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Abstract 

The computer simulation of the head-disk interface (HDI) has been an indispensable tool for 

air bearing design. CML has a long history of working in this area, and several Ph.D. students 

have made important contributions in this field. Based on this work CML has developed, used, 

and distributed air bearing design tools, which greatly improve the efficiency of slider design. 

Recently, several improvements have been achieved in CMLAir32 software, such as: 

1) Several new tools have been implemented in the MultiModule function to allow more 

flexible combinations of input parameters based on predefined distributions.  

2) In Quick4 “bugs” in the code for implementing different slip models were removed.  All 

slip models now work correctly in Quick4. 

3) Several new slip modes were implemented in both Quick4 and Quick5. 

4) In order to achieve accurate and optimal results for ultra-low FH slider simulation, we 

incorporated intermolecular forces in the CML software for flying attitude simulation. 

5) A new function, Gap Extrapolation, was developed for slider flying attitude measurement. 

6) Geometric modeling and parametric constraints in slider design, simulation, and 

optimization were also incorporated in the program 
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1. Introduction 

In modern hard disk drive, data are written and stored in the form of magnetic bits on stacks 

of disks. The disks are mounted on a rotating spindle, which usually rotates at a speed from a few 

thousands to tens of thousands revolutions per minute. The accessing of the magnetic bits is 

achieved through a read/write transducer attached to a small air bearing slider. The slider is 

mounted on the tip of a suspension arm. A position actuator to locate the magnetic bits on the 

disk controls the suspension arm.  The Assembly of hard disk drive is shown in Fig.1.  

 

Fig.1 Assembly of hard disk drive 

 

When the disk rotates at the designed speed, the slider flies above the disk because a thin air 

layer gets squeezed into the narrow space between the slider and the disk surface. The air bearing 

is created in the head disk interface (HDI) to lift the slider to a certain height to separate it from 

the disk surface to avoid disk wear. The slider’s flying attitude has a profound influence on the 

read back signals and consequently on the performance of the hard disk drives. It is determined 

by the balance of the forces and torques generated by the spring suspension, the air bearing, and 

Actuator 
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other forces. The flying attitude goal is obtained by carefully designing the geometric shape of 

the slider’s air bearing surface (ABS). Simulation of the air bearing pressure and spacing 

accurately and efficiently becomes the key issue in the design of sliders. To improve the 

efficiency and shorten the design cycle, accurate and intelligent computer simulation software 

for the HDI has been an indispensable tool for air bearing design. 

 

2. CML Air Bearing Software 

The objective of the HDI simulation is to predict the steady state and dynamic flying 

attitudes for a given slider air bearing design and disk surface topology by solving the lubrication 

equation together with the equations of motion of the slider. It involves two steps to simulate the 

air-bearing problem accurately. The first step is to model the problem accurately and obtain a 

physically justified governing equation. For the air bearing problem it is a modified Reynolds 

lubrication equation. The second one is to develop numerical methods that solve the Reynolds 

equation accurately and efficiently.  

CML has a long history of working in this area, and several Ph.D. students have made 

important contributions in this field. Based on this work CML has developed, used, and 

distributed air bearing design tools, which greatly improve the efficiency of slider design. 

Ellis T. Cha (1993) and Sha Lu (1997) made prominent contributions to the CML Air 

Bearing Design Program. Quick300 and Quick4 are two important solvers based on their Ph.D. 

thesis work. These solvers implemented the multi grid control volume method on rectangle 

meshes to solve the generalize Reynolds equation. They also implemented an adaptive grid 

method based on the pressure gradient field, which greatly facilitates grid generation. The 

implementation of a full approximation storage and full multi grid method dramatically 
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improved the solver efficiency. Parallel with these works, CML also developed graphic user 

interfaces in both Matlab and Windows to simplify the user’s pre- and post- processing. With 

these tools the user can easily and accurately simulate all of the main air bearing surface features, 

including multiple recess heights, shaped rails, and arbitrary wall profiles, etc. Quick4, the solver 

developed for sub-25nm slider seven years ago, still can produce accurate simulation results for 

sub-10nm sliders in today’s hard disk drives.  Among such sliders, the NSIC 7nm slider was 

designed using Quick4. 

Lin Wu’s (2001) Ph.D. work led to the development of Quick5. This solver uses a triangular 

mesh for ultra-low flying height slider static simulation. In his thesis work, he also derived two 

new lubrication equations free of contact pressure singularities. Also he investigated the effect of 

the intermolecular force, especially the van der Waals force, on the flying attitude of new ultra-

low flying sliders, and incorporated the intermolecular force into the balance equation. Based on 

these developments, he implemented unstructured adaptive triangular mesh generation 

techniques to handle complex slider air bearing simulation. He employed different refinement 

and adaptation techniques to generate several levels of good quality mesh over sliders with 

complex rail shapes. The overall mesh generation procedure offers great flexibility and control 

over the quality and distribution of the generated mesh. 

CMLAir32, currently in version 6, is the CML distribution of the computer-aided air bearing 

design program for the PC. It consists of a graphic user interface in 32-bit MS Windows and a 

set of Air Bearing Design Solvers. The current distribution contains three solvers: Quick4, 

Quick5, and Dyn4. These solvers are actually separate programs, but they can all be used in an 

integrated environment with the Air Bearing Design Program. Quick4 is the CML Air Bearing 

Rectangular Grid Solver, which is written in Fortran77 and uses a rectangular mesh to solve the 
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Reynolds equation. Quick5 is the CML Air Bearing Triangular Grid Solver, which is written in 

C++ and uses a triangular mesh to solve Reynolds equation. Dyn4 is the CML Air Bearing 

Dynamic Simulator, which is written in Fortran77 and uses a rectangular mesh for dynamic 

simulation. A solver that uses the triangular mesh for dynamic simulation is under development. 

All solvers have been compiled as 32-bit Windows console applications using Digital Visual 

Fortran and Microsoft Visual C++ 5.0.  

Strictly speaking, you do not need the Windows interface in order to use the CML simulation 

software. All functions of the solvers can be accessed using ASCII input and output files. You 

will find, however, that the Windows interface vastly simplifies the air bearing design and 

analysis process. The Windows interface can be run on any Win98/2000/XP PC system. The 

interface allows for visual pre- and post- processing of air bearing designs. Features include 

point and click rail design, extensive error checking, visual grid construction, 2-d and 3-d post-

processing, local and remote solver capability, VMS and NT remote support, and many others. 

For detailed description of the program, see the user manual included in the distribution. 

Recently, several improvements have been achieved in the CMLAir32 software, as follows: 

1) Several new tools were implemented in the MultiModule function to enable more flexible 

combinations of input parameters based on predefined distributions.  

2) In Quick4 “bugs” in the code to implement the different slip models were removed.  All 

slip models now work correctly in Quick4. 

3) Several new slip modes were implemented in both Quick4 and Quick5. 

4) In order to achieve accurate and optimal results for ultra-low FH slider simulation, we 

incorporated intermolecular forces in the CML software for flying attitude simulation. 

5) A new function, Gap Extrapolation, was developed for slider flying attitude measurement. 
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6) Geometric modeling and parametric constraints in slider design, simulation, and 

optimization were also incorporated in the program. 

 

3. MultiModule 

The MultiModule is an extension of the multiple run capabilities to the CML Air Bearing 

design program. It allows users to generate customized batch run jobs and interpolate results 

over a user definable search space. The main uses for this capability are optimization and 

manufacturing tolerance calculations. 

For example, after the design of a slider, it needs to be fabricated. In the manufacturing 

process, errors and deviations from the design dimensions will be introduced into the resulting 

slider. That is, the slider you get isn’t exactly what you designed. There will be some variances 

between the design parameters and the manufactured parameters. Those variances, even if very 

small, may have important effects on the slider’s flying performance.  So we need tools to 

simulate those variances, and help the user determine the relative robustness of the design with 

respect to manufacturing. MultiModule is a tool for simulating those variances. In this module 

you can define tolerances on any slider geometry in terms of deviation ranges for selected 

parameters, including slider width, length, crown, rail X, rail Y, rail recess, etc. Each parameter 

type corresponds to a slider geometry defined in the General window and Rail window. The 

deviation range is the upper and lower search space boundaries for this parameter. The user 

enters the amount of variation relative to the base, and can select predefined sample (search) type 

and frequency. MultiModule will automatically and optimally generate a large number of cases 

for the solver to determine the manufacturing yield and optimization.  
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An example is shown in Fig. 2, where we use a design similar to the IBM Travelstar slider 

and define deviation ranges on two rail points. We select a cross sample type and set the sample 

frequency to be 8, then MultiModule will create 64 cases optimally distributed in the sample 

space, and automatically run the solvers for calculation. 

 

Point 1 (mm) Point 2 (mm)
Min 0.5 0.825
Max 0.6 0.925

Cases 8 8

Total Cases 64               

0.000516667 0.000908333 15.590022 82.26419 -4.8123112 23.7728

0.000533333 0.000908333 15.651913 82.664669 -4.8264496 23.8426

... ... ... ... ... ...
0.000583333 0.000908333 15.89342 83.829382 -4.8980198 24.1035

[0.0006] [0.000925] 15.130019 [84.654044] -4.9704237 23.3512

<0.0005> [0.000925] <14.692105> 82.339938 [-4.7452252] <22.8848>

0.000516667 [0.000925] 14.74126 82.726651 -4.7657783 22.9408

0.000533333 [0.000925] 14.791456 83.135458 -4.7637012 23.001

0.00055 [0.000925] 14.851102 83.545786 -4.794952 23.0668

0.000566667 [0.000925] 14.92617 83.944535 -4.8183974 23.1486

0.0005 0.000825 14.692105 79.19793 -5.2688636 22.8848

0.0006 0.000925 21.295749 84.654044 -4.7452252 29.3995

0.000549219 0.000825651 18.31066908 81.65962352 -5.05088178 26.45034426

 

a) Deviation ranges and sampling frequency     b) Cases generated for solver calculation 

Fig. 2 Input and output of MultiModule works 

Each MultiModule run is defined and separated into sample space and search space. Sample 

space defines the accurate calculation runs by the solver. It is the space that is spanned by all 

cases that are actually sent to the solver and calculated. Search space is the space that is spanned 

by all cases for which interpolated results are sought. Search space results are generated through 

linear interpolation of sampled results. It is important to have a strong understanding of the 

relationship between sample and search space in order to maximize the efficiency of 

MultiModule. You should first do the calculation on the sample space. It defines the nodes for 

which results are generated using an air bearing solver (Quick4 or Quick5). Those results will be 

automatically stored in the program, and you can define and conduct calculation in the search 

space based on those results. The choice of sample space is of utmost importance in determining 

Point 1       Point 2    Nominal FH     Pitch          Roll           Min 
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the efficiency of a MultiModule run.  The time required for a run is approximately directly 

proportional to the number of nodes in the sample space. Denser sample spaces result in more 

accurate search spaces, but take a longer time. On the contrary, time and CPU cost of calculation 

on the search space is low. It only involves linear interpolation, with no additional solver 

calculation.  

Next we achieve several improvements in the MultiModule from its original design and 

implication, including: 1) Variance definition for Multi Rail Recess. 2) Relative variance 

definition for Rail. Those new improvements allow all combinations of input parameters based 

on arbitrary distributions. 

3. 1 Variation for Multi-Rail Recess 

The slider is manufactured by etching processes, especially the different rails and their 

recesses. Etching is a chemical process that removes material level by level. In a multi-rail and 

multi-recess slider, this process involves several steps. Different rail recesses are gradually 

formed from small to large, step by step. After manufacturing, each rail recess will have its own 

independent tolerance and deviation.  

Corresponding to this reality, we should have variance definitions for different rails to 

simulate manufacturing tolerance on the different rail recesses, but in the previous version, only 

one tolerance could be defined for all rail recesses. As show in Fig. 3, one could define the 

tolerance on the rail recess for rail 3. But rail 5 also can have its own tolerance, which is different 

from that of rail 3. When defining the deviation for rail 5, the program would pop up an error 

window, and would not allow you to define it any more. This feature greatly limits its ability to 

simulate the manufacturing tolerance. In the new version, this limitation is removed, and the user 

can define specific variance for every rail recess. 
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a) Previous version                                                  b) Current version 

Fig. 3 MultiModule parameter defining: each rail recess can have its own variation. 

3.2 Relative variance definition for Rail 

Users can define the motion of a Rail/Point. If the parameter is of type Rail or Rail Point, the 

rail and/or point numbers must be specified. The user can specify them either by entering rail and 

point index numbers, or by selecting them in the plot area on the right. With a selection in the 

plot area, the actual rail and point index values for the parameter will automatically change. 

When working in the plot area, one can select rails and points with the mouse in the same 

manner as one selects rails and points in the Rails Window. When the parameter is of type Rail, 

one can select a rail by double clicking the left mouse key on the desired rail. If you use the Rail 

Point parameter type, you should first select a rail, and then select a point within this rail by right 

clicking on the point. All the locations are plotted in the chart to the right.  The rail to be moved 

is outlined in yellow.  The point to be moved is outlined with a circle.    

In the manufacturing procedure, some of the components on the slider are fabricated 

simultaneously using the same process. Those components should have the same tolerance and 

deviation. So it is convenient for the user to define deviations relative to each other. This can be 

done by checking the Relative box, and the parameter will follow the motion of the relative 
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point.  If the Relative and Opposite boxes are checked, the parameter's motion will be exactly 

opposite that of the relative point. Note that there can be multiple levels of relativity and motion.  

For instance, Rail A can be relative to Point B that can be relative to Point C.  In the previous 

version, the result was incorrect when using the relative deviation. The new version removes this 

bug, and the user can conveniently define the tolerances relative to each other. 

 

 

 

 

  

a) Previous version                                                  b) Current version 

Fig. 4 Rail X (Y) can vary relatively to each other 

 

4. Correlation of Radial Position and Skew Angle 

Radius position and skew angle change as the slider moves across the disk, for example, 

when the slider moves in the track seeking motion to locate a track on the disk. One needs to 

input the values for radius position and skew angle for air bearing simulation. In CMLAir32 they 

are input as a pair in the run setup interface. In the previous release the user could define 

Radius/Skew pairs point by point. Run Setup Dialog is the window for setting up the operating 

Result was wrong when using 
relative variation for Rail X(Y). 
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conditions for a static simulation, including Radial Pos./Skew, RPMS, Altitude, MFP, etc. For 

the input of Radial Position and skew angle, the user could use the point-by-point method to 

define them. For Quick4, if multiple pairs are specified, the simulation will be run at each of 

these pairs. Quick5 does not support multiple radius/skew pairs. 

Actually the radial position and the skew angle have a correlation. Fig.5 a) shows the 

assembly of the actuator, arm, slider and disk. Radial position is the distance from the 

geometrical center of the slider to the disk center. Skew angle is the angle between the track 

tangent line and the longitudinal direction of the slider. Two issues contribute the skew angle of 

a slider: initial assembly angle and the rotation of the arm. The slider is fixed by a suspension on 

the arm of the actuator. It may or may not be assembled with an initial skew angle. When the 

arm rotates, the slider moves toward or away from the center. The radial position is changed with 

the arm movement, and the slider can move to any track on the disk to read data. The skew angle 

is also changed, and the air is directed toward different components of the slider. A triangle is 

formed by the radius, arm length and distance between the pivot of the arm and the center of the 

disk. Radial position and skew angle are correlated in this triangle. Their relationship can be 

formulated as follows:  

RadiusLength
DistanceLengthRadius

Skewangle
2

∗∗
−+

=−=
2

,
2

22

β
π

β   (1) 

Where β  is the angle between the arm line and radial line. 

Positive skew indicates that air flows from the outer leading edge to the inner trailing edge. This 

conforms with the IDEMA standard. 

With this formula, the user can define the radial position and skew angle as related. As shown 

in Fig. 5 b), the interface for Run Setup, a new area, Related, is added under the Point by Point 

input area. Now one has two choices for defining the radial position and skew angle: Point by 



 12

Point or Related. If you use the Point by Point method, you can input the values in the same way 

as in the previous version, and you must specify at least one Radius/Skew pair. When you use 

the Related feature, you should specify several parameters, as shown below: 

 

     

      a) Sketch of arm and disk assembly          b) New interface for radial position and skew angle  

Fig. 5 Correlation between radial position and skew angle 

 

Initial Skew Angle: is the angle between the centerline of the slider and the centerline of 

the arm. It is pre-determined at assembly time. 

Distance: is the distance (mm) from the pivot of the arm to the center of the disk. 

Arm Length: is the length of the arm. 

Current Radius: is the current radial position of the slider. 

Current Skew:  is the current skew angle of the slider. 

Current Radius and Current Skew are determined by each other. When you modify either one, 

the program will automatically calculate the other one using equation (1). 
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5. Slip models 

5.1 Introduction 

In the Reynolds equation, in order for the no-slip condition to apply, the film thickness 

should be large compared to the mean free path of the air, which is around 64 nm in standard 

conditions. However the slider-disk separation in today’s drives is less than 10 nm and is 

therefore much smaller than the mean free path. So, the rarefaction effect has to be taken into 

account. Various slip correction models have been introduced to handle the slippage at the 

boundaries and the rarefaction effect.  In the previously released version of the CMLAir32 

program, three slip models were available, including the first order slip, second order slip, and F-

K model, as shown in Fig. 6 a).  

            

 

 

a) Previous version                                                  b) Current version 

Fig. 6 Interface for slip models 

5.2 “Bugs” in Quick4 slip model implementation 

In the solver Quick4 there were some bugs in the codes implementing the slip model, so that 

only the F-k model could work in Quick4. The other two slip models always result in a divergent 

computation. After analyzing the Fortran77 code of Quick4, we finally found and removed those 

bugs.  Now the three slip models work correctly in Quick4. 
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The “bugs” were caused by an improper use of the variable feature in the Fortran 

programming language, i.e. using the same symbol for a local variable and a global variable.  

5.3 New slip model 

We implemented several new slip models in the solver. Lin Wu’s Ph.D. thesis pointed out 

some deficiencies with the current slip models.  Both the FK model and the first order slip model 

predict unbounded pressure fields at a contact point, which means they can not predict the 

pressure correctly at very large Knudsen numbers.  Li Wu (2001) examined the slip models to 

understand the cause of and to remove those kinds of singularities. He derived several new slip 

models for isothermal and compressible gas lubrication from a more physical point of view. As 

shown in Fig. 7, the new models have similar forms as the old counterparts but with different 

coefficients. The new second order slip model is in better agreement with the FK model than the 

old second order slip model at smaller inverse Knudsen number, in regimes where the FK model 

gives reasonable predictions. 

                           Previous slip models                             New slip models 

                           First order                                              1.5  order 
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Fig. 7 Formulae for slip models                                                                         
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    a) Code for Quick4                                                     b) Code for Quick5 

Fig. 8 Code implementation for slip models 
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Based on those formulas, we implemented and incorporated these new slip models in both 

Quick4 and Quick5. So in the new version we have six slip models for the users’ choice, as 

shown in Fig. 6 b). The main code implementation is shown in Fig. 8. One neat thing about the 

slip models is that the different slip models have differences only in two coefficients in their 

formulas. We can use a common equation to represent all the slip models, as shown in follows: 

2

1 





++=
PH
K

PH
K

Q nn γβ      (2)  

where β and γ are slip coefficients derived from physical phenomena of slippage and 

rarefaction effects at the boundaries. 

This gives a uniform way to implement the different slip models. Only one subroutine is 

required for the calculation of all slip models.  

5.4 Comparison of different slip models 

We performed some simulations to compare the results from the different slip models, and 

they are shown in Fig. 9 and Fig. 10. An NSIC 7nm slider design was used to demonstrate the 

convergence properties and the final results of these slip models. The slider flies around 7nm 

with a 1.5g force and zero moment pre-load from the suspension. The disk rotation speed is 7200 

rpm. Fig. 9 a) shows the rail sketch of the slider and its initial conditions. We set its initial flying 

height at TEC to be 100nm, which is far from its final result flying height. Figs. 9 b) and c) show 

how the flying height and load error vary with the number of iterations. From these, it is seen 

that all slip modes have good convergence. Starting from an initial flying height of 100nm, the 

calculation of every slip model quickly reaches a converged value after 8 – 10 iterations. We also 

see that the load error quickly reduces to zero after one or two oscillation.  
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a) Slider and initial conditions 

Convergence of slip models
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b) Flying height                                                 c) Load Error 

Fig. 9 Convergence property of different slip models 

 

Fig. 10 Final results of slip models 

From Fig. 10, however, we see that the different slip models have different correction effects 

on the Reynolds equation. The final results have significant differences, in flying height the 

largest is even up to 3 times the smallest.  The new slip models predict a larger flying eight and 

pitch angle, for example around 12 nm and 188 radµ  for the new 1st order slip model for this 

Initial conditions: 
TEC:   100nm 
Pitch:  150 radµ  
Roll:    5 radµ  
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slider. On the contrary, the Pressure Gradient model predicts a lower flying height and smaller 

pitch angle, for example around 4nm and 168 radµ for this slider.  

We conducted the same simulations and investigations using several other sliders. The 

Results show the same trend. Based on our experiences, we currently can give the following 

suggestion for using these slip models: 

1) For sliders with flying height above 7 nm, the F-K model is preferred. 

2) For sliders with flying height less than 7nm, the pressure gradient model is believed to be 

preferred. 

5.5 User defined slip models 

Even though we have six slip models, there has been a request for users to be able to design 

their own slip model to match simulation results with measured results for a particular design. To 

do this we only need to allow the user to choose the two coefficients β and γ . By varying either 

β or γ , we get different slip models. For example, when β = 6 and γ = 6, we get the old 

second order slip model; when β = 4 and γ = 0, we get the new first order slip model; etc. 

 

Fig. 11 Interface for user defined slip model 
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The interface for this feature is very convenient, as shown in Fig. 11. Only two input 

parameters are needed. The user can go to the menu Options and click on the item Slip Model. A 

sub-menu pops up which allows you to select from different slip models. At the bottom of the 

Slip Model sub-menu, you find the User Defined Model. When you left click on this item, a 

small window pops up to enable the user to input β and γ values. After entering the desired 

values you can just click on OK. These two values will then be saved in the program, and will 

later transfer to the solver for the slip model’s calculation. When you use this feature the next 

time the program will automatically retrieve the β and γ values used in the previous calculation, 

and put them back in the window when it pops up. This is very convenient for repeated 

computation: the user need not do anything if β and γ are the same for next time calculation. 

With this feature, we conducted a set of calculations to investigate how the flying attitude 

varies with the coefficients β and γ . First we used the IBM Travelstar slider with a 2.5g force 

and zero moment pre-load from the suspension. The disk rotation speed was 4500 rpm and the 

slider flies around 20nm. Fig. 12 a) shows the rail design and the initial conditions for the slider. 

To our surprise, the calculation result showed a jump in the flying attitude between the first order 

model (where γ = 0 and β = 4 or β = 6) and the other models, as shown in Fig. 12 b). Except 

for this jump, the results show a linear dependence on γ , and both the flying height and the pitch 

angle decrease with increasing γ . We also see a dependence on β : the flying height and the 

pitch angle decrease with increasing β . 

We observe that the jump at γ = 0 occurs for Quick4, but not for Quick5. It was found that 

different formulas and code implementation were used for those slip models. Specifically, the 

difference is in the value of the accommodation factor α in the slip models.  
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a) Slider and initial conditions 
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       b) Flying height variation with β and γ                      c) Pitch angle variation with β and γ  

Fig. 12 Initial calculation for user defined slip model 

In Sha Lu’s implementation in Quick4, the slip models were given as follows: 

         First Order                                 Second Order                                 F-K Model 
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where 
α

α−
=

2
a ,  a is the surface correction coefficient and α  is the accommodation factor. 

Sha Lu included the accommodation factor α  only in the first order slip model. From the 

source code of Quick4, which was implemented by Sha Lu based on his Ph.D. thesis, it is seen 

that the first order slip model is implemented differently from the other models, as shown in Fig. 

13. In the first order slip model a  is multiplied by 1.25, which means that accommodation factor 

Initial conditions: 
TEC:  16 nm 
Pitch: 100 radµ  

Roll:   1 radµ  
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α is set to be 0.9. In the other models it is set equal to 1.0.  The result is that the prediction from 

Quick5 at γ = 0 is about 1.25 times the value predicted by Quick4 

 

Fig. 13 Quick4 code to handle accommodation factor 

In Quick5, Lin Wu included the accommodation factor α in all slip models, as shown below. 

Only in this way can the different slip models have consistent correction effects on Reynolds 

equation when α  is not equal to 1. In Quick5 Lin Wu set α  to be 1, which corresponds to no 

accommodation factor, given for the various slip models. 

       First Order                              Second Order                               F-K Model 
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otherwise a = 1.0. 
 



 22

Weidong Huang (1998) made a detailed investigation of the accommodation factorα  in his 

Ph.D. thesis. The accommodation coefficient expresses the tendency of the gas to accommodate 

to the state of the wall. Knudsen introduced the commonly used accommodation coefficient in 

1911(Kennard, 1938). In terms of energy, the accommodation coefficient can be defined by: 

)/()( wiri EEEE −−=α      (5) 

where iE  denotes the energy rate per unit area of the incident molecules, rE  denotes the energy 

rate per unit area carried away by the reflected molecules and wE  denotes the energy rate per unit 

area that would be carried away by the reflected molecules  in diffuse reflection at the wall 

temperature.  

From the above study, we see that α  should be a user input value. It varies with different 

surface materials, temperatures and surface roughness. For example, sliders and disks may have 

different accommodation: α  is smaller for a smoother surface, so α  for a slider is normally 

greater than that for the disk. For sliders and disks having different accommodation coefficients, 

Kang et al. (1997) obtained both the Poiseuille flow rate and the Couette flow rate coefficients 

with different accommodation coefficients ranging from 0.7 to 1. 

For air bearing problems for the head disk interface, there is very limited published 

information on the value of the accommodation coefficient to be used. Rettner (1997) obtained 

the accommodation coefficient α  = 0.95 for 2N  colliding with a sputtered carbon overcoat, 

glass disk and an actual 3.5-inch disk surface. Due to the absence of a complete database of 

accommodation coefficients for sliders and disks in air, most slider designers use the full thermal 

accommodation, i.e. α  = 1. 

Based on the above studies, we assume that he accommodation coefficient α should appear 

in every slip model for consistency. It is acceptable to set α  = 1 for slip models in slider design 
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and simulation.  After modifying the code in Quick4, we repeated the flying height simulation 

for several sliders, and the results are shown in Fig. 14 and Fig. 15.  Fig. 14 shows the results for 

the slider used in the initial calculation. The result agrees with to the previous observation: only 

by setting α  = 1 in first order slip model do we get a linear relationship between the flying 

attitude and β ,γ in Quick4, as well as making the results from Quick4 consistent with those 

from Quick5. The second slider used was the NSIC slider that flies around 7nm. We again see 

almost the same relationship between flying attitude and β ,γ . 

 

                               

a) Slider and initial conditions 
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        b) Flying height variation with β and γ                      c) Pitch angle variation with β and γ  

Fig. 14 Result 1 for user defined slip model 

 

Initial conditions: 
TEC:  16 nm 
Pitch: 100 urad 
Roll:   1 urad 
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a) Slider and initial conditions 
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         b) Flying height variation with β and γ                  c) Pitch angle variation with β and γ  

Fig. 15 Result 2 for user defined slip model 

 

6. Implementation of intermolecular force 

In prior generations of hard disk drives, the sliders flew more than 20nm above the disk. In 

such situations the flying attitude of the slider was determined by the balance of force and 

moments contributed from the preload of the suspension and the air bearing pressure and shear 

force. Most studies of air bearing simulations are concerned with the modifications of the 

Reynolds lubrication equation in order to get reasonably accurate predictions of the air bearing 

pressure field under rarefied conditions.  

When the flying height of the slider becomes less to 5nm, intermolecular forces become 

increasingly more important and may no longer be negligible. For a slider with a flying height 

around 0.4 to 5 nm, the long-range attractive van der Waals force is the dominant one among 

Initial conditions: 
TEC:   7nm 
Pitch:  150 urad 
Roll:    5 urad 
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these forces. It is contributed mostly by the dispersion force between two atoms, which is 

induced by the fluctuation in their electric dipoles. When two atoms are brought close enough, 

they start to experience the existence of each other in the form of intermolecular forces. At the 

beginning, it is an attraction force, and its strength increases with decreasing distance until a 

maximum point is reached, then it decreases with decreasing distance. When the distance is 

reduced further, the force becomes repulsive and increasingly stronger. Lin Wu (2000) derived 

formulas for intermolecular force acting on a triangular surface element as follows: 

∫∫∫∫
∆∆

+−= 82 ),(360),(12 yxh
dxdyB

yxh
dxdyA

Wv ππ
                              (6) 

∫∫∫∫
∆∆

−= 93 ),(45),(6 yxh
dxdyB

yxh
dxdyA

Fv ππ                                     (7)  

 

where A is the Hamaker constant, with typical value of about J1910− . The typical value for 

constant B can be 67610 Jm− . 

We incorporated these forces in the solver in the force and moment balance for the flying 

attitude calculation. Fig. 16 shows a simulation result for a tripad slider with 3.5g force and zero 

moment pre-load from the suspension. Fig. 16 b) shows the van der Waals force as a function of 

the flying height at a fixed pitch angle of 150 radµ  and zero roll angle. Fig. 16 c) shows the 

results for the flying attitude calculation with and without the intermolecular forces included. 

The flying height is slightly less with theses forces. These results are in agreement with those of 

Lin Wu in his Ph.D. thesis. 
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                        a) Slider used                                          b) The attractive van der Waals force 

 

 

 

 

c) The flying attitude w/o and with intermolecular force 

Fig. 16 The effect of intermolecular force 

 

7. Gap Extrapolation 

Gap Extrapolation was developed to aid the experimental measurement of slider flying 

attitude. 

The next generation hard disk drive with an areal density in the range of 1 2/ inTB  is under 

development. For the transducer to read data from and write data at such a high areal density, the 

slider’s flying height (FH) must be sub-5 nm. Head/disk interface stability and head/disk spacing 

variation are becoming of more concern. In this situation experimental measurement and analysis 

of the flying attitude is important for the verification of the simulation code. 

However, for such a narrow gap of a few nm, it is extremely difficult to measure the flying 

attitude for sliders, especially the flying height. One possible solution is to select several points 
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(at least three) for measurement on the rails that have large spacing. These points should be easy 

to measure, even when some points on the slider may be at zero flying height and contact the 

disk. Based on the flying heights of these measured points, after subtracting the effect of the 

different recesses and other geometries contributing to the flying heights of these points, we can 

easily calculate the flying attitude of the slider, and then calculate the flying height for any point 

on the slider.  

The Gap Extrapolation subroutine is developed to accomplish this. Its algorithm is very 

simple: just three points determine a plane, and taking into account the recesses and other 

geometries of theses points on the slider, we can calculate the flying attitude of the slider and the 

flying height at any other given points, as follows: 

Plane:  z = hx * x + hy * y + h0  ===>   
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Where i = 1,2,3 is the index of the three measured point. h0 is the flying height on at the TEC, hx 

is the pitch angle of the slider and hy is the roll angle. xinpt(i) and yinpt(i) are the x and y 

positions of the measured point i. hinpt(i) is the flying height of the measured point i, and 

recess(i) is the rail recess height for the measured point i. The code implementation of Gap 

Extrapolation is shown in Fig.17 a). 

Fig. 17 b) shows the interface for Gap Extrapolation. From the options/solution menu, you 

click on “Gap Extrapolation” to activate this feature and put the solver in “Gap Extrapolation” 

mode. In this mode, when the user clicks the “run” button, the program will only calculate the 

gap according to the input values. You can go to the general window to define the input/output 
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data. Input values include the x, y positions and the flying heights for three measured points. You 

also can specify a fourth point, for which the program will calculate and output its flying height.  

In the calculation the program outputs the flying attitude for this slider and the flying height for 

any other given point. 

 

 

 

 

 

 

 

 

   

 

 

             a) Code implementation                                                    b) Interface 

Fig. 17 Implementation of Gap Extrapolation 

8.  Z Moment Calculation 

8.1 The effect of Z moment 

Currently disk drive servo systems have a single actuator located at the base of the arm.  It 

provides the force and moment to access and follow data tracks. In traditional slider designs the 

Z moment is ignored in most situations. Some simple methods have been used to roughly 

estimate the Z moment. As track densities continue to increase several researchers are 
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considering dual stage actuators with the fine adjustment stage provided by a MEMS actuator. 

Because of the low level of force and moment available in these systems there is more concern 

about the air bearing shear force and Z moment. So it is important to have an accurate prediction 

of the Z moment that is produced by shear forces about the center of the slider.  

8.2 Code Implementation 

The code implementation for Z moment is quite simple. We just need to add several lines of 

code in the force calculation, as shown in Fig. 18. Z moment is calculated on every grid using 

shear force multiply by its moment arm distance to the center of the slider. Integrating all of 

these Z moments on every grid together, we get the total Z moment. The moment is positive if its 

direction is along the positive Z direction. 

 

 

a) Code for Quick4                                                    b) Code for Quick5 

 

Fig. 18 Implementation of Z moment produced by shear force. 
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8.3 Simulation Result 

Intuitively, it is believed that the air bearing shear forces may generate a relatively high Z 

moment when the skew angle is large. That is, the larger the skew angle, the higher the moment 

generated by shear forces. But this is not what we found in all cases. The relationship between Z 

moment and skew angle is, in fact, dependent on the design of the slider. 

The first slider used to demonstrate the relationship between Z moment and skew angle is the 

IBM Travelstar-type slider with a 2.5g force and zero moment pre-load from the suspension. The 

disk rotation speed is 7200 rpm and the slider is flying around 20nm. Fig. 19 shows the slider, its 

initial conditions and the dependence of the Z moment to the skew angle. We see that from both 

solvers Quick4 and Quick5 the Z moment increases when the skew angle increases. The 

direction of the Z moment changes from negative to positive as the skew angle increases. 

                                                                                                                           

          a) Slider and initial conditions                                 a) Slider and initial conditions 
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    b) Z moment variation with skew angle                     b) Z moment variation with skew angle 

      Fig. 19 Z moment for IBM tri-pad slider                    Fig. 20 Z moment of NSIC 7nm slider 

Initial conditions: 
TEC:  7nm 
Pitch: 150 urad 
Roll:   5 urad 

Initial conditions: 
TEC:  16 nm 
Pitch: 100 urad 
Roll:   1 urad 
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The second slider used to demonstrate the relationship between Z moment and skew angle is 

the NSIC 7nm slider with a 1.5g force and zero moment pre-load from the suspension. The disk 

rotation speed is 7200 rpm and the slider is flying around 7nm. Fig. 20 shows the slider, its initial 

conditions and the variation of Z moment with the skew angle. Contrary to the result from 

previous slider, here we see that the Z moment decreases when the skew angle increases. The 

moment is always in the negative Z direction. 

We can draw the following conclusions based on the above analysis and our experiences: 

1) More simulation results show that for different sliders, Z moments have different patterns 

of dependence on skew angle. 

2) Z moment is relatively small, and is around several mN •− µ210 . This magnitude of Z 

moment is one or two orders less than that of the moment in X and Y directions. 

3) The Z moment vs. skew angle curve has a decreasing slope magnitude.  

 

9.  Geometric Modeling in Slider Design 

In air bearing design, geometric shapes of the sliders play an important role in their static and 

dynamic performance. To achieve good performance, sliders in modern hard disk drive are 

becoming more complex in two ways: 1) Many more rails and other components are being added 

in the ABS. 2) The geometries of the rails and the pads are becoming more complex, and many 

of them now have streamlined shapes. However, in the current CMLAir32 we still use only lines 

and planes to define all of the shapes. For rail design, we only can use line segments to 

approximate its shape. If we have a curved shape in the rail, we have to use many short lines to 

approximate it. This requires much calculation and data input from the user, making the process 

error-prone and requiring substantial labor. At the same time, a large number of short line 
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segments in a rail make it confusing for solvers to generate the adaptive mesh based on its 

geometry. To describe the geometry of the slider, straight lines are not optimal. We also need 

circles, conic curves, splines, as well as other free form curves to define the rail geometry.  

In addition to the geometric shapes, the designer also has to consider a wide variety of 

technological criteria, such as the flying attitude requirement, structural and dynamic properties, 

assembling constraints, manufacturing costs and so on, for defining the geometries of the slider. 

Therefore, the slider and its air bearing are usually designed iteratively, modifying the 

geometries and evaluating properties from different points of view.  

Parametric modeling should improve the process of air bearing design, simulation and 

optimization. Parametric design is an approach to product modeling, which associates 

engineering knowledge with geometry in a product design by means of geometric constraints. It 

has been considered an indispensable tool in many applications such as mechanical part design, 

tolerance analysis, and knowledge-based design automation. Parametric capabilities for air 

bearing design enable the description of the geometry of sliders controlled by parameters. They 

are based on the bi-directional dependencies between dimensional or geometrical entities. These 

dependencies include both constraints and dimensions. Such constraints are parallelity, 

perpendicularity, concentricity, etc. With such dependencies, a modification of an entity will 

cause a successive modification of the associated ones. The modification (variation) of geometry 

can be performed by an easy (interactive) definition of the parameters and a successive execution 

of the variation, as shown in Fig. 21. 
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a) The user opens with     b) The user specifies dimensions        c) The system regenerates the 
     a freehand sketch             and other geometric constraints          shape in accordance with 
                                                                                                           the specified constraints 

 

Fig. 21 Parametric design for a 2D sketch 

We will demonstrate that the efficiency of air bearing optimization and sensitivity analysis 

can be greatly improved based on slider parametric modeling. One central thing for air bearing 

optimization is to vary the geometry of the slider, especially its rails, to generate new samples to 

see whether a better result can be achieved compared to the target. The optimization procedure 

can be summarized as follows: based on the initial design, generated some new samples 

according to the optimization techniques; calculate the flying attitude for those samples in the 

solver; evaluate the results and determine the new direction of variances to generate new samples 

according to optimization techniques. This procedure repeats over and over in the optimization 

space and approaches the final target. For computationally intensive sample evaluations like air 

bearing flying attitude calculations, the time and CPU power consumed by optimization is very 

sensitive to the number of parameters to be varied. The more parameters, the more dimensions 

and the larger the search space for the optimization. The larger the optimization space, the more 

samples have to be evaluated, and the longer the time is needed for optimization. 

Parametric design can simplify the control of the geometry of the slider. For air bearing 

optimization it can greatly decrease the parameters needed to control the shape of the slider in 
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order to obtain an optimal design. With parametric modeling the overall geometry of the slider, 

including the base, the rails and the pad, are controlled by several parameters. One needs only a 

few parameters to control the geometry of each rail. Those parameters can easily be controlled 

and modified by both the human and the optimization program. By intelligently organizing the 

constraints and dimensions enforced on the slider, the optimization program can modify fewer 

parameters to vary the geometry of the slider in a larger search space. 

The geometry construction procedure of parametric modeling is briefly shown in Fig. 22. On 

a base plane, one constructs the 2D sketch for a rail. Then you add dimensions and constraints on 

the rail, which gives you freedom to modify the sketch. The 2D sketch is extruded into a 3D rail. 

In addition to strait line extrusion, one can also define complex trajectory curves for the 

extrusion, creating wall profiles. Additional sketches, and 3D geometries can be constructed on 

top of this rail, and so on. Finally we get the complete design of the slider. 

 

            

1) 2D sketch for Rail 1     2) Model of Rail 1    3) 2D sketch for Rail 2, 3, 4, 5         4) Model of Rails 

 

                 

5) 2D sketch for pad         6) Model of pad        7) 2D sketch for Rail on pad  8) Model of completed slider 

Fig. 22 Geometric modeling for slider design 
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Although the geometric modeling module has not yet been incorporated into the CMLAir32 

program, we have finished all the system design, and it should be relatively easy to implement it 

in future CML air bearing design programs. 
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