures 69 ~ 72 show the variation of the objective function value by using DIRECT, 

DIRECT +, DIRECT-III and DIRECT-III +, respectively. And Fig. 73 shows the 

convergence comparison. For this testing case, all four algorithms show a similarly fast 

convergence rate. The best objective function values obtained by using DIRECT, DIRECT +, 

DIRECT-III and DIRECT-III + are 5.571, 5.571, 5.56 and 5.553. Since the smaller the 

objective function value the better the design, DIRECT-III + found slightly better ABS 

design than did DIRECT, DIRECT + and DIRECT-III.  

 

Figures 74 ~ 77 show the optimization results after 200 function evaluations using 

DIRECT, DIRECT +, DIRECT-III and DIRECT-III +, respectively. The tiny dots in these 

represent the sample ABS designs generated and the circles denote the locations of the 

optimized ABS designs. Again, the new partition strategy shows locally biased property by 

leaving larger unexplored area in Figs. 75 and 77.  

 

Figures 78 ~ 81 show the final optimized ABS designs obtained by using DIRECT, 

DIRECT-I, DIRECT-II and DIRECT-III, respectively. In these figures, the gray lines show 

the rail shape of the initial design and the dark lines show the rail shape of the optimized 

design. The four optimized ABS designs are very similar to each other. All four optimized 
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ABS designs have very uniform flying heights around the target 5nm FH, and a reasonably 

flat roll profile, which are shown in Figs. 82 and 83. 

 

5. CONCLUSION 

 

We performed extensive numerical experiments using test functions with single 

global minimum and multiple global minima.  

 

For test functions with single global minimum point, DIRECT, DIRECT +, DIRECT-

III and DIRECT-III + all found the global minimum point for each case. In all the cases, the 

new partition strategy results in a higher convergence rate than does the standard partition 

strategy with respect to either DIRECT or DIRECT-III. And DIRECT-III + has the highest 

convergence rate among the four algorithms in the long run. 

 

For test functions with multiple global minimum points, though DIRECT-III + has 

the highest convergence rate, it fails to find all the global minimum points for tough test 

function compared with the other three algorithms. This is due to its highly locally biased 

property. The remedy for that is either to increase the number of function evaluations, or, 

more effectively, to adopt some globally biased features such as defining the tolerance. 

 

The slider ABS optimization problem is a strongly nonlinear problem. The results of 

the test case show very similar performance for DIRECT, DIRECT +, DIRECT-III and 
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DIRECT-III +. In the 2-D testing case, DIRECT-III + found slightly better ABS design than 

did DIRECT, DIRECT + and DIRECT-III.  

 

In summary, the new partition strategy can increase the convergence rate for the 

DIRECT algorithm and its variations. DIRECT-III + has the highest convergence rate 

compared with DIRECT, DIRECT + and DIRECT-III and it shows amazingly high 

convergence rate for some high dimensional monotonic test function cases. It is expected to 

perform better for higher dimension ABS optimization problems.  
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     A. Initial state           B. Iteration 1 

     

     C. Iteration 2            D. Iteration 3 

 

Fig. 1 Demonstration of the standard partition strategy
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     A. Initial state           B. Iteration 1 

      

    C. Iteration 2            D. Iteration 3 

 

Fig. 2 Demonstration of the new partition strategy
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Fig. 3 Convergence comparison for 2-D case 

 

 

Fig. 4 Convergence comparison for 3-D case 
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Fig. 5 Convergence comparison for 5-D case 

 

 

Fig. 6 Convergence comparison for 10-D case 
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Fig. 7 Convergence comparison for 20-D case 

 

 

Fig. 8 Convergence comparison for 40-D case 
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Fig. 9 Contour lines of Easom function          Fig. 10 Surface shape of Easom function 

 

 

Fig. 11 Convergence comparison for Easom function case 
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      Fig. 12 Results of DIRECT        Fig. 13 Results of DIRECT + 

 

    

      Fig. 14 Results of DIRECT-III       Fig. 15 Results of DIRECT-III + 
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Fig. 16 Contour lines of Goldstein function       Fig. 17 Surface shape of Goldstein function 

 

 

Fig. 18 Convergence comparison for Goldstein Price function case 
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      Fig. 19 Results of DIRECT        Fig. 20 Results of DIRECT + 

 

     

     Fig. 21 Results of DIRECT-III       Fig. 22 Results of DIRECT-III + 
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Fig. 23 Contour lines of Rastrigin function    Fig. 24 Surface shape of Rastrigin function 

 

 

Fig. 25 Convergence comparison for Rastrigin function case 



36 

 

     

      Fig. 26 Results of DIRECT        Fig. 27 Results of DIRECT + 

 

     

    Fig. 28 Results of DIRECT-III       Fig. 29 Results of DIRECT-III + 



37 

 

      

Fig. 30 Contour lines of Ackely function    Fig. 31 Surface shape of Ackley function 

 

 

Fig. 32 Convergence comparison for Ackley’s Path function case 
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      Fig. 33 Results of DIRECT        Fig. 34 Results of DIRECT + 

 

     

    Fig. 35 Results of DIRECT-III       Fig. 36 Results of DIRECT-III + 
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Fig. 37 Contour lines of R-B function    Fig. 38 Surface shape of R-B function 

 

 

Fig. 39 Convergence comparison for Rosen Brock function case 
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      Fig. 40 Results of DIRECT        Fig. 41 Results of DIRECT + 

 

      

   Fig. 42 Results of DIRECT-III       Fig. 43 Results of DIRECT-III + 
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Fig. 44 Convergence comparison for 3-D Rosen Brock function case 

 

 

Fig. 45 Convergence comparison for 4-D Rosen Brock function case 
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Fig. 46 Contour lines of Six-hump function 

 

 

Fig. 47 Surface shape of Six-hump function 
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      Fig. 48 Results of DIRECT        Fig. 49 Results of DIRECT + 

 

      

   Fig. 50 Results of DIRECT-III       Fig. 51 Results of DIRECT-III + 
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Fig. 52 Contour lines of Branin function 

 

 

Fig. 53 Surface shape of Branin function 
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Fig. 54 Results of DIRECT and the local zoom-in 

 

     

Fig. 55 Results of DIRECT + and the local zoom-in 
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Fig. 56 Results of DIRECT-III and the local zoom-in 

 

      

Fig. 57 Results of DIRECT-III + and the local zoom-in 
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Fig. 58 Contour lines of Shubert function 

 

 

Fig. 59 Surface shape of Shubert function 
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      Fig. 60 Results of DIRECT        Fig. 61 Results of DIRECT + 

 

      

    Fig. 62 Results of DIRECT-III       Fig. 63 Results of DIRECT-III + 
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Fig. 64 Results of DIRECT-III + with 4500 function evaluations 

 

 

Fig. 65 Results of DIRECT-III + with 0.01 tolerance and 2500 function evaluations 
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Fig. 66 Rail shape of the initial ABS design   Fig. 67 3-D rail geometry of the initial slider 

 

 

Fig. 68 Constraints defined on the initial design 

 

Symmetric 
constraints 

Relative 
constraints 

Relative 
constraints 

Original 
constraints 
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Fig. 69 Variation of the objective function value by DIRECT 

 

 

Fig. 70 Variation of the objective function value by DIRECT + 
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Fig. 71 Variation of the objective function value by DIRECT-III 

 

 

Fig. 72 Variation of the objective function value by DIRECT-III + 
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Fig. 73 Convergence comparison for the slider ABS optimization case 
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      Fig. 74 Results of DIRECT          Fig. 75 Results of DIRECT + 

 

       

    Fig. 76 Results of DIRECT-III        Fig. 77 Results of DIRECT-III + 
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Fig. 78 Optimized ABS design obtained                 Fig. 79 Optimized ABS design obtained  

                      by using DIRECT                                                   by using DIRECT + 

 

 

     

Fig. 80 Optimized ABS design obtained                 Fig. 81 Optimized ABS design obtained  

                   by using DIRECT-III                                              by using DIRECT-III + 
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Fig. 82 Comparison of the FH for the slider ABS optimization case 
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Fig. 83 Comparison of the Roll for the slider ABS optimization case 

 


