
1

The CML Air Bearing Optimization Program Version 3.0

Hong Zhu and David B. Bogy

Computer Mechanics Laboratory

Department of Mechanical Engineering

University of California at Berkeley

Berkeley, CA 94720

ABSTRACT

This report presents a detailed description of the CML Air Bearing Optimization

Program Version 3.0, developed at the Computer Mechanics Laboratory at the University of

California at Berkeley. The program provides the tools necessary for the optimization of air

bearing designs for computer hard disk drives.

Unlike Version 2.0, which was developed based on the global stochastic Simulated

Annealing algorithm, Version 3.0 was developed based on the more recent global

deterministic DIRECT algorithm, which has a much higher convergence rate than does the

Simulated Annealing algorithm. Therefore, Version 3.0 can find the optimized ABS design

much faster than does Version 2.0.

2

We also include three locally biased variations of the standard DIRECT algorithm in

this program. Generally, these variations have even higher convergence rates than does the

standard DIRECT algorithm, and may dramatically reduce the time needed to find the global

minimum in some situations.

In addition, two other modifications to the DIRECT algorithm have been included in

this program. They are intended to handle manufacturing tolerances and hidden constraints,

and they can further improve the efficiency of the DIRECT algorithm.

This program also implements the new geometric constraints. In addition to the

original constraint points, constraint rails and lines have also been added. This new feature

makes the program much more flexible and convenient to use, and also makes it more

powerful for slider ABS optimization.

Like Version 2.0, Version 3.0 also implements the CML Air Bearing Steady Codes to

evaluate the designs generated during the optimization process. Therefore, the CML steady

codes (rectangular mesh solver Quick419 and triangular mesh solver Quick5) must be

available in order for this optimization program to be used.

This optimization program is capable of multi-objective optimization with an

arbitrary number of constraints, and can find the optimal ABS design in the search space. It is

more flexible and powerful than Version 2.0 for slider ABS optimization.

3

1. INTRODUCTION

Optimization is the process of trying to minimize a function subject to certain

conditions on the variables. This function is generally referred to as the “objective” or “cost”

function. The conditions set on the variables are referred to as constraints.

The optimization algorithm implemented here is the DIRECT algorithm, which is an

acronym for DIviding RECTangles, a key step in the algorithm. It is a global deterministic

algorithm based on the classical one-dimensional Lipschitzian optimization algorithm known

as the Shubert algorithm. It is a multi-dimensional Lipschitzian optimization method that can

be used without knowing the Lipschitz constant. DIRECT is designed to solve those

problems subjected to bounded constraints and it has a very fast convergence rate. Details

about the DIRECT algorithm can be found in CML technical report 01-003.

We also include three locally biased variations of the standard DIRECT algorithm in

the program. They are: DIRECT-I (having fewer groups), DIRECT-II (having double

partitions for the box containing the point with the lowest function value), and DIRECT-III

(which combines these two measures). These variations are proposed to further increase the

standard DIRECT algorithm’s convergence rate and thus improve its efficiency. The three

locally biased variations of the DIRECT algorithm generally have higher convergence rates

than does the standard DIRECT algorithm. The variations perform especially well in some

situations and they may dramatically reduce the time needed to find the global minimum

4

points. Details of these locally biased variations can be found in CML technical report 01-

007.

Two modifications to the DIRECT algorithm, one to handle tolerance (i.e., minimum

side lengths) and one to deal with hidden constraints, have also been included in this

program. These two modifications to the DIRECT algorithm improve its efficiency and make

it more flexible. Details of these modifications can be found in CML technical report 01-013.

In this program we also include the new geometric constraints for slider ABS

optimization. For the new geometric constraints, we not only define constraint points, but

also define constraint rails and constraint lines.

The constraint rail can be translated in either the length or width directions, rotated

with respect to a fixed point, and expanded or shrunk proportionally. The constraint line can

be translated in either the length or width directions, rotated with respect to a fixed point, and

extended or contracted along its length direction. To maintain a symmetrical slider ABS

design and fixed local geometric shapes, we also define symmetrical and relative constraints

for constraint rails and constraint lines.

The new geometric constraints can make the slider ABS optimization much easier by

enabling users to explore the much wider range of constraints found in practical ABS

optimization problems.

5

2. STRUCTURE OF THE CML OPTIMIZATION PROGRAM

To perform the optimization, we need two closely integrated parts: the optimization

algorithm, and the solver. The optimization algorithm is used to generate different sample

designs, which are then sent to the solver for calculation. From these results, the algorithm

will evaluate the quality of the current design and, based on that evaluation, will generate a

new design.

Here we used the DIRECT algorithm and the CML steady solvers, including the

CML rectangular mesh solver Quick419 and the CML triangular mesh solver Quick5. Figure

1 presents a schematic illustration of the structure of the optimization program version 3.0.

The flow chart of the CML optimization program version 3.0 is shown in Fig. 2, where N

represents the number of the designs, Nmax the maximum number of designs prescribed, I the

number of iterations and Imax the prescribed maximum number of iterations.

3. INPUT FILE

The files constraint.dat and option.dat are the two input files to the CML slider

optimization program version 3.0 (other than the files rail.dat and run.dat which are

necessary to run the CML Air Bearing Design rectangular mesh solver Quick419, or the files

rail.dat, run.dat and trigrid.dat which are necessary to run the CML Air Bearing Design

triangular mesh solver Quick5). The file constraint.dat is mainly used to define the

6

constraints and the objective function. The file option.dat is used to define certain control

parameters for the DIRECT algorithm.

In Version 2.0, before running the optimization program, users must copy the file

rail.dat to rail.dat.orig and rail.dat.opt, and copy the file run.dat to run.dat.orig and

run.dat.opt. This will create an initial reference design, which is necessary because Version

2.0 of the optimization program generates new designs during the running process and

overwrites these two files. In Version 3.0, users are not required to make these copies,

because the DIRECT algorithm always picks the midpoint in the search space as the initial

sample point. The simulation results from that initial point are used for normalization of the

objective function terms throughout the whole optimization process. If desired for

comparison purposes, Version 3.0 will allow the user to define the prototype slider ABS

design, instead of using the initial design generated by the DIRECT algorithm as the

normalization design. In that case, the user should copy the original file rail.dat to rail.dat.ref

and copy the original file run.dat to run.dat.ref.

All variables that are not set explicitly in the constraint.dat and option.dat files are

taken from rail.dat and run.dat. Please refer to the CML Air Bearing Design Program

manual for a detailed explanation of these two files.

Now let’s look at the input file constraint.dat.

7

The first seven lines of the constraint.dat file describe the optimization program

information and the way to report bugs. They should not be edited. They are:

**

* CML Optimization Code "OPTI341" input file: CONSTRAINT.DAT *

* Copyright (C) 1998-2002, *

* Computer Mechanics Laboratory, UC Berkeley. *

**

* PLEASE REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU *

**

The next line defines the solver to be used and it should not be edited. It is:

Select solver (1=rectangular solver 2=triangular solver)

The choice (1 or 2) should be entered in the following line.

The next line defines whether constraints for the solver results (hidden constraints)

should be used and it should not be edited. It is:

Set constraints on solver results? (0=No 1=Yes)

Setting hidden constraints will accelerate the optimization process. This is because we

usually need to evaluate the ABS designs at different radial positions (e.g., OD, MD and ID).

The optimization will invoke the CML steady code to calculate results for these different

positions. If for a certain design we find that some important parameters are very bad at a

certain radial position (e.g., a very high Roll), the best course is to skip this design, and do

not calculate it for the remaining radial positions. This design will be marked as an

8

“infeasible design”. If we set hidden constraints, on the other hand, we can let the

optimization program skip a design automatically according to the conditions we set, and

save some calculation time during the optimization process.

The choice (0 or 1) should be entered in the following line. Choice 1 is

recommended.

The next two lines describe the format for solver constraints and they should not be

edited. They are:

Format for solver constraints:

FH_L(nm) FH_U(nm) Roll_L(urad) Roll_U(urad) Pitch_L(urad) Pitch_U(urad)

The FH_L and FH_U represent the lower and the upper limits of the flying height

(nm), respectively. Similarly Roll_L and Roll_U are the lower and the upper limit of the roll

(µrad), respectively, and Pitch_L and Pitch_U are the lower and the upper limit of the pitch

(µrad), respectively.

If we set the constraints for the solver, and if the flying height, roll or pitch falls

beyond one of these values, then the evaluated design will be considered to be infeasible and

will be skipped.

Note: If the range of these parameters is too tight, then very few promising designs

will emerge.

9

The magnitude of these six parameters should be entered on the following line.

The next line defines which screen output mode is preferred and it should not be

edited. It is:

Screen display mode (1=verbose 2=concise)

Verbose mode means the program will show all the screen output for both the solver

and the algorithm. Concise mode means only the most important information will be output

to the screen, including the flying height, roll, and pitch for each radial position of a certain

design, and a few important parameters for the algorithms. Below is a typical concise screen

output:

Point# 1 : FH= 3.0653 ROLL= 1.7218 PITCH= 89.0202
Point# 2 : FH= 3.4089 ROLL= 2.1425 PITCH= 90.5169
Point# 3 : FH= 3.4593 ROLL= -1.0607 PITCH= 90.7013
Quick419 is DONE!
N_gen: 9 N_opt: 4
Cost: 3.281688e+000 Cost_bsf: 2.455146e+000

The first three lines give the flying heights (nm), rolls (µrad) and pitches (µrad) for

the three radial positions (OD, MD, ID). The next line shows the solver used by the program

(Quick419 in this case). N_gen and N_opt represent the current number of designs generated

and the current number of the best-so-far optimized designs found, respectively. Cost

represents the value of the objective function (also called the cost function) for the current

design. Cost_bsf means the best-so-far cost function value.

10

The choice (1 or 2) should be entered on the following line. Choice 1 is

recommended.

The next three lines describe the format of the seven parametric constraints and

should not be edited. They are:

**

Format for non-geometric constraints:

variable name lower value upper value initial value

The following seven lines actually define constraints for the problem. To skip

optimizing a particular parameter listed here, simply set the upper and lower bounds to be the

same. Here is an example:

load(kg) 1.5e-3 1.5e-3 1.5e-3

x offset 0.0 0.0 0.0

y offset 0.0 0.0 0.0

taper length 0.0 0.0 0.0

taper angle 0.0 0.0 0.0

recess depth 2.5e-6 2.5e-6 2.5e-6

step depth 0.3e-6 0.3e-6 0.3e-6

Note that x offset, y offset, taper length, recess depth, and step depth are all given in

units of meters, consistent with the new CML Air Bearing Design program. Taper angle is

given in radians.

11

The next two lines describe the related parameters of recess depth and step depth

optimization and should not be edited. They are:

**

recess, step, mid indexes and WP property (1=proportional 2=fixed)

The recess index, step index and mid index represent the wall profile indexes for the

base recess (cavity depth), whereas step is the segment between them. When the recess and

step are modified by the program, the wall profiles associated with them should also be

changed accordingly. We can change the wall profiles proportionally or with a fixed normal

distance. These two options are shown in Figs. 3 and 4, respectively.

The three index numbers and one property number should be given in the following

line. Please refer to the rail.dat file for the corresponding index numbers.

In this program, in addition to the constraint points defined in Version 1.5 and

Version 2.0, we include new geometric constraints, i.e., the constraint rails and constraint

lines. Figure 5 shows the comparison between the new geometric constraints defined in

Version 3.0 and the old geometric constraints defined in Version 1.5 and Version 2.0.

We demonstrate the new constraint rails in Figs. 6 ~ 8. In these figures, the gray lines

shows the original slider ABS design, and the dark lines show the shape of the slider ABS

design after the rail deformation. Notice that we also defined the symmetrical constraints in

order to maintain a symmetrical slider ABS design. In Fig. 6, a rear rail has been translated in

12

the length direction. In Fig. 7, a rear rail has been rotated with respect to one of its rail points.

In Fig. 8, a front rail has been shrunk proportionally.

We demonstrate the new constraint lines in Figs. 9 ~ 11. In these figures, the gray

lines shows the original slider ABS design, and the dark lines show the shape of the slider

ABS design after the line deformation. We also defined the symmetrical constraints to

maintain a symmetrical slider ABS design. In Fig. 9, a line has been translated in the length

direction. In Fig. 10, a line has been rotated with respect to one of its endpoints. In Fig. 11, a

line has been extended along its length direction.

Next we begin to define the geometric constraints, of which there are three different

kinds. Original constraints are mutually independent. Symmetric constraints are defined in

order to maintain the symmetry of the geometric shapes. Relative constraints are mostly

defined in order to maintain the local geometric shapes.

The next four lines describe the definition of the original rail constraint and should

not be edited. They are:

**

RAIL

--

Format for original geometric constraints

The next two lines describe how the original rail constraints for translation should be

constructed and should not be edited. They are:

13

Translation (form=1)

rail# dir low_delta up_delta

Here we define the original rail constraints for translation. The first field, rail#,

defines which rail will be translated. The second field, dir, defines in which direction the rail

should be translated. The field should read x (or X) if the rail is to move in the slider length

direction, or y (or Y) if the rail is to move in the slider width direction. These conventions are

consistent with the CML Air Bearing Design program. The third and the fourth fields,

low_delta and up_delta, define the range in which the rail can be moved. Note that these

two fields are given by relative coordinates in the units of meters. The low_delta must be

negative or equal to 0, whereas the up_delta must be positive or equal to 0. These four fields

must be entered in the following line.

The next two lines describe how the original rail constraints for rotation should be

constructed and should not be edited. They are:

Rotation (form=2)

rail# cent_X cent_Y low_ang(deg) up_ang(deg)

Here we define the original rail constraints for rotation. The first field, rail#, defines

which rail will be rotated. The second and the third fields, cent_X and cent_Y, define the

absolute coordinates of the point with respect to which the rail should rotate. The point can

be a vertex of a rail, but it does not have to be. The unit here is meters. The fourth and the

fifth fields, low_ang(deg) and up_ang(deg), define the angular interval over which the rail

14

can be rotated. Note that these two fields are given by relative coordinates in the unit of

degrees. The counterclockwise direction is defined as positive and the clockwise direction is

defined as negative. The low_ang(deg) must be negative or equal to 0, while the

up_ang(deg) must be positive or equal to 0. These five fields must be entered in the

following line.

The next two lines describe how the original rail constraints for expansion should be

constructed and should not be edited. They are:

Expansion (form=3)

rail# sign rail# pt# mode low_delta up_delta

Here we define the original rail constraints for expansion. The first field, rail#,

defines which rail will be expanded. The second field, sign, defines the sign of the rail. If the

vertices of the rail are arranged in a counterclockwise direction, the sign of the rail is positive

and a plus symbol + should be entered. Otherwise a minus symbol - should be entered for

this field. The next three fields describe how the rail should move after the expansion. The

third and the fourth fields, rail# and pt#, define a vertex on this rail. After the expansion, the

whole rail will be moved so that the new vertex will coincide with the corresponding initial

vertex on that rail. If the rail# and pt# are both set to 0, the fifth field, mode, will define how

the expanded rail moves. The mode field has five possible values:

• L (or l): the expanded rail will be moved so that its leftmost vertex will have the

same X coordinate as the initial rail’s leftmost vertex.

15

• R (or r): the expanded rail will be moved so that its rightmost vertex will have the

same X coordinate as the initial rail’s rightmost vertex.

• U (or u): the expanded rail will be moved so that its uppermost vertex will have

the same Y coordinate as the initial rail’s uppermost vertex.

• D (or d): the expanded rail will be moved so that its lowermost vertex will have

the same Y value as the initial rail’s lowermost vertex.

• *: the expanded rail will not be moved.

The sixth and the seventh fields, low_delta and up_delta, define the interval over which the

rail can be shrunk or expanded. Note that these two fields are given by relative coordinates in

the unit of meters. Expansion is defined as positive and shrink is defined as negative. The

low_delta must be negative or equal to 0, while the up_delta must be positive or equal to 0.

These seven fields must be entered in the following line.

The next three lines describe how the symmetric rail constraints should be

constructed and should not be edited. They are:

--

Format for symmetric constraints

rail# dir --> rail#

Here we define the symmetric rail constraints for the problem. Each line consists of

three fields. The first field, rail#, indicates which rail will be varied symmetrically. The

second dir field defines in which direction the specified rail should vary. The dir field might

take the following three possible values:

16

• X (or x): Only the X coordinates of the vertices on that rail will be varied

symmetrically.

• Y (or y): Only the Y coordinates of the vertices on that rail will be varied

symmetrically.

• B (or b): Both the X and Y coordinates of the vertices on that rail will be varied

symmetrically.

The final field, rail#, defines the rail for which the current rail will vary symmetrically.

The next three lines describe how the relative rail constraints should be constructed

and should not be edited. They are:

--

Format for relative constraints

rail# form sign mode ==> rail#

Here we define the relative rail constraints for the problem. Each line consists of five

fields. The first field, rail#, defines which rail will be moving relatively. The second field,

form, defines by which relative form the current rail will be moving. The form value 1

means translation, 2 means rotation, and 3 means expansion. The third field, sign, defines

whether the rail’s vertices are arranged in counterclockwise direction (+) or clockwise

direction (-). The fourth field, mode, as before, defines how the current rail moves. The

mode field has five possible values, i.e., L (or l), R (or r), U (or u), D (or d) and *. The fifth

field, rail#, defines the rail to move relative to, or the reference rail.

17

For example, if the form field takes the value 1, the current rail will move the same

distance as the reference rail does. If the form field takes the value 2, the current rail will

rotate the same angle as the reference rail does. If the form field takes the value 3, the current

rail will expand the same distance as the reference rail does.

Multiple constraint rails can be input for all of the above cases.

The next four lines describe how the original line constraint will be defined and

should not be edited. They are:

**

LINE

--

Format for original geometric constraints

The next two lines describe how the original line constraints for translation should be

constructed and should not be edited. They are:

Translation (form=1)

rail# pt# rail# pt# dir low_delta up_delta

Here we define the original line constraints for translation. The first two fields, rail#

and pt#, define the first endpoint of the line. The second two fields, rail# and pt#, define the

second endpoint of the line. The next field, dir, defines in which direction the line should be

translated. The field should read x (or X) if the line is to move in the slider length direction,

or y (or Y) if the line is to move in the slider width direction. These conventions are

18

consistent with the CML Air Bearing Design program. The last two fields, low_delta and

up_delta, define the interval over which the line can be moved. Note that these two fields are

given by relative coordinates in the unit of meters. The low_delta must be negative or equal

to 0, while the up_delta must be positive or equal to 0. These seven fields must be entered in

the following line.

The next two lines describe how the original line constraints for rotation should be

constructed and should not be edited. They are:

Rotation (form=2)

rail# pt# rail# pt# cent_X cent_Y low_ang up_ang

Here we define the original line constraints for rotation. The first two fields, rail# and

pt#, define the first endpoint of the line. The second two fields, rail# and pt#, define the

second endpoint of the line. The third two fields, cent_X and cent_Y, define the absolute

coordinates of the point, with respect to which the line should rotate. The point can be a

vertex of a rail, but it is not required to be. The unit here is meters. The fourth two fields,

low_ang(deg) and up_ang(deg), define the angular interval over which the line can be

rotated. Note that these two fields are given by relative coordinates in the unit of degrees.

The counterclockwise direction is defined as positive and the clockwise direction is defined

as negative. The low_ang(deg) must be negative or equal to 0, while the up_ang(deg) must

be positive or equal to 0. These five fields must be entered in the following line.

19

The next two lines describe how the original line constraints for extension should be

constructed and should not be edited. They are:

Extension (form=3)

rail# pt# rail# pt# mode low_delta up_delta

Here we define the original line constraints for extension. The first two fields, rail#

and pt#, define the first endpoint of the line. The second two fields, rail# and pt#, define the

second endpoint of the line. The fifth field, mode, defines how the line extends. The mode

field has three possible values:

• 1: Only the first endpoint of the line gets extended along the length direction.

• 2: Only the second endpoint of the line gets extended along the length direction.

• 3: Both endpoints of the line get extended along the length direction.

The sixth and the seventh fields, low_delta and up_delta, define the interval over which the

line can be contracted or extended. Note that these two fields are given by relative

coordinates in the unit of meters. Extension is defined as positive and contraction is defined

as negative. The low_delta must be negative or equal to 0, while the up_delta must be

positive or equal to 0. These seven fields must be entered in the following line.

The next three lines describe how the symmetric line constraints should be

constructed and should not be edited. They are:

--

Format for symmetric constraints

rail# pt# rail# pt# dir --> rail# pt# rail# pt#

20

Here we define the symmetric line constraints for the problem. The first two fields,

rail# and pt#, define the first endpoint of the line. The second two fields, rail# and pt#,

define the second endpoint of the line. The fifth dir field defines in which direction the

specified line should vary. The dir field might take any of the following three possible

values:

• X (or x): Only the X coordinates of the two endpoints of the line will be varied

symmetrically.

• Y (or y): Only the Y coordinates of the two endpoints of the line will be varied

symmetrically.

• B (or b): Both the X coordinates and the Y coordinates of the two endpoints of the

line will be varied symmetrically.

The third two fields, rail# and pt#, define the first endpoint of the line for which the current

line will vary symmetrically. The fourth two fields, rail# and pt#, define the second endpoint

of the line for which the current line will vary symmetrically.

The next three lines describe how the relative line constraints should be constructed

and should not be edited. They are:

--

Format for relative constraints

rail# pt# rail# pt# form ==> rail# pt# rail# pt#

Here we define the relative line constraints for the problem. The first two fields, rail#

and pt#, define the first endpoint of the line. The second two fields, rail# and pt#, define the

second endpoint of the line. The fifth field, form, defines with which relative form the

21

current line will be moving. The form value 1 means translation, 2 means rotation, and 3

means extension. The third two fields, rail# and pt#, define the first endpoint of the line

relative to which the current line will vary. The fourth two fields, rail# and pt#, define the

second endpoint of the line relative to which the current line will vary.

For example, if the form field takes the value 1, the current line will move the same

distance as the reference line does. If the form field takes the value 2, the current line will

rotate the same angle as the reference line does. If the form field takes the value 3, the current

line will extend the same distance as the reference line does.

Multiple constraint lines can be input for all above cases.

The next five lines describe how the original constraint points will be defined and

should not be edited. They are:

**

POINT

--

Format for original geometric constraints

rail# pt# dir low_val up_val init_val

Multiple vertices can be given a range in which to vary. Each constraint takes up one

line. The rail# field defines on which rail the vertex resides as defined in the CML Air

Bearing Design program. Similarily, the pt# field defines which vertex is to be varied on this

rail and is also used as it is defined in the CML Air Bearing Design program. The dir field

22

defines in which direction a vertex is to move. The field should read x (or X) if the vertex is

to move in the slider length direction, or y (or Y) if the vertex is to move in the slider width

direction. These conventions are consistent with the CML Air Bearing Design program. The

low_val field gives the lower value of the geometric constraint. Note that unlike the earlier

version 1.5, here all the geometric constraints are given by absolute coordinates in the unit of

meters, which is consistent with the CML Air Bearing Design program. The next field,

up_val, gives the upper limit on the value of the constraints. The following field, init_val,

gives the values that are used for the starting point of the optimization. Note that if a

parameter range has the same lower and upper bounds (e.g., this parameter is not to be

included in the optimization), then the init_val field will be ignored and the value read in the

rail.dat that already exists in the current directory will be used.

The next three lines describe how the symmetric constraint points should be

constructed and should not be edited. They are:

--

Format for symmetric constraints

rail# pt# dir --> rail# pt#

Here we define the symmetric constraint points for the problem. Each line consists of

five fields. The first two fields, rail# and pt#, indicate which rail and vertex will be varied

symmetrically. The dir field defines in which direction the specified vertex should vary. This

field may take X(or x) or Y(or y) as the value. The final two fields, rail# and pt#, define the

vertex with which the current vertex will vary symmetrically.

23

The next three lines describe how the relative constraint points should be constructed

and should not be edited. They are:

--

Format for relative constraints

rail# pt# dir ==> rail# pt#

Here we define the relative constraint points for the problem. A relative constraint

point fixes a specified vertex to move with the same distance relative to another specified

vertex throughout the optimization. Each line consists of four fields. The first two fields,

rail# and pt#, define which vertex gets moved. The dir field defines in which direction the

specified vertex should vary. The dir field might take the following three possible values:

• X (or x): Only the X coordinates of vertex will be varied.

• Y (or y): Only the Y coordinates of the vertex will be varied.

• B (or b): Both the X coordinates and the Y coordinates of the vertex will be

varied.

The final two fields, rail# and pt#, define the vertex relative to which to move.

The next three lines describe the format for evaluation points and should not be

edited. They are:

**

Format for evaluation points (from OD to ID):

radius(m) skew(deg)

24

Typically, the optimization program evaluates slider flying height, roll, pitch, etc. at

various radial positions. Where, and how many of these evaluations are made are described

in this section. Two fields are needed to define exactly where the slider is to be evaluated for

the cost function. The first field, radius, determines the radial distance from the center of the

disk and the next field, skew, determines the corresponding skew. Please note that we have

adopted the IDEMA standard regarding positive and negative skews, which is opposite of

the convention used in the earlier version. Please refer to the latest CML Air Bearing Design

program manual to make sure your input is correct.

The final section dictates the weights given to the various terms of the objective

function. The first two lines of this section are a separator line and a description of the

section and should not be edited. They are:

**

Weightings for objective function:

The next line is an informational line and should not be edited. The line after that is

the weight for the maximum difference in flying height (nm) term, the 1st term defined in

the objective function. Note that all nine terms in the objective function have been

normalized, which means that if they have an initial value, it will be 1; otherwise it will be 0.

By normalizing the objective function terms we can more easily define their weightings

according to our optimization goals, and we can also readily see improvement in different

terms. An example of these two lines is:

(1) Weight for maximum difference in flying height (nm) term:

25

 1.0

This term is defined as:

)(__
)(__

0FHdifferenceFHMaximum
FHdifferenceFHMaximum

 ,

where FH represents the flying height of the current design and FH0 represents the flying

height of the initial design (parameters with sub-index 0 will be regarded as the parameters of

the initial design). We see that for the initial design, the value of this term is always 1.

An important note about the definition of the flying height: in the CML Air Bearing

Design program, there are several different flying heights in the result file (e.g., nominal

flying height, minimum flying height, etc). The flying height defined here is the transducer

flying height, or “actual flying height”, which is the clearance between the read-write sensor

and the disk surface. In this optimization program, we always define the read-write sensor

point as our first point of interest in the rail.dat file and the program will take the flying

height at the first point of interest as the actual flying height. So please make sure you define

the read-write sensor point as the first point of interest in your rail.dat file.

The next two lines in the constraint.dat file describe and define the weight for the

flying height term, which is the 2nd term of the objective function. Note that, as we just

mentioned, “flying height” in this case means the transducer flying height. This term is used

to check the uniformity of the flying heights around our target flying height. The target flying

height is described and defined in the following two lines of the constraint.dat file. An

example of these lines is:

26

(2) Weight for flying height(nm) term:

 9.0

 Target flying height (nm):

 3.5

This term is defined as:

∑

∑

=

=

−

−

n

i
etti

n

i
etti

FHFH

FHFH

1

2
arg0

1

2
arg

)(

)(
 ,

where FHtarget represents our target flying height and n is the number of evaluation points.

We see that for the initial design, the value of this term is always 1.

The next two lines in the constraint.dat file describe and define the weight for the roll

(µµµµrad) term, which is the 3rd term of the objective function. This term represents the flatness

of the roll profile. An example of these lines is:

(3) Weight for roll (urad) term:

 1.0

This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

Roll

Roll

1

2
0

1

2

 .

Again we see that for the initial design, the value of this term is always 1.

27

The next two lines in the constraint.dat file describe and define the weight for the roll

– roll cutoff (µµµµrad) term, which is the 4th term of the objective function. The roll cutoff

(µrad) is described and defined in the following two lines; here is an example:

(4) Weight for roll - roll cutoff (urad) term:

 1.0

 Roll cutoff (urad):

 5.0

This term defines the acceptable range for roll (e.g., from –5µrad to +5µrad). Rolls

within this range are all acceptable, although smaller is still better. This roll cutoff term acts

like a penalty function. If the rolls are all in the range we defined, this term has the value of

0. Otherwise it won’t be 0. The more the rolls deviate from our acceptable range, the greater

an effect this term will have.

This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

cutoffRoll

cutoffRoll

1

2
0

1

2

_

_
 ,

where

>−
≤

=
cutoffRollRollifcutoffRollRoll

cutoffRollRollif
cutoffRoll

ii

i
i __

_0
_ .

28

For this term, if the ∑
=

n

i
icutoffRoll

1

2
0_ is equal to 0, then we define the initial value

of this term to be 0. For this case, this term will be defined as ∑
=

n

i
icutoffRoll

1

2_ to avoid

dividing by zero.

The next two lines in the constraint.dat file describe and define the weight for the

pitch – pitch cutoff (µµµµrad) term, which is the 5th term of the objective function (the pitch

cutoff (µrad) is itself described and defined in the two lines immediately following).

An example of these two lines is:

(5) Weight for pitch - pitch cutoff (urad) term:

 0.0

 Pitch cutoff (urad):

 300.0

This term is defined for reasons similar to those for the roll cutoff term. That is,

sometimes we don’t want the pitches exceed a certain upper limit; again we have created a

penalty function. This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

cutoffPitch

cutoffPitch

1

2
0

1

2

_

_
 ,

where

>−
≤

=
cutoffPitchPitchifcutoffPitchPitch
cutoffPitchPitchif

cutoffPitch
ii

i
i __

_0
_ .

29

For this term, if the ∑
=

n

i
icutoffPitch

1

2
0_ is equal to 0, then we define the initial value

of this term as 0. For this case, this term will be defined as ∑
=

n

i
icutoffPitch

1

2_ to avoid

dividing by zero.

The next six lines define the weights for the three stiffness terms, i.e. vertical

stiffness (g/nm) term, pitch stiffness (µµµµN-m/µµµµrad) term and roll stiffness (µµµµN-m/µµµµrad)

term. Note that “sensitivity” is simply the inverse of “stiffness”. Therefore, increasing the

stiffness is equivalent to decreasing the sensitivity. These lines define the 6th, 7th and 8th

terms of the objective function. An example of these lines is:

(6) Weight for vertical sensitivity (nm/g) term:

 0.0

(7) Weight for pitch sensitivity (urad/uN-m) term:

 0.0

(8) Weight for roll sensitivity (urad/uN-m) term:

 0.0

The vertical sensitivity term is defined as:

∑

∑

=

=

n

i i

n

i i

stiffnessVertical

stiffnessVertical

1

2

0

1

2

_
1

_
1

 .

The pitch sensitivity term is defined as:

30

∑

∑

=

=

n

i i

n

i i

stiffnessPitch

stiffnessPitch

1

2

0

1

2

_
1

_
1

 .

The roll sensitivity term is defined as:

∑

∑

=

=

n

i i

n

i i

stiffnessRoll

stiffnessRoll

1

2

0

1

2

_
1

_
1

 .

Note that the CML triangular mesh solver Quick5 doesn’t calculate the stiffness

matrix. When using Quick5, please set the weights of all these sensitivity terms to 0. Also, if

you want to optimize these sensitivities using the CML rectangular mesh solver Quick419,

you must set the stiffness matrix flag istiff in the run.dat file to 1.

The next two lines define the weight for the negative force (g) term, the 9th term of

the objective function. They describe and define the negative force target (absolute value).

An example of these lines is:

(9) Weight for negative force(g) term :

 0.0

 Negative force target (g) (note: absolute value)

 2.0

31

Again, the need for this term is similar to that for the roll cutoff and pitch cutoff

terms. When designing a slider ABS, we sometimes want to maintain a high negative force

value to achieve certain slider performance targets (e.g., load-unload). Again, we have

created a penalty function. If the absolute value of the negative force is higher than the

negative force target, this term is set to 0. If the negative force is lower than the target, it will

be non-zero, and will have an effect.

This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

cutoffNegative

cutoffNegative

1

2
0

1

2

_

_
 ,

where

<−
≥

=
ettiiett

etti
i forceNforceNifforceNforceN

forceNforceNif
cutoffNegative

argarg

arg

__0

_ .

Here N_force means negative force. For this term, if the ∑
=

n

i
icutoffNegative

1

2
0_ is

equal to 0, then we define the initial value of this term as 0. For this case, this term will be

defined as ∑
=

n

i
icutoffNegative

1

2_ to avoid dividing by zero.

The total objective function value is the linear summation of the nine terms (including

their weights). It is:

32

()∑
=

×=
9

1

i
ii termobjecitveweightvaluefunctionObjective

The last three lines denote the end of the constraint.dat file and they should not be

edited. They are:

**

* END OF FILE *

**

The other input file is option.dat. It is used to define some of the control parameters

for the DIRECT algorithm.

The first seven lines of the option.dat file describe some optimization program

information and instructions for reporting bugs. They should not be edited. They are:

**

* CML Optimization Code "OPTI341" input file: OPTION.DAT *

* Copyright (C) 1998-2002, *

* Computer Mechanics Laboratory, UC Berkeley. *

**

* PLEASE REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU *

**

The next two lines define the type of DIRECT algorithm to be used and they should

not be edited. They are:

(1: Standard 2: Fewer Groups 3: Double Partitions 4: Combined)

Choose the DIRECT algorithm [1]:

33

The choice (1, 2, 3 or 4) should be entered in the following line.

The next line defines the maximum number of iterations for the DIRECT algorithm

and it should not be edited. It is:

Maximum number of iterations for DIRECT [100]:

The maximum number of iterations should be entered in the following line.

The next line defines the maximum number of function evaluations for the DIRECT

algorithm and it should not be edited. It is:

Maximum number of function evaluations for DIRECT [500]:

The maximum number of function evaluations should be entered in the following

line.

The next line defines whether the manufacturing tolerance should be set for the

original constraints and it should not be edited. It is:

Set manufacturing tolerance? (1=YES 0=NO)

The choice (1 or 0) should be entered in the following line.

34

The next line defines the manufacturing tolerances for the original constraints and it

should not be edited. It is:

Manufacturing tolerance for the original constraints:

If N original constraints have been defined, then N rows of tolerance values should be

entered in the following line. If we do not want to set the manufacturing tolerance, then the

value should be set as 0.

The last three lines denote the end of the option.dat file and they should not be edited.

They are:

**

* END OF FILE *

**

4. OUTPUT FILE

The most important output files generated by the optimization program version 3.0

(in addition to the result files of the CML Air Bearing Design program) are:

rail.dat.opt

run.dat.opt

cost.dat

optcost.dat

35

opti_res.dat

opt.dat

scr_sav.dat

record.dat

resall.dat

minpoint.dat

These files are all text files.

The rail.dat.opt and run.dat.opt files contain all the information necessary for the

current optimal design. They have the same structure as the corresponding rail.dat and

run.dat input files used by the CML Air Bearing Design program. For detailed information

about these two files, please refer to the User’s Manual for the CML steady code.

The cost.dat file contains information about every feasible design generated by the

optimization program. It has 11 fields that are defined as follows:

 total objective function value

 maximum difference in flying height term

 flying height term

 roll term

 roll cutoff term

 pitch cutoff term

36

 vertical sensitivity term

 pitch sensitivity term

 roll sensitivity term

 negative force term

 number of designs generated

The file optcost.dat keeps track of the best-so-far optimized designs, i.e., it is only

updated when a design is found to have the so-far-lowest objective function value. Like file

cost.dat, file optcost.dat also has 11 fields. These two files have the same fields except for

the last one. For optcost.dat, the last field is:

sequence number of the best-so-far optimized designs

The file opti_res.dat keeps tracks of the optimization progress. A typical part of this

file (for the example case) is as follows:

num_generated so far: 4

new load: 1.500000e-003

new xf0: 0.000000e+000

new yf0: 0.000000e+000

new xt: 0.000000e+000

new ht: 1.000000e-002

new recess: 3.000000e-006

new step: 3.000000e-007

Total cost: 4.226780e+000.

FH max_diff term: 6.995107e-001 * 1.000000e+000 = 6.995107e-001,

FH term: 2.416586e-001 * 9.000000e+000 = 2.174927e+000,

Roll term: 1.352342e+000 * 1.000000e+000 = 1.352342e+000

Roll cutoff term: 0.000000e+000 * 1.000000e+000 = 0.000000e+000

37

Pitch term: 0.000000e+000 * 0.000000e+000 = 0.000000e+000

Vertical sens. term: 0.000000e+000 * 0.000000e+000 = 0.000000e+000

Pitch sens. term: 0.000000e+000 * 0.000000e+000 = 0.000000e+000,

Roll sens. term: 0.000000e+000 * 0.000000e+000 = 0.000000e+000,

Negative force term: 1.012075e+000 * 0.000000e+000 = 0.000000e+000.

The file opt.dat saves all the important results for all the optimized designs at

different radial positions. It has the following six fields:

flying heights (nm) (note: actual flying heights)

minimum flying heights (nm)

nominal flying heights (nm)

pitches (urad)

rolls (urad)

negative forces (g)

Each field has N real numbers, where N is the number of evaluation points. Generally

we choose evaluation points at OD, MD and ID. Then N is equal to 3.

The file scr_sav.dat keeps all the screen display information during the whole

optimization process if you have chosen the concise display mode (mode 2). If the verbose

mode (mode 1) in the constraint.dat file is chosen, this file will not be generated.

The file record.dat keeps all the information of the best-so-far optimized ABS design

during the optimization process. It has five fields:

38

iteration number

number of designs generated

current lowest objective function value

normalized coordinates of the best-so-far sample point

normalized dimensions of the box containing the best-so-far sample point

The file resall.dat keeps the latest information about all the boxes and sample points

in the search space. It has nine fields:

sequence number of the boxes or sample points

partition flag of the box (1 if it is just partitioned, otherwise 0)

infeasible flag of the sample point (1 if it is infeasible, otherwise 0)

partition level of the boxes (the higher the level, the smaller the box)

dimension of the problem

magnitude of the box size

objective function value of the sample points

normalized coordinates of the sample points

normalized dimensions of the boxes containing the sample points

The file minpoint.dat keeps information about the minimum point found by the

algorithm. It has one line and eight fields:

sequence number of this box or sample point

39

partition flag of the box (1 if it is just partitioned, otherwise 0)

partition level of the box (the higher the level, the smaller the box)

dimension of the problem

magnitude of the box size

minimum value of the objective function

normalized coordinates of the sample point

normalized dimensions of the box containing the sample point

5. MATLAB PRE-PROCESS GUI

A Matlab pre-process Graphic User Interface (GUI) called the Slider Geometry

Interface Visualization GUI has been developed. This GUI has been developed to help the

user define the constraints more easily. Its Matlab file is railgui2.m (with supporting files and

sub-directories) and it runs under Matlab Version 5 or higher.

This pre-process GUI takes the rail.dat.orig file as the only input file and it can show

the slider 2-D geometry interactively. Figures 12 ~ 15 demonstrate how to use this GUI.

Figure 12 shows the initial appearance of the GUI after loading the example case. The

GUI consists of menus, a list box on the left and a plot area on the right. In this state, when

the cursor is moved close to a vertex of a rail in the plot area, the rail index and the vertex

sequence number will be displayed instantaneously, as shown in Fig. 12.

40

If we left click on that vertex, then that vertex and the rail it is on will be highlighted

and the information about that rail and all of its vertices (vertices sequence number, x and y

coordinates, wall profile indexes) will be displayed in the left list box, as shown in Fig. 13.

That vertex will also be highlighted in the list box.

If we click on a rail, then the whole rail will be highlighted and all of its information

will be displayed in the left list box, as shown in Fig. 14. Additionally, if we select a rail

index from the top of that list box, the corresponding rail will also be highlighted in the plot

area.

Figure 15 shows the structure of the menus. There are 3 menu items: Information,

Option and Close. The Information menu shows general information about this GUI. The

Close menu is used to quit the GUI program. The Option menu allows the user to show the

Matlab built-in menus in order to better manipulate the graphics, and also to show the current

date at the left bottom of the interface, as shown in Fig. 15. The user may also change the

background color for the window, the list box and the plot area, as well as the cursor shape.

Selecting Default Settings will reset all options to their default settings.

6. MATLAB POST-PROCESS FILE

We have also created four Matlab files for post-processing. They use the input and

output files, and can provide users with a direct graphic explanation of the optimization

results. All of them run under Matlab Version 5 or higher. These files are:

41

plotopt3.m

conrail3.m (together with xline.m, yline.m and lplot.m)

history3.m

objterm3.m

To illustrate the use of these Matlab post-process files, let’s first look at the example

case. The initial slider is a Pico slider with FHs around 5nm. The rail shape of the slider is

shown in Figs. 16 and 17. We wish to optimize it by lowering its FHs to 3.5nm while still

maintaining a flat roll profile. The input files constraint.dat, option.dat, rail.dat and run.dat

are shown in List 1, 2, 3 and 4, respectively. For the example case we defined two original

constraint rails, i.e., the side rails of the slider can move along the length direction and they

can also expand or shrink.

The Matlab post-process file plotopt3.m is used to show the variation in the objective

function value during the optimization process.

For the example case, running plotopt3.m yields the results shown in Fig. 18. The

small hollow squares represent all the designs generated. The small solid squares represent

the infeasible designs that were skipped or ignored due to either a breach in the hidden

constraints we set or due to a slider crash. The dark circles represent all the “best-so-far”

optimized designs obtained during the optimization process. These best-so-far designs have

the lowest objective function values obtained so far.

42

Figure 18 also shows the change in the total objective function value and the

percentage of the improvement, which is defined as:

%100×
−

=
ini

optini
imp Cost

CostCost
Percent ,

where Costini means the initial objective function value, and Costopt means the objective

function value for the final optimized design. Ngen, Nign, and Nopt in this figure represent the

number of the designs generated, ignored and optimized, respectively.

The Matlab post-process file conrail3.m is used to show the differences between the

optimized design and the initial design. For the example case, running of conrail3.m yields

the results shown in Fig. 19.

In Fig. 19, the gray lines show the rail shape of the initial design, whereas the dark

lines show the rail shape of the optimized design. We see that the side rails have been

reduced and moved toward the leading edge of the slider ABS design, thus lowering its FHs.

The Matlab post-process file history3.m is used to show six parameters for all the

best-so-far optimized designs: actual flying height (nm), minimum flying height (nm),

nominal flying height (nm), roll (µrad), pitch (µrad) and negative force (g). Running this

post-process file for the example case yields the results shown in Fig. 20.

In Fig. 20, the horizontal coordinates in each of the six small pictures represent the

index number of all the best-so-far optimized designs. In this case, index 1 is the initial

43

design and index 11 is the final optimized design. We see that the optimization program

found a design with very uniform flying heights, around the target flying height of 3.5nm, as

well as a flat roll profile.

The Matlab post-process file objterm3.m shows the variations in all nine objective

function terms for all the best-so-far optimized designs, as well as the percentage of

improvement for each term. Percentage of improvement here is defined similarly to that for

the objective function value. Running objterm3.m under Matlab yields the results shown in

Fig. 21.

Again, all the horizontal coordinates represent the index number of various best-so-

far optimized designs. In Fig. 21 we see that for the 2nd objective function term (i.e., the

flying height term), the percentage of improvement is a very high 95.15%. That means that

the final optimized design has a very constant flying height profile around the target flying

height. However, the roll term (the 3rd objective function term) did not improve. The 4th

objective function term (the roll cutoff term) remains 0 for all the best-so-far optimized

designs. The remaining objective function terms are all 0 because we defined their weights as

0.

In summary, for this example case, a greatly optimized ABS design was obtained by

using the CML optimization program version 3.0.

44

7. HOW TO RUN THE PROGRAM

The optimization program is written in “C” running under PC Windows. Currently,

the optimization program doesn’t have a graphic user interface. In order to use it, you must

download the version you need from the CML website (http://cml.me.berkeley.edu) and

install it on your PC.

Download the ZIP file opti3.ZIP to your PC, unzip it under the root directory (e.g.,

the root directory of drive C). You should see a new set of directories:

C:/opti3/program

C:/opti3/quick

C:/opti3/m_files

C:/opti3/example

The directory C:/opti3/program contains the optimization executable program

opti3.exe.

The directory C:/opti3/quick contains the CML Air Bearing Design executable

program Quick419.exe (rectangular mesh solver) and Quick5.exe (triangular mesh solver).

45

The directory C:/opti3/m_files contains both the Matlab pre-process GUI file

railgui2.m and the Matlab post-process files conrail3.m, xline.m, yline.m, lplot.m,

plotopt3.m, history3.m and objterm3.m.

The directory C:/opti3/example contains an example case with all the input and

output files.

When you are ready to perform the optimization, copy the file c:/opti3/opti3.exe to

your current working directory and make sure you have all the necessary input files. Then

run the optimization program under Windows by double-clicking on it.

During any stage of the process, you can use the Matlab post-process files to check

the results. First, start Matlab (version 5 or higher). Then, in the Matlab console window,

enter:

>> cd C:/your_current_working_directory

>> path (path, ‘C:/opti3/m_files’)

Finally, under the Matlab prompt, enter railgui2, conrail3, plotopt3, history3 or

objterm3 to see the related results.

8. WHEN TO STOP

46

The DIRECT algorithm has a much faster convergence rate than does ASA. In

practice, for DIRECT defining a maximum number of function evaluations of 200 ~ 300 (in

option.dat) should be adequate for low-dimensional problems. Higher numbers should be set

for higher-dimensional problems. Because the latest optimized design will always be saved

in the files rail.dat.opt and run.dat.opt, it is okay to stop or interrupt the optimization

program once you think you have the optimized design you want.

9. SOME TIPS FOR SUCCESSFUL OPTIMIZATION

• Combine the use of the optimization code with the use of CMLAir32 software.

The latest CML Air Bearing Design program CMLAir32 v6.0 (PC Windows

version) has a graphical user interface and it’s very easy to use. A good way to

prepare your initial design is to use of CMLAir32.

• Use the Matlab pre-process GUI railgui2.m to define the constraints.

It is quite easy to use the Matlab pre-process GUI railgui2.m to define and double-

check the constraints. To do this, you need to copy the file rail.dat to rail.dat.orig.

• Try to get a better initial design.

A better initial design will always help you to find the optimized design more

quickly.

• Define the constraints reasonably.

47

Although constraints can be set arbitrarily, and the optimization program will

always attempt to find an optimized design with whatever constraints the user

defines, it helps greatly to define them properly. Also, the fewer the constraints

defined, the faster the optimization will be. We recommend that users choose no

more than 10 original constraints for faster optimization.

• Make use of the manufacturing tolerance and hidden constraints.

By defining the manufacturing tolerance, the algorithm can avoid wasting time in

partitioning boxes with sides smaller than the tolerance. Thus, the algorithm can put

more effort into exploring larger boxes in the search space and improve its

efficiency.

Defining the hidden constraints will also save some calculation time in the

optimization process. However, one must be careful when using very strict hidden

constraints. If the constraint points are not properly defined the algorithm may not

be able to yield optimized designs.

When you define the evaluation points in the file constraint.dat, remember to list

the points in order from OD to ID. The solver invoked by the optimization program

will always evaluate the slider’s performance at the OD first. In our experience, bad

performance is most likely at the OD, due to its high linear velocity. In this case, the

program will only need to evaluate the slider design at the first position, and then

will skip the rest.

• Choose the weights for different objective function terms reasonably.

48

In general, weight the items of greatest concern most heavily. While this may seem

obvious, it should be executed with some care. For example, if the most important

characteristics of a specific design are that it fly completely flat over the radius of

the disk at the target flying height, then the flying height and roll terms should have

greater weights than other terms you also want to optimize (e.g., sensitivity). In

other words, try to avoid sacrificing uniformity of flying heights and flatness of

rolls in order to gain the stiffness.

• Use multiple optimizations to get better designs.

If you are not satisfied with the current optimized design, use it as a new initial

design, redefine the constraints, and then optimize it again. Several iterations will

eventually yield a final optimized design.

49

List 1: Example listing of constraint.dat file

**

* CML Optimization Code "OPTI341" input file: CONSTRAINT.DAT *

* Copyright (C) 1998-2002, *

* Computer Mechanics Laboratory, UC Berkeley. *

**

* PLEASE REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU *

**

Select solver (1=rectangular solver 2=triangular solver)

1

Set constraints on solver results? (0=No 1=Yes)

1

Format for solver constraints:

FH_L(nm) FH_U(nm) R_L(urad) R_U(urad) P_L(urad) P_U(urad)

2 10 -30 30 50 400

Screen display mode (1=verbose 2=concise)

2

**

Format for non-geometric constraints:

variable name lower value upper value initial value

load(kg) 1.5e-3 1.5e-3 1.5e-3

x offset 0.0 0.0 0.0

y offset 0.0 0.0 0.0

taper length 0.0 0.0 0.0

taper angle 0.0 0.0 0.0

recess depth 2.5e-6 2.5e-6 2.5e-6

step depth 0.3e-6 0.3e-6 0.3e-6

**

recess, step, mid indexes and WP property (1=proportional 2=fixed)

1 3 2 1

**

RAIL

--

Format for original geometric constraints

Translation (form=1)

rail# dir low_delta up_delta

4 x -0.15e-3 0.15e-3

Rotation (form=2)

rail# cent_X cent_Y low_ang(deg) up_ang(deg)

Expansion (form=3)

50

rail# sign rail# pt# mode low_delta up_delta

4 - 0 0 u -0.02e-3 0.02e-3

--

Format for symmetric constraints

rail# dir --> rail#

2 b 4

--

Format for relative constraints

rail# form sign mode ==> rail#

**

LINE

--

Format for original geometric constraints

Translation (form=1)

rail# pt# rail# pt# dir low_delta up_delta

Rotation (form=2)

rail# pt# rail# pt# cent_X cent_Y low_ang up_ang

Extension (form=3)

rail# pt# rail# pt# mode low_delta up_delta

--

Format for symmetric constraints

rail# pt# rail# pt# dir --> rail# pt# rail# pt#

--

Format for relative constraints

rail# pt# rail# pt# form ==> rail# pt# rail# pt#

**

POINT

--

Format for original geometric constraints

rail# pt# dir low_val up_val init_val

--

Format for symmetric constraints

rail# pt# dir --> rail# pt#

--

Format for relative constraints

rail# pt# dir ==> rail# pt#

**

Format for evaluation points (from OD to ID):

radius(m) skew(deg)

0.031 17.39

0.023 9.1

0.015 -1.22

51

**

Weightings for objective function:

(1) Weight for maximum difference in flying height (nm) term:

 1.0

(2) Weight for flying height(nm) term:

 9.0

 Target flying height (nm):

 3.5

(3) Weight for roll (urad) term:

 1.0

(4) Weight for roll - roll cutoff (urad) term:

 1.0

 Roll cutoff (urad):

 5.0

(5) Weight for pitch - pitch cutoff (urad) term:

 0.0

 Pitch cutoff (urad):

 300.0

(6) Weight for vertical sensitivity (nm/g) term:

 0.0

(7) Weight for pitch sensitivity (urad/uN-m) term:

 0.0

(8) Weight for roll sensitivity (urad/uN-m) term:

 0.0

(9) Weight for negative force(g) term :

 0.0

 Negative force target (g) (note: absolute value)

 2.0

**

* END OF FILE *

**

52

List 2: Example listing of option.dat file

**

* CML Optimization Code "OPTI341" input file: OPTION.DAT *

* Copyright (C) 1998-2001, *

* Computer Mechanics Laboratory, UC Berkeley. *

**

* PLEASE REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU *

**

(1: Standard 2: Fewer Groups 3: Double Partitions 4: Combined)

Choose the DIRECT algorithm [1]:

1

Maximum number of iterations for DIRECT [100]:

100

Maximum number of function evaluations for DIRECT [500]:

400

Set manufacturing tolerance? (1=YES 0=NO)

0

Manufacturing tolerance for the original constraints:

0.0

0.0

**

* END OF FILE *

**

53

List 3: Example listing of original rail.dat file

CML Version 4.018 RAIL.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

1.250000e-003 1.000000e-003 3.000000e-004

4 3

21 1

1.250000e-003 6.500000e-004 2

1.150000e-003 6.500000e-004 2

1.124000e-003 6.477200e-004 2

1.098700e-003 6.409500e-004 2

1.075000e-003 6.299000e-004 2

1.053600e-003 6.149100e-004 2

1.035100e-003 5.964200e-004 2

1.020100e-003 5.750000e-004 2

1.009100e-003 5.513000e-004 2

1.002300e-003 5.260500e-004 2

1.000000e-003 5.000000e-004 2

1.002300e-003 4.739500e-004 2

1.009100e-003 4.487000e-004 2

1.020100e-003 4.250000e-004 2

1.035100e-003 4.035800e-004 2

1.053600e-003 3.850900e-004 2

1.075000e-003 3.701000e-004 2

1.098700e-003 3.590500e-004 2

1.124000e-003 3.522800e-004 2

1.150000e-003 3.500000e-004 2

1.250000e-003 3.500000e-004 2

0.000000e+000

38 1

7.500000e-004 0.000000e+000 2

7.604200e-004 9.100186e-007 2

7.705200e-004 3.620051e-006 2

7.800000e-004 8.039991e-006 2

7.885700e-004 1.404004e-005 2

7.959600e-004 2.143008e-005 2

8.019600e-004 3.000005e-005 2

8.063800e-004 3.948004e-005 2

8.090900e-004 4.958006e-005 2

8.100000e-004 6.000005e-005 2

8.090900e-004 7.042004e-005 2

54

8.063800e-004 8.052005e-005 2

8.019600e-004 9.000005e-005 2

7.959600e-004 9.857008e-005 2

7.885700e-004 1.059601e-004 2

7.800000e-004 1.119600e-004 2

7.705200e-004 1.163800e-004 2

7.604200e-004 1.190900e-004 2

7.500000e-004 1.200000e-004 2

4.874998e-004 1.200000e-004 2

4.770800e-004 1.190900e-004 2

4.669800e-004 1.163800e-004 2

4.575000e-004 1.119600e-004 2

4.489300e-004 1.059601e-004 2

4.415400e-004 9.857008e-005 2

4.355400e-004 9.000005e-005 2

4.311200e-004 8.052005e-005 2

4.284100e-004 7.042004e-005 2

4.275000e-004 6.000005e-005 2

4.284100e-004 4.958006e-005 2

4.311200e-004 3.948004e-005 2

4.355400e-004 3.000005e-005 2

4.415400e-004 2.143008e-005 2

4.489300e-004 1.404004e-005 2

4.575000e-004 8.039991e-006 2

4.669800e-004 3.620051e-006 2

4.770800e-004 9.100186e-007 2

4.875000e-004 0.000000e+000 2

0.000000e+000

36 1

2.934100e-004 2.538000e-004 2

3.355100e-004 2.650800e-004 2

3.750000e-004 2.834900e-004 2

4.107000e-004 3.084900e-004 2

4.415100e-004 3.393000e-004 2

4.665100e-004 3.750000e-004 2

4.849200e-004 4.144900e-004 2

4.962000e-004 4.565900e-004 2

5.000000e-004 5.000000e-004 2

4.962000e-004 5.434100e-004 2

4.849200e-004 5.855100e-004 2

4.665100e-004 6.250000e-004 2

4.415100e-004 6.607000e-004 2

55

4.107000e-004 6.915100e-004 2

3.750000e-004 7.165100e-004 2

3.355100e-004 7.349200e-004 2

2.934100e-004 7.462000e-004 2

2.500000e-004 7.500000e-004 2

2.065900e-004 7.462000e-004 2

1.644900e-004 7.349200e-004 2

1.250000e-004 7.165100e-004 2

8.930300e-005 6.915100e-004 2

5.848900e-005 6.607000e-004 2

3.349400e-005 6.250000e-004 2

1.507700e-005 5.855100e-004 2

3.798100e-006 5.434100e-004 2

0.000000e+000 5.000000e-004 2

3.798100e-006 4.565900e-004 2

1.507700e-005 4.144900e-004 2

3.349400e-005 3.750000e-004 2

5.848900e-005 3.393000e-004 2

8.930300e-005 3.084900e-004 2

1.250000e-004 2.834900e-004 2

1.644900e-004 2.650800e-004 2

2.065900e-004 2.538000e-004 2

2.500000e-004 2.500000e-004 2

0.000000e+000

38 1

7.500000e-004 1.000000e-003 2

7.604200e-004 9.990900e-004 2

7.705200e-004 9.963800e-004 2

7.800000e-004 9.919601e-004 2

7.885700e-004 9.859600e-004 2

7.959600e-004 9.785700e-004 2

8.019600e-004 9.700000e-004 2

8.063800e-004 9.605200e-004 2

8.090900e-004 9.504200e-004 2

8.100000e-004 9.400000e-004 2

8.090900e-004 9.295800e-004 2

8.063800e-004 9.194800e-004 2

8.019600e-004 9.100000e-004 2

7.959600e-004 9.014300e-004 2

7.885700e-004 8.940400e-004 2

7.800000e-004 8.880400e-004 2

7.705200e-004 8.836200e-004 2

56

7.604200e-004 8.809100e-004 2

7.500000e-004 8.800000e-004 2

4.874998e-004 8.800000e-004 2

4.770800e-004 8.809100e-004 2

4.669800e-004 8.836200e-004 2

4.575000e-004 8.880400e-004 2

4.489300e-004 8.940400e-004 2

4.415400e-004 9.014300e-004 2

4.355400e-004 9.100000e-004 2

4.311200e-004 9.194800e-004 2

4.284100e-004 9.295800e-004 2

4.275000e-004 9.400000e-004 2

4.284100e-004 9.504200e-004 2

4.311200e-004 9.605200e-004 2

4.355400e-004 9.700000e-004 2

4.415400e-004 9.785700e-004 2

4.489300e-004 9.859600e-004 2

4.575000e-004 9.919601e-004 2

4.669800e-004 9.963800e-004 2

4.770800e-004 9.990900e-004 2

4.875000e-004 1.000000e-003 2

0.000000e+000

10 10 10

0.000000e+000 1.382200e-006 2.764400e-006 4.146700e-006 5.528900e-006 6.911100e-006

8.293300e-006 9.675600e-006 1.105800e-005 1.244000e-005

0.000000e+000 5.246900e-007 9.876500e-007 1.388900e-006 1.728400e-006 2.006200e-006

2.222200e-006 2.376500e-006 2.469100e-006 2.500000e-006

0.000000e+000 1.222200e-006 2.444400e-006 3.666700e-006 4.888900e-006 6.111100e-006

7.333300e-006 8.555600e-006 9.777800e-006 1.100000e-005

3.000000e-007 7.617300e-007 1.169100e-006 1.522200e-006 1.821000e-006 2.065400e-006

2.255600e-006 2.391400e-006 2.472800e-006 2.500000e-006

0.000000e+000 1.693300e-007 3.386700e-007 5.080000e-007 6.773300e-007 8.466700e-007

1.016000e-006 1.185300e-006 1.354700e-006 1.524000e-006

0.000000e+000 6.296300e-008 1.185200e-007 1.666700e-007 2.074100e-007 2.407400e-007

2.666700e-007 2.851900e-007 2.963000e-007 3.000000e-007

0.000000e+000 1.000000e-002 3.000000e-006

2.740000e-008 2.500000e-009 0.000000e+000

1.250000e-003 0.000000e+000 0.000000e+000 6.250000e-004

5.000000e-004 0.000000e+000 1.000000e-003 5.000000e-004

57

List 4: Example listing of original run.dat file

CML Version 4.018 RUN.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

***************Solution Control************

 istiff isolv ioldg iadpt isave

1 1 0 1 0

***************Initial Attitude************

 hm(m) pitch(rad) roll

 5.0000e-008 1.5000e-004 0.0000e+000

***************Runs************

 irad irpm ialt

 3 1 0

 radii(m)

 3.1000e-002 2.3000e-002 1.5000e-002

 skews(deg)

 1.7000e+001 9.0000e+000 -1.0000e+000

 RPMs

 7.2000e+003

 altitudes(m)

***************Air Parameters************

 p0(pa) al(m) vis(nsm^-2)

 1.0135e+005 6.3500e-008 1.8060e-005

***************Load Parameters************

 f0 xf0 yf0

 1.5000e-003 0.0000e+000 0.0000e+000

 xfs yfs emax

 0.0000e+000 0.0000e+000 1.0000e-003

 **************Grid Control**************

 nx ny

 225 225

 nsx nsy isymm

 1 1 0

 xnt(i),i=2,nsx

 nxt(i),i=2,nsx

 dxr(i),i=1,nsx

 1.000000e+000

 ynt(i),i=2,nsy

58

 nyt(i),i=2,nsy

 dyr(i),i=1,nsy

 1.000000e+000

***************Adaptive Grid************

 difmax decay ipmax

40.000000 40.000000 0

***************Reynolds Equation************

 ischeme imodel akmax

2 3 1.0000e-007

***************Partial Contact************

 icmodel stdasp(m) dnsasp(m^-2)

0 6.0000e-009 1.0000e+012

 rdsasp(m) eyoung(pa) yldstr(pa)

1.0000e-008 1.0000e+010 1.0000e+012

 frcoe pratio

0.300000 0.300000

***************Sensitivities************

 crowninc camberinc twistinc

0.0000e+000 0.0000e+000 0.0000e+000

 tlnginc tanginc loadinc

0.0000e+000 0.0000e+000 0.0000e+000

 ptrqinc rtrquinc recessinc

0.0000e+000 0.0000e+000 0.0000e+000

 iwscale

1

*****************Comments*************

"This is a test case"

59

Fig. 1 Structure of optimization program version 3.0

Optimization
Algorithm

Solver

DIRECT
Algorithm

CML Steady
Solvers

60

Fig. 2 Flow chart of the CML optimization program version 3.0

Initialization

Identify the potentially optimal boxes

Partition the potentially optimal boxes

CML ABS design program

Generate new designs

Evaluation of the objective functions

Yes No

Algorithm
Part

I > Imax?

N > Nmax?

Stop

No

No

Start

End

Solver
Part

Yes

61

Fig. 3 Modification of wall profiles in proportional mode

Fig. 4 Modification of wall profiles in fixed normal distance mode

Base recess
wall profile

Step wall profile

Wall profile
in-between

Original
recess
depth

Modified
recess
depth

Modified
step
depth

Original
step

depth

Base recess
wall profile

Step wall profile

Wall profile
in-between

Original
recess
depth

Original
step

depth

Modified
recess
depth

Modified
step
depth

62

Fig. 5 Comparison between the old and the new geometric constraints

Old geometric
constraints

New geometric
constraints

Point

x

y

Extension

Rotation

Translation

Expansion

Translation

Rotation

Point

Line

Rail

x

y

63

Fig. 6 Rail translation

Fig. 7 Rail rotation

Fig. 8 Rail expansion

64

Fig. 9 Line translation

Fig. 10 Line rotation

Fig. 11 Line extension

65

Fig. 12 Demonstration of the Slider Geometry Interactive Visualization GUI (1)

Fig. 13 Demonstration of the Slider Geometry Interactive Visualization GUI (2)

66

Fig. 14 Demonstration of the Slider Geometry Interactive Visualization GUI (3)

Fig. 15 Demonstration of the Slider Geometry Interactive Visualization GUI (4)

67

Fig. 16 Rail shape of the initial “Enterprise” slider design

Fig. 17 3-D rail shape of the initial “Enterprise” slider design

68

Fig. 18 Variation of the objective function value for the 2-D example case

Fig. 19 Comparison of the initial and optimized designs for the 2-D example case

69

Fig. 20 Variations in the slider performance parameters for the 2-D example case

Fig. 21 Variations in the objective function terms for the 2-D example case

