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Abstract 

An elastic-plastic finite element analysis of a sphere indenting and sliding over a layered medium 

with a patterned surface consisting of equally spaced rectangular pads was conducted in order to 

investigate the effect of the pattern geometry on the contact pressure distribution and subsurface 

stress-strain field. Three-dimensional sliding simulations were performed for lateral 

displacement of the indenting sphere approximately equal to two times the pad period. Three 

complete loading cycles, involving indentation, sliding, and unloading of a rigid sphere, were 

simulated to assess the effect of repeated sliding on the stresses in the first (hard) layer and 

plastic deformation in the underlying (soft) layer. Thermomechanical sliding contact simulations 

for an elastic-plastic layered medium with a patterned surface and an elastic-plastic sphere with 

properties identical to those of the first layer were carried out to examine the effect of frictional 

heating on the deformation behavior of the medium. Results are presented for the temperature 

distribution and maximum temperature variation at the surface and the evolution of subsurface 

plasticity in terms of Peclet number. The likelihood of thermal cracking in the wake of 

microcontacts during sliding is interpreted in the context of the thermal tensile stress caused by 

temperature gradients in the layered medium. 
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1. Introduction 

Enhancement of the tribological performance and functionality of contacting surfaces is 

commonly achieved through deposition of thin surface layers (overcoats) exhibiting high 

hardness and low coefficient of friction. Analysis of the stresses and deformation in layered 

media due to sliding contact is critical to the design of many mechanical components. The 

primary objective in previous theoretical and numerical analyses has been the examination of the 

effect of the thickness and mechanical properties of protective overcoats on the contact stress and 

strain fields in the overcoat and underlying substrate media. However, relatively less is known 

about the role of surface geometry microfeatures (typically produced by lithography and electron 

beam techniques) on the elastic-plastic deformation and temperature rise due to frictional heating 

in layered media. Patterned layered media are used in many leading-edge technologies, such as 

high-density data storage (Chou et al., 1996; White et al., 1997) and magnetic random access 

memory media (Savas et al., 1999). Achromatic interferometric lithography has been used to 

fabricate arrays of microstructures with spatial periodicity of ~100 nm for ultra-high density 

magnetic storage applications (Farhoud et al., 1998; Savas et al., 1999). 

Contact of elastic bodies possessing small-amplitude sinusoidal surfaces has been examined 

in early analytical studies in order to shed light into the effect of surface geometry on the contact 

stresses. Using complex variables, Westergaard (1939) obtained a closed form solution for the 

elastic contact of a sinusoidal surface and a smooth plane. Dundurs et al. (1973) used a Fourier 

analysis in a stress function approach to solve the previous problem. Johnson et al. (1985) 

determined the pressure distribution and contact area, and derived closed-form asymptotic 

solutions for both light and heavy contact loads resulting in almost full contact. Komvopoulos 

and Choi (1992) analyzed normal contact between regularly spaced rigid asperities and an elastic 
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half-space and obtained finite element solutions for the maximum contact pressure, normal load, 

and subsurface stresses in terms of the asperity distribution and indentation depth. Ramachandra 

and Ovaert (2000) examined the stresses produced in discontinuous coatings for different coating 

profiles and mechanical properties of the coating and substrate materials, and observed a 

significant decrease of the contact pressure peaks when the coating discontinuities possessed 

crowned edges. Gong and Komvopoulos (2003) analyzed normal and sliding contact of a rigid 

cylindrical asperity on patterned elastic-plastic layered media using the finite element method to 

reveal the effect of the pattern geometry on the resulting deformation and stress fields. While the 

maximum plastic strain due to sliding contact decreased with increasing amplitude-to-

wavelength ratio of sinusoidal surface patterns, the high surface tensile stress at the trailing edge 

of the contact region indicated a greater probability of surface cracking for patterned media. 

The temperature rise at sliding interfaces due to frictional heating may affect significantly the 

tribological behavior of electromechanical components. Thermomechanical analysis of 

homogeneous half-spaces subjected to a fast moving heat source have shown that the surface 

stress field is predominantly compressive (Ju and Huang, 1982), and the maximum thermal 

tensile stress occurs slightly below the trailing edge of the contact region (Huang and Ju, 1985) 

at a depth where the temperature gradient begins to vanish (Ju and Liu, 1988). This critical depth 

depends on the Peclet number, which is a function of sliding speed, contact radius, and material 

diffusivity. Ju and Chen (1984) conducted a thermomechanical contact analysis for layered 

media under a moving friction load and a moving heat source and discussed crack initiation 

based on the determined stress field.  Leroy et al. (1989) derived a two-dimensional model for a 

layered medium subjected to a translating heat source and reported high stresses in overcoats 

with thermomechanical properties significantly different from those of the substrate material. 
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Cho and Komvopoulos (1997) performed a fracture mechanics analysis of subsurface crack 

propagation and showed that, while frictional heating exhibits a negligible effect on the crack 

propagation direction, it increases the in-plane crack growth rate and reduces the critical crack 

length at the onset of out-of-plane growth at the right crack tip. In a more recent study, Ye and 

Komvopoulos (2003) developed a finite element model to examine the simultaneous effects of 

mechanical and thermal surface traction on the deformation of elastic-plastic layered media, and 

interpreted the propensity for plastic flow and cracking in terms of the thickness and thermal 

properties of the layer, normal load, and Peclet number. 

Despite important insight into thermomechanical contact deformation of elastic-plastic media 

derived from previous studies, a comprehensive three-dimensional contact analysis for elastic-

plastic patterned layered media has not been reported yet. Therefore, the principal objective of 

this study was to examine the effects of pattern geometry, coefficient of friction, indenter 

sharpness (radius), and sliding cycles on the stresses and strains arising in layered patterned 

media subjected to normal and shear (friction) surface tractions. Another objective was to 

analyze the effect of frictional heating on the surface temperature distribution and subsurface 

plasticity. Deformation and frictional heating in patterned layered media is discussed in the 

context of finite element results for the contact pressure distribution, subsurface stress/strain 

fields, and temperature rise at the contact surface obtained for different indentation depths, 

coefficient of friction, sliding cycles, indenter radius, and Peclet number.  

2. Modeling Procedures 

2.1 Finite Element Model  

Figure 1 shows a three-dimensional finite element model of a sphere in contact with an 

elastic-plastic layered medium with a patterned surface. Due to symmetry, only one-half of the 
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sphere and layered medium were modeled in order to reduce the computation time. The finite 

element mesh consists of 25,732 eight-node linear interpolation elements having a total of 

33,099 nodes. The normalized mesh dimensions are x/H = 2.443, y/H = 0.260, and z/H = 1.0, 

where H is the total thickness of the mesh. Four pads of constant height of 0.86b and equally 

spaced at lateral distances l = 0.714b, where b is the side of the square pad surfaces, were 

modeled at the surface of the finite element mesh (i.e., pad period equal to b + l). In these 

simulations, the sphere was assumed to be rigid with a radius of curvature R/H = 0.763 and 

1.526. Sliding was simulated by displacing the sphere along the positive x-direction in an 

incremental fashion. The nodes on planes x = 0, y = 0, and z = 0 were constrained against 

displacement in the x-, y-, and z-direction, respectively. In the thermomechanical analysis, the 

length of the finite element mesh was reduced to x/H = 1.588 and the number of pads to three 

due to the excessive computation time in coupled thermal and mechanical contact analysis. 

Therefore, the mesh in the thermomechanical simulations consisted of 20,995 eight-node, 

coupled temperature-displacement finite elements comprising a total of 27,585 nodes. In 

addition, the sphere was assumed to be elastic-perfectly plastic with a radius of curvature R/H = 

1.526 and thermomechanical properties identical to those of the first layer. The temperature at 

the nodes of planes y = 0, and x/H = 0 and 1.588 was set equal to 20 oC. Heat conduction was 

restricted across the sphere/layered medium contact interface.  

2.2 Material Properties and Constitutive Models 

The normalized thickness, h/H, and elastic-plastic properties of each layer material of the 

patterned layered medium are given in Table 1. These thickness and mechanical property values 

are typical of layers used in magnetic recording rigid disks consisting of carbon overcoat (layer 

1), CoCrPt magnetic medium (layer 2), and CrV underlayer (layer 3) deposited on NiP-coated 
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Al-Mg substrate. The elastic modulus and yield strength of layers 1 and 2 have been determined 

from nanoindentation measurements (Komvopoulos, 2000). The specific heat, thermal 

conductivity, and density of the first layer are representative of carbon films (Graebner, 1996; 

Morath et al., 1994; Tsai and Bogy, 1987). All other density and thermal properties were 

obtained from data compiled by Kaye and Laby (1986). 

Yielding at a material point occurred when the von Mises equivalent stress, Mσ , satisfied the 

yield condition, 

 YijijM SS σσ =



=

2/1

2
3

,             (1) 

where Sij denotes the components of the deviatoric stress tensor, and Yσ  is the tensile yield 

strength under uniaxial tension. Plastic deformation was based on the usual associated flow rule, 

assuming negligible plastic volume change. To account for nonlinearities, an updated Lagrangian 

formulation was used in all the simulations. Each layer was modeled as an elastic-perfectly 

plastic material. The equivalent plastic strain, pε , defined as 

 ∫Γ
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where Γ is the strain path, was used to track the evolution of plasticity in the layered medium. 

The usual elastic constitutive equations were used when YM σ<σ , and the plastic flow rule was 

applied at material points where the von Mises yield condition YM σ=σ  was satisfied. 

2.3 Thermal Model 

Sliding friction at contact interfaces of mechanical components promotes dissipation of 

energy in the form of heat within the vicinity of the real contact area. The dissipated frictional 

heat is responsible for the temperature rise at the contact interface of sliding bodies, causing the 
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development of thermal stresses and variations in the real contact area and contact pressure 

distribution due to thermal expansion. Since these changes in the contact conditions affect the 

heat generation rate and heat conduction across the contact interface, the thermal and mechanical 

stress/strain fields are fully coupled and, therefore, must be determined simultaneously rather 

than sequentially. In this study, the temperature was integrated based on a backward-difference 

scheme, and the coupled system was solved using the Newton method. A fully coupled thermal-

stress analysis automatically invokes a nonsymmetic matrix storage and solution scheme to 

improve the computational efficiency. This is because the stiffness matrix is asymmetric due to 

friction and the convective term in the conduction-convection equation. 

The heat flux density due to frictional heat, q, is given by 

   υηµpq = , (3) 

where η is the fraction of mechanical work dissipated as heat, µ is the coefficient of friction, p is 

the contact pressure, and υ is the sliding speed. In the present simulations, it is assumed that η = 

1.0, which is consistent with the conclusion of Uetz and Föhl (1978) that nearly all the energy 

dissipated in a frictional contact is transformed into heat. The amount of frictional heat 

instantaneously conducted into each contacting body depends on the heat partition factor.  

Although the contact interface was modeled to have zero heat capacity, it was assigned 

properties for the exchange of heat by conduction and radiation, as in a previous study (Ye and 

Komvopoulos, 2003). However, heat flux due to radiation was neglected as much smaller than 

that due to conduction. The flux density across the contact interface (from the sphere to the 

layered medium), qc, is defined as 

 )( 21 θθ −= gc kq , (4) 
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where θ1 and θ2 are temperatures at surface nodes of the contacting bodies (i.e., the sphere and 

patterned layered medium, respectively), and kg is the gap conductance, defined as k/∆l, where k 

is the thermal conductivity of the first layer, and ∆l is the size of the smallest finite element. 

The heat flux density into each contacting body, q1 and q2, respectively, is given by 

 
qfqq

fqqq

c

c

)1(2

1

−+=

+−=
   , (5) 

where f is the heat partition factor indicating the fraction of heat dissipated into one of the 

contacting bodies (sphere). Simulations were performed for f = 0.5, i.e., evenly distributed heat 

between the sphere and the layered medium. 

2.4 Finite Element Simulations 

Quasi-static contact simulations comprising three sequential steps of loading, sliding, and 

unloading of a sphere on a layered patterned medium were performed in an incremental fashion. 

Normal contact (indentation) was simulated by advancing the sphere toward the elastic-plastic 

medium up to a specified indentation depth, d (or normal load). Subsequently, the sphere was 

displaced laterally to a maximum distance, S, of about ten times the contact radius maintaining 

constant indentation depth d and coefficient of friction, µ, and then unloaded following the same 

steps as for the loading. All simulations were performed with the multipurpose finite element 

code ABAQUS. Friction coefficient values of 0.1 and 0.5 were used in the simulations in order 

to study the effect of friction on the stress/strain fields produced in the layered medium. In 

addition, consecutive passes of the sphere were simulated to investigate the dependence of stress 

and plastic strain on sliding cycles. The thermomechanical simulations were performed for µ = 

0.5 and Peclet number Pe = 2υr/α, where r is the contact radius after indentation, and α is the 

thermal diffusivity of the sphere, equal to 0.09 and 0.9.  



 9

 3. Results and Discussion 

Finite element solutions for the stresses and strains in an elastic-plastic layered medium due 

to indentation and sliding of a rigid sphere are presented first in order to elucidate the 

significance of surface microgeometry (patterning) on contact deformation and to establish a 

reference for comparison with thermomechanical analysis results. The effects of friction 

coefficient, sphere radius, and sliding cycles are discussed next in terms of results for the contact 

pressure, contact area, subsurface stresses, and maximum plastic strain. Lastly, simulation results 

from a fully coupled thermomechanical contact analysis of an elastic-plastic sphere indenting 

and sliding over an elastic-plastic layered patterned medium are presented to illustrate the effect 

of frictional heating on the surface temperature rise and subsurface deformation.  

3.1 Contact Mechanics Analysis 

Figure 2 shows the contact pressure distribution (in the plane of symmetry y = 0) produced 

on a single pad due to indentation by a rigid sphere versus normalized indentation depth, d/R. 

Initial contact occurred at the center of the pad (x/b = 0). For shallow indentations (d/R = 

0.0025), the contact pressure distribution is similar to the profile predicted by the Hertz theory. 

However, increasing the indentation depth (d/R = 0.005 and 0.0075) causes the maximum 

contact pressure to shift from the center to the edge of the contact area (Fig. 2(a)). Further 

increase of the indentation depth (d/R ≥ 0.01) produces pressure spikes at the edges of the 

contact area (Fig. 2(b)), consistent with the contact pressure profile obtained for a layered 

medium with a meandered surface pattern (Gong and Komvopoulos, 2003). This change of the 

contact pressure is attributed to the development of a plastic zone in the second soft layer and the 

relatively higher rigidity of the pad sides. The asymmetry of the contact pressure profiles at large 

indentation depths (i.e., d/R = 0.0125 and 0.015) is due to the constraint of the nodes on plane 
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x/H = 0 against displacement in the x-direction. However, this effect was negligible in the results 

presented below due to the much smaller indentation depth used in these simulations. The 

normalized maximum von Mises equivalent stress in the first layer, max
Mσ / σY1, and normalized 

real contact area, pr AA / , are plotted in Figs. 3(a) and 3(b), respectively, as functions of 

normalized indentation depth, d/R, where σY1 is the yield strength of the first layer and Ap is the 

pad surface area. For relatively shallow indentations (i.e., partial contact between the sphere and 

the pad surface), both maximum Mises stress and contact area increase monotonically with 

indentation depth. For d/R > 0.008, the maximum Mises stress reaches the yield strength of the 

layer material and a small plastic zone develops adjacent to the contact interface. Full contact of 

the pad with the sphere occurs when d/R ≥ 0.1. Thus, elastic and elastic-plastic deformation of 

the pad is associated with partial and full contact with the sphere, respectively. 

The variation of the maximum contact pressure, pmax, and maximum equivalent plastic strain 

in the second layer, max
pε , with normalized sliding distance, S/R, for µ = 0.1 and 0.5 is shown in 

Figs. 4(a) and 4(b), respectively. The periodic fluctuation of the maximum contact pressure is 

due to the pattern geometry. The fact that the two peak values of pmax are fairly close suggests 

that interaction between neighboring pads is secondary. The max
pε strain in the second layer 

increases significantly at the beginning of sliding, reaching a steady state at a distance of about 

two times the pad period (S/R = 0.48). However, a longer sliding distance for the plastic strain to 

reach a steady state was found for a layered medium with a smooth (flat) surface (Gong and 

Komvopoulos, 2003). This major difference between patterned and smooth layered media is due 

to the reduced plastic deformation in the patterned medium. As shown in Figs. 4(a) and 4(b), the 

coefficient of friction influences profoundly both the maximum contact pressure and the plastic 
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strain in the second layer. Although the pressure and strain results for µ = 0.1 and 0.5 exhibit 

similar trends, much higher peak values of contact pressure and plastic strain were obtained with 

the higher coefficient of friction 

Figure 5 shows the evolution of the equivalent plastic strain in the layered medium with 

sliding distance for µ = 0.5 and d/R = 0.005. For pure normal contact (S/R = 0, Fig. 5(a)), the 

maximum plastic strain occurs below the contact interface and the plastic zone is confined in the 

second layer. Sliding of the sphere over the pad edge (S/R = 0.07, Fig. 5(b)) causes the formation 

of two small plastic zones in the second layer at the lower right corner of the pad due to the 

effect of stress concentration. When the sphere slides over the next pad (S/R = 0.12, Fig. 5(c)), 

stress concentration produces a small plastic zone in the first layer at the upper left corner of this 

pad, and the maximum plastic strain occurs at the interface of the two layers, similar to smooth 

layered media (Kral and Komvopoulos, 1997). Figures 5(d)-5(f) show that the maximum 

equivalent plastic strain occurs always at the interface of the first and second layers. The close 

similarity of the plastic zones in each pad confirms that interaction of the stress fields in each pad 

is negligible and that deformation depends only on the pad geometry and mechanical properties 

of each layer material. 

 The dependence of the maximum von Mises equivalent stress in the first layer and 

maximum equivalent plastic strain in the second layer on the distance and cycles of sliding is 

shown in Fig. 6 for µ = 0.1 and d/R = 0.005. The close agreement between the results of the 

second and third sliding cycles suggests that, for the simulated friction coefficient and 

indentation depth, a steady-state stress/strain field is reached after two sliding cycles. The change 

of max
Mσ after the first sliding cycle (Fig. 6(a)) is a consequence of the residual stress due to the 

permanent distortion of the pads in the first sliding cycle. The peak value of max
pε is reached 
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during the first sliding cycle and does not change with additional sliding cycles (Fig. 6(b)). This 

behavior differs from that of a layered medium with a smooth surface for which, max
pε  increases 

with sliding cycles (Kral and Komvopoulos, 1996). In addition, the peak value of max
pε in the 

patterned medium is equal to ~0.036, which is significantly less than that of the smooth layered 

medium (Gong and Komvopoulos, 2003). The appreciably less plastic deformation and 

insignificant effect of repetitive sliding on the stress and strain fields of patterned layered media 

(compared to smooth layered media) demonstrates the beneficial effect of surface patterning in 

sliding contact deformation. 

The effect of the sharpness of the rigid spherical indenter on the normalized max
Mσ  in the first 

layer and max
pε in the second layer can be analyzed by comparing the results for d/R = 0.005 and 

0.01 shown in Fig. 7. The sliding distance S is normalized by the pad period, b + l. As mentioned 

in the discussion of Fig. 6(a), the periodic fluctuation of max
Mσ with sliding distance (Fig. 7(a)) is 

due to the pattern geometry. Significantly larger values of max
Mσ  in the first (hard) layer (Fig. 

7(a)) and max
pε in the second (soft) layer (Fig. 7(b)) are produced with the relatively sharp sphere. 

The Mises yield condition in the hard layer ( max
Mσ /σY1 = 1.0) is satisfied only in the case of the 

sharp sphere (d/R = 0.01). A steady-state max
pε  is obtained in the soft layer after the sphere slides 

a distance of about two times the pad period, for both d/R = 0.005 and 0.01. The results shown in 

Fig. 7 illustrate the dependence of plasticity in hard overcoats on the indenter sharpness. Thus, 

small plastic zones may be produced even in ultrathin surface layers under relatively light 

contact loads, depending on the range of small wavelengths comprising the surface profile. 
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3.2 Thermomechanical Analysis 

Finite element results from a fully-coupled thermomechanical contact analysis of an elastic-

perfectly plastic sphere (with thermomechanical properties identical to those of the fist layer) 

sliding over the patterned medium are presented in Figs. 8-10 to illustrate the effect of frictional 

heating on the surface temperature rise and plastic flow in the soft layer. Temperature and plastic 

strain results are interpreted in terms of sliding distance and Peclet number. To examine the 

effect of Peclet number on the temperature field and deformation behavior of the layered 

medium, simulation results are presented for µ = 0.5 and Pe = 0.09 and 0.9. 

Figure 8 shows the evolution of the surface temperature distribution on three neighboring 

pads along the plane of symmetry (y = 0) for Pe = 0.09 and d/R = 0.01. The results are presented 

as a temperature increase from the room temperature, ∆T, normalized by υπα kq /2 , where q  is 

the average heat flux rate at the contact region (i.e., total heat flux divided by the contact area, 

πr2), and k is the thermal conductivity of the sphere, while the x coordinate is normalized by the 

contact radius, r. As expected, the temperature distribution due to normal contact (indentation) of 

a single pad is symmetric and its effect on neighboring pads is negligible (Fig. 8(a)). When the 

sphere slides over the edge of the left pad (Fig. 8(b)), the maximum temperature increases 

significantly and shifts to the trailing edge of the contact region (Fig. 8(b)), demonstrating a 

pronounced effect of frictional heating during sliding. The maximum temperature rise at the 

trailing edge produces a maximum tensile thermal stress slightly below this contact edge, which 

is considered to be responsible for thermal cracking in the wake of sliding microcontacts. In 

addition, a noticeable temperature rise occurs at the front contact edge as soon as the sphere 

establishes contact with the middle pad. This temperature rise intensifies significantly when the 
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sphere slides over the left corner of the middle pad (Fig. 8(c)), evidently due to the high pressure 

peak at the sharp corner of the pad edge. A similar temperature evolution is observed as the 

sphere slides over the middle and right pads (Figs. 8(d)-8(f)). The close similarity of the 

temperature distributions produced when the sphere is over the center of the middle and right 

pads (Figs. 8(d) and 8(f)) suggests that frictional heating at a pad is not affected by the heat flux 

at neighboring pads.  

Figures 9(a) and 9(b) show the normalized maximum temperature, Tmax, in the first and 

second layers, respectively, as functions of normalized sliding distance and Peclet number. The 

maximum temperature in the first layer occurs at the surface and in the second layer at the 

interface with the first layer. The periodic fluctuation of Tmax with sliding distance observed only 

for Pe = 0.9 suggests that the pattern geometry effect on the maximum temperature in each layer 

is pronounced only for a relatively high Peclet number. The marked increase of Tmax in both 

layers obtained for Pe = 0.9, especially at the surface of the first layer (Fig. 9(a)), demonstrates 

that the temperature field in the layered medium is a strong function of the Peclet number. The 

similar peak values of Tmax in Fig. 9(a) indicate that interaction between neighboring pads is 

negligible. Furthermore, comparison of the results shown in Figs. 9(a) and 9(b) for Pe = 0.9 

shows that values of Tmax in the first layer are much higher than those in the second layer. In the 

sliding simulations for µ = 0.5 and Pe = 0.9, the highest temperature change in the first and 

second layers was found to be equal to ~220 oC and ~50 oC, respectively. Such high surface 

temperatures may induce thermal cracking and degrade the mechanical properties of the surface 

layer. 

Figure 10 shows the variation of the maximum equivalent plastic strain in the second (soft) 

layer with normalized sliding distance and Peclet number for µ = 0.5 and d/R = 0.01. A rapid 
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increase of max
pε at the beginning of sliding and a steady state at a sliding distance S/R = 0.17 is 

shown for both Peclet numbers. While the effect of the Peclet number on max
pε  is negligible 

during the initial stage of sliding, larger values of max
pε  (~5.7%) were produced with the higher 

Peclet number when S/R > 0.17. This is attributed to the fact that the surface temperature and 

difference between the maximum surface temperatures for Pe = 0.09 and 0.9 increase with 

sliding distance until S/R > 0.17 (Fig. 9(a)). This temperature difference produces a thermal 

stress that affects the plastic strain in the second layer. Thus, a higher Peclet number induces 

larger temperature rises at the surface of the first hard layer and larger plastic strains in the 

second soft layer of the medium. 

4. Conclusions 

A elastic-plastic finite element analysis of normal contact (indentation) and sliding of a 

spherical indenter on a layered medium with a patterned surface was performed in order to study 

the effects of coefficient of friction, sphere radius, and sliding cycles on the contact stress and 

deformation fields. In addition, a fully coupled thermomechanical finite element analysis was 

carried out to obtain solutions for the surface temperature distribution and to elucidate the effect 

of Peclet number on the maximum temperature rise and subsurface plasticity. Based on the 

presented results and discussion, the following main conclusions can be drawn. 

1. The maximum contact pressure shifts from the center to the edge of the contact area at a 

critical indentation depth (d/R > 0.005). Pressure spikes occur at the contact edges in the case 

of relatively deep indentations (d/R > 0.01). For shallow indentations (d/R < 0.01), the 

maximum von Mises equivalent stress in the first layer and contact area increase 

monotonically with indentation depth. Yielding in the first (hard) layer adjacent to the 



 16

surface commences when d/R > 0.008, and full contact of a pad with the sphere occurs d/R > 

0.01 when the sphere center is over the center of the pad surface. 

2. The contact pressure and subsurface stresses and plastic strains exhibit periodic fluctuations 

due to the pattern geometry. The similarity of the stress/strain results of neighboring pads 

suggests that interaction effects are negligible for the modeled pattern geometry. High-

friction sliding (i.e., µ = 0.5) increases significantly the maximum equivalent plastic strain in 

the second (soft) layer during the beginning of sliding, leading to a steady state after a sliding 

distance about two times the pad period. The reduced plasticity in the soft layer of patterned 

layered media compared to that of smooth layered media demonstrates the beneficial effect 

of surface patterning in sliding contact.  

3. Steady-state stress/strain fields were produced after the first sliding cycle, suggesting that 

deformation in the layered medium is independent of sliding cycles. This is a profound 

difference with smooth layered media, for which the maximum von Mises equivalent stress 

in the first layer and maximum equivalent plastic strain in the second layer have been found 

to increase significantly with sliding cycles. In low-friction sliding, relatively sharp spherical 

indenters promote the formation of small plastic zones in the first hard layer at the sharp 

corners of the pad edges. 

4. Normal contact (indentation) of a pad yields a symmetric temperature distribution and 

negligible temperature rise at neighboring pads. Sliding intensifies the temperature field, 

causing the maximum temperature to shift from the center to the trailing edge of the contact 

region. This leads to the development of a high thermal tensile stress slightly below the 

trailing edge of the contact region, which is considered to be responsible for thermal cracking 

in the wake of sliding microcontacts. 
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5. The periodic variation of the maximum temperature rise in both the first and the second layer 

with sliding distance is due to the pattern geometry. The temperature field in the layered 

medium is a strong function of the Peclet number. The similar peak values of the maximum 

temperature in each layer illustrate that thermal interaction between neighboring pads is 

negligible. Increasing the Peclet number enhances the temperature rise at the surface and the 

development of thermal stresses in the first (hard) layer and produces larger plastic strains in 

the second (soft) layer and in small regions of the first layer, in the vicinity of the sharp pad 

edges. 
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          Table 1.  Thickness and thermomechanical properties of layers in the patterned  
           layered medium 
 

Medium Layer 1 Layer 2 Layer 3 

Thickness (h/H) 0.015 0.374 0.611 

Elastic modulus (GPa) 168 130 140 

Poisson’s ratio  0.3 0.3 0.3 

Yield strength (GPa) 13 2.67 2.58 

Thermal expansion (K-1) 3.1 × 10-6 13 × 10-6 4.9 × 10-6 

Specific heat (J/g.K) 0.5 0.411 0.438 

Conductivity (W/m.K) 5.2 105 96.5 

Density (kg/m3) 2.15 × 103 8.9 × 103 7.19 × 103 

Diffusivity (m2/s) 4.84 × 10-6 28.7 × 10-6 30.64 × 10-6 
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Figure 1

x

y

z

Pad

Sphere

l

b

b/2

Layer 1
Layer 2

Layer 3

Sliding



-0.8     -0.6     -0.4      -0.2      0        0.2      0.4 0.6      0.8

x/b

p/
σ

Y
1

Figure 2

(a)

(b)

d/R = 0.0025

d/R = 0.005

d/R = 0.0075

d/R = 0.01

d/R = 0.0125

d/R = 0.015

0.4

0.3

0.2

0.1

0

p/
σ

Y
1

1.5

1.2

0.9

0.6

0.3

0



Figure 3

Ela
stic

Plastic

σ M
m

ax
/σ

Y
1

(a)

0            0.003         0.006          0.009         0.012 0.015

d/R

Full contactPartial contact

A
r/A

p

(b)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0



0            0.1          0.2 0.3          0.4           0.5          0.6

S/R

p m
ax
/σ

Y
1

ε p
m

ax

Figure 4

1.5

1.2

0.9

0.6

0.3

0

0.16

0.12

0.08

0.04

0

(a)

(b)

µ = 0.1
µ= 0.5



Figure 5

Interface

εp
max

(a) S/R = 0 (d) S/R = 0.17

(b) S/R = 0.07

(c) S/R = 0.12

(e) S/R = 0.24

(f) S/R = 0.48

pε
0.0000
0.0084
0.0215
0.0346
0.0477
0.0607
0.0738
0.0869
0.1000
0.1250



0            0.1          0.2 0.3          0.4           0.5          0.6

S/R

1.0

0.8

0.6

0.4

0.2

0.0

0.05

0.04

0.03

0.02

0.01

0.00

ε p
m

ax
σ M

m
ax
/σ

Y
1

Figure 6

(a)

(b)

µ = 0.1
d/R = 0.005
cycle 1
cycle 2
cycle 3



0               0.5              1               1.5            2               2.5

S/(b+l)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.12

0.10

0.08

0.06

0.04

0.02

0.00

ε p
m

ax
σ M

m
ax
/σ

Y
1

Figure 7

µ = 0.1
d/R = 0.005 
d/R = 0.01 

(a)

(b)



0       2       4        6       8       10     12

x/r 

0       2        4        6       8       10      12

x/r

Figure 8

0.04

0.02

0

∆
T/

(2
qα

/π
kυ

)
∆T

/(2
qα

/π
kυ

)
∆T

/(2
qα

/π
kυ

)

0.04

0.02

0

0.04

0.02

0

0.04

0.02

0

∆
T/

(2
qα

/π
kυ

)
∆T

/(2
qα

/π
kυ

)
∆T

/(2
qα

/π
kυ

)

0.04

0.02

0

0.04

0.02

0

(a) S/R = 0 (d) S/R = 0.24

(b) S/R = 0.07

(c) S/R = 0.17

(e) S/R = 0.31

(f) S/R = 0.48



0            0.1          0.2 0.3          0.4           0.5          0.6

S/R

0.8

0.6

0.4

0.2

0.0

0.6

0.5

0.4

0.3

0.2

T m
ax

/(
2q

α
/π

kυ
)

Figure 9

(a)

(b)

T m
ax

/(
2q

α
/π

kυ
)

µ = 0.5
d/R = 0.01
Pe = 0.09 
Pe = 0.9

First layer

Second layer



0                 0.1                 0.2  0.3                0.4                 0.5                0.6

S/R

0.04

0.03

0.02

0.01

0

ε p
m

ax

µ = 0.5
d/R = 0.01
Pe = 0.09 
Pe = 0.9

Figure 10


