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ABSTRACT 

 

This report compares two fundamentally different global optimization techniques: the 

stochastic ASA (Adaptive Simulated Annealing) algorithm and the deterministic DIRECT 

(DIviding RECTtangles) algorithm. Both algorithms are powerful tools for dealing with 

strongly non-linear problems and they are quite robust. However, through numerical 

simulations as well as slider ABS optimization case studies, DIRECT is found to be more 

convenient for practical usage than ASA. Besides, due to its much faster convergence rate, 

DIRECT can find the global minimum more quickly than ASA. Also it is quite easy for 

DIRECT to handle the manufacturing tolerance issue. In summary, we found the DIRECT 

algorithm clearly outperforms the ASA algorithm in our test cases, and we consider DIRECT 

more suitable for slider ABS optimization than is ASA. 
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1. INTRODUCTION 

 

We introduced the Adaptive Simulated Annealing (ASA) algorithm and the DIRECT 

algorithm in the CML technical reports 00-010 and 01-003, respectively. As discussed 

previously, the ASA algorithm and the DIRECT algorithm are both global optimization 

techniques. However, these two algorithms belong to two fundamentally different categories. 

ASA is a stochastic algorithm, which means a random process is introduced within the 

algorithm. DIRECT is a deterministic algorithm, and thus no random process is involved. 

 

The ASA algorithm, developed by Ingber in 1989, is one of the latest developments 

of the Simulated Annealing (SA) family, and it has been applied to many areas. Research on 

the Simulated Annealing technique has also become intensified in recent years. On the other 

hand, the DIRECT algorithm, developed by Jones in 1993, is a relatively new algorithm and 

has not been widely used.  

 

Both algorithms are powerful tools for dealing with strongly non-linear problems. 

Neither requires a definite form of the objective function, but instead they both treat the 

solver and the objective function as “black boxes”. After generating the samples (input) and 

sending them to the solver, only the values of the objective function given by the solver 

(output) are needed. For both algorithms, only continuity is required for the optimization 

problems, i.e., the objective function must be continuous within the search space.  
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Both algorithms are quite robust. Although ASA has the highest convergence rate 

within the SA family, it is still relatively slow. It generally needs to be “tuned up” (Ingber, 

1996) before it can be applied successfully to a specific problem. Also, since ASA is a 

stochastic algorithm, it’s reasonable to expect different optimization results for a limited 

number of samples generated if there are any changes in the initial conditions or algorithm 

parameters. However, statistically, ASA will give the same results if a large number of 

samples are generated. DIRECT is a deterministic algorithm. Therefore, there are no random 

factors involved in its optimization process. Interestingly, DIRECT does not need to be 

“tuned up” for a specific problem, because there are almost no parameters that need to be 

changed. Jones (1993) and Gablonsky et al. (1998, 2000) showed that DIRECT has a very 

fast convergence rate. Thus, it can find the global minimum very quickly as compared with 

other algorithms.  

 

Another distinction between these two algorithms is their relative difficulty of 

implementation. We found that ASA is much easier to implement than DIRECT. However, 

once the more difficult implementation of DIRECT is finished, the effort will be rewarded by 

its amazingly high efficiency. 

 

Next we will compare the relative performance of ASA and DIRECT using numerical 

simulation and the slider ABS optimization case study.  
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2. PERFORMANCE COMPARISON BY NUMERICAL EXPERIMENTS 

2.1 Easy test function cases 

 

The test functions used here include 2-D, 10-D and 20-D functions. These functions 

have only one global and local minimum point, and the minimum values of these functions 

are zero. They are defined as follows: 

 

2-D:    F(x1, x2) = (x1 – 0.4)2 + (x2 – 0.2)2.     

10-D:  F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 – 0.1)2 + (x2 – 0.2)2 + 

(x3 – 0.3)2 + (x4 – 0.4)2 + 

(x5 – 0.5)2 + (x6 – 0.6)2 + 

(x7 – 0.7)2 + (x8 – 0.8)2 +  

(x9 – 0.9)2 + (x10 – 1.0)2.  

20-D:  F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20) =  

                          (x1 – 0.05)2 + (x2 – 0.1)2  +  (x3 – 0.15)2 +   (x4 – 0.2)2 + 

                          (x5 – 0.25)2 + (x6 – 0.3)2  +  (x7 – 0.35)2  +  (x8 – 0.4)2 +  

                          (x9 – 0.45)2 + (x10 – 0.5)2 + (x11 – 0.55)2 +  (x12 – 0.6)2 + 

                          (x13 – 0.65)2 + (x14 – 0.7)2 + (x15 – 0.75)2 +  (x16 – 0.8)2 +  

                          (x17 – 0.85)2 + (x18 – 0.9)2 + (x19 – 0.95)2 +  (x20 – 1.0)2. 

 

For all these cases, xi∈[0,1],  i = 1,…20. 
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As the dimensions of a problem increase, the search space becomes much larger, and 

the difference between the convergence rates of ASA and DIRECT become more obvious. 

Figures 1, 2 and 3 show the comparison between convergence rate for ASA and DIRECT for 

the 2-D, 10-D and 20-D cases, respectively.  

 

Figure 1 shows that, for the 2-D case, ASA and DIRECT demonstrate similar 

convergence curves. For the 10-D case shown in Fig. 2, we see that ASA and DIRECT reveal 

different convergence rates. ASA shows a fast convergence rate at the initial stage, but slows 

thereafter. However, DIRECT shows a steady and very fast convergence rate throughout the 

whole optimization process. This phenomenon can be observed more clearly in Fig. 3 for the 

20-D case. Figure 3 shows that ASA converges quite quickly when the number of function 

evaluations is less than 10000, but after that it converges very slowly. ASA required more 

than 80000 function evaluations to find the best value of 10-3, whereas DIRECT took fewer 

than 15000 function evaluations to accomplish the same task. Also, the convergence rate of 

DIRECT remains steady throughout the entire process. The best value found by DIRECT is 

lower than 10-4 when the number of function evaluations reaches 20000. In Fig. 3, we also 

plot the convergence curve for DIRECT-III, a strongly locally biased variation of the 

standard DIRECT algorithm introduced in the CML technical report 01-007. It is clear that 

DIRECT-III converges even faster than DIRECT in this case. 

 

Consider another 2-D test function that is defined as: 

F(x1, x2) = x1 
2 + x2

2 + 0.3 z sin(13π z)2,     
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where z = x1
2 + x2

2 + 0.0001 and x1, x2∈[-5,4]. If we normalize the range of variables x1 and 

x2 into [0,1], then its global minimum is 5.0039E-10 at (5/9, 5/9). The 2-D contour lines and 

3-D surface shape of this function are shown in Figs. 4 and 5, respectively. In Fig. 4 the 

round dot denotes the location of the global minimum point. From Figs. 4 and 5 it is 

observed that this function has many local minima due to the perturbation term 0.3 z 

sin(13πz)2. However, since the perturbation term contributes very little to the function value, 

it is still considered here to be an “easy” test function. 

 

Figure 6 shows the convergence comparison between ASA and DIRECT for this 2-D 

test function. ASA and DIRECT show similar convergence rates in this case. 

 

Figure 7 shows the convergence comparison for ASA for five different initial 

conditions: (0.5, 0.5), (0, 0), (0, 1), (1, 1) and (1, 0). Although the convergence curves for 

these five different initial conditions are different, statistically they are similar to each other. 

In Fig. 7 we see that different initial conditions result in different optimization processes for 

ASA. However, in this case all of them exhibit similar convergence rates and all of the 

curves converge to the global minimum.  

 

2.2 Tough testing function cases 

 

The so-called “tough” functions are the ones whose global minima are difficult for 

the optimization technique to find. Mostly this is caused by either multiple local minima or a 
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wide “flat” area around the global minimum point. These features make the optimization 

difficult since it’s easy for the process to get trapped at a local minimum. 

 

We investigated two tough test functions with one global minimum and multiple local 

minima. The first function is the 4-D Colville function. It is defined as:  

F(x1, x2, x3, x4) = 100 (x2 – x1
2)2 + (1 – x1)2 +  

90(x4 – x3
2)2 + (1 – x3)2 + 

10.1 ((x2 – 1)2 + (x4 – 1)2) + 

19.8(x2 – 1)(x4-1), 

where x1, x2, x3, x4∈[-10, 10]. If we normalize the range of variables x1, x2, x3 and x4 into 

[0,1], then its global minimum point is (0.55, 0.55, 0.55, 0.55) and the global minimum is 0.  

 

Figure 8 shows the convergence comparison between ASA and DIRECT for the 4-D 

Colville function. ASA shows a very slow convergence rate after 1000 function evaluations, 

whereas DIRECT shows a very steady and fast convergence rate.  

 

The second function is the local Shubert function, which is defined as follows: 
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where x1, x2∈[-5, 5]. It has one global minimum point and 100 local minimum points. If we 

normalize the range of variables x1 and x2 into [0,1], then its global minimum point is 

(0.4508609, 0.4508609) and the global minimum is -24.062499. The 2-D contour and 3-D 
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surface of the local Shubert function are shown in Figs. 9 and 10, respectively. The round dot 

in Fig. 9 denotes the global minimum point. 

 

Figure 11 shows the convergence comparison between ASA and DIRECT when ASA 

takes the midpoint (0.5, 0.5) as the initial point. We see that, for this case, although both 

algorithms did find the global minimum, ASA found it faster than DIRECT.  

 

However, if we change the initial point for ASA, the results are quite different. To do 

that, we divided the square search space into an 8 x 8 grid, and used each grid point as the 

initial point for the optimization using ASA. Consequently, we tested 81 different initial 

points for ASA, and we show the results in Fig. 12. We combined the contour lines of the 

local Shubert function with the 8 x 8 grid. The triangular symbols represent the initial points 

for which ASA failed to find the global minimum. For 18 out of the total 81 initial points 

ASA failed to find the global minimum. This verifies that the optimization results of ASA are 

dependent on the initial conditions, which in this case were the initial points. This 

dependence is caused by the combined effects of the ASA algorithm itself and the embedded 

random process. The DIRECT algorithm always chooses the midpoint of the search space as 

its initial point and there is no embedded random process. Therefore, there is no such 

dependence for DIRECT. 

 

Even thought ASA fails to find the global minimum in Fig. 12, this does not mean 

that ASA is not a global optimization technique. Remember that ASA has many parameters 

and generally needs to be “tuned up” for each specific problem. In this case, we used the 
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default settings for ASA and did not tune it up. For all those initial points for which ASA 

failed to find the global minimum, if we adjusted some of the parameters (e.g., setting a 

higher initial temperature, or simply changing the random number generator), ASA was able 

to find the global minimum point. 

 

In fact, leaving many parameters to be “tuned up” by users for a specific problem is 

one of the disadvantages of ASA, especially for problems with expensive function 

evaluations, because users usually do not have the luxury of “tuning up” the ASA until it 

performs well. In contrast, the DIRECT algorithm, being deterministic and not needing 

parameters to be changed by the user, is much more convenient for practical usage. 

 

Note that all of the test functions we chose only have one global minimum. In 

practical terms it is very difficult for ASA to handle problems with multiple global minima, 

especially those problems with multiple global minima and many local minima (for example, 

the Shubert function). We have shown in the CML technical report 01-003 that DIRECT can 

handle the multiple global minima very well, even for some very “nasty” test functions. 

 

3. PERFORMANCE COMPARISON USING SLIDER ABS OPTIMIZATION 

3.1 Air bearing design optimization problems   
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Here we investigate a 2-D and a 3-D ABS optimization problem. For both cases, we 

choose the same NSIC 7nm FH slider as the prototype slider. Its rail shape and the 3-

dimensional rail geometry are shown in Figs. 13 and 14, respectively. 

 

The slider is a Pico slider (1.25×1.0mm), which flies over a disk rotating at 7200 

RPM. Its flying heights are all around 7nm from OD to ID. The optimization goals are also 

the same in both cases: to lower the flying heights to the target flying height (i.e., 5nm), and 

at the same time maintain a flat roll profile across the three different radial positions OD, MD 

and ID. We also define the same objective function for both cases as: 

1× (FH Max Difference term) + 9 × (FH term) + 1 × (Roll term) +  

1 × (Roll Cutoff term) + 1 × (Pitch Cutoff term) + 1 × (Vertical Sensitivity term) +  

1 × (Pitch Sensitivity term) + 1 × (Roll Sensitivity term) + 1 × (Negative Force term). 

 

Note that since we are primarily concerned with the flying heights, we put a heavier 

weight (9) on that term. All the objective terms are normalized and their definitions can be 

found in the CML technical report 01-016. 

 

For the 2-D ABS optimization problem, only two original constraint points are 

defined, as shown in Fig. 15. For the 3-D ABS optimization problem, three original 

constraint points are defined, as shown in Fig. 16. 

 

3.2 Optimization results   
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Using the same initial design, constraints, and objective function, we carried out the 

optimization for the 2-D and 3-D ABS optimization problems using both ASA and DIRECT. 

Notice that for the purpose of comparison we only use the standard DIRECT algorithm 

without manufacturing tolerance or hidden constraints. We use 200 function evaluations for 

DIRECT in both the 2-D and 3-D cases. 

 

3.2.1   2-D ABS optimization results  

 

Figure 17 shows the convergence comparison between ASA and DIRECT for the 2-D 

ABS optimization case. Here, the convergence curves of ASA and DIRECT are quite similar. 

The optimized ABS design found by ASA has the objective function value of 5.561, whereas 

the optimized ABS design found by DIRECT has the objective function value of 5.571. ASA 

found a slightly better ABS design in this case. Figures 18 and 19 show the optimized 

designs found by ASA and DIRECT, respectively. The gray lines in those two figures 

represent the initial ABS design, and the dark lines represent the optimized ABS design. 

 

Figures 20 and 21 show the optimization results for the 2-D case using DIRECT and 

ASA, respectively. Here the small dots represent the sample ABS designs generated by the 

algorithms, and the circular dots represent the best-so-far ABS designs found by the 

algorithms during the optimization process. 

 

It can be observed from Figs. 20 and 21 that while the optimization results obtained 

by using the deterministic DIRECT algorithm show a very regular pattern, the optimization 
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results obtained using the stochastic ASA algorithm also show an interesting “band” pattern. 

That is, most of the sample points generated by ASA for this 2-D case were located in two 

“bands”, which are shown in Fig. 22 by the two rectangles (a × b1 and b × a1) surrounded by 

the dashed lines. 

 

This “band” pattern can be explained by the following: 

 

Let a2 = a – a1 and b2 = b – b1, and suppose that for the whole optimization process 

there is a probability of 70% for the new sample points to be generated within the a1 and b1 

intervals for the first and second original constraint points, as shown in Fig. 23. Then, for the 

whole search space, the probability distribution for all the sample points is: 

((70%)a1 + (30%)a2) × ((70%)b1 + (30%)b2)  

= (49%)a1+b1 + (21%)a1+b2 + (21%)a2+b1 + (9%)a2+b2. 

 

We can also verify this by looking at the intersection of the two “bands”, which is 

(a1+b1) and is shown in the shaded area of Fig. 22, the section with the greatest density of 

points. 

 

3.2.2   3-D ABS optimization results  

 

Figure 24 shows the convergence comparison between ASA and DIRECT for the 3-D 

ABS optimization case. Here we see that the DIRECT algorithm clearly has a much faster 

convergence rate than the ASA algorithm. In this case, it takes only about 100 sampling 
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designs for DIRECT to converge to the optimal design, whereas it takes more than 600 

sampling designs for ASA. 

 

Also note that the objective function value of the final optimized design obtained by 

using DIRECT is 4.46. For ASA, the final optimized design’s objective function value is 

4.74. Since a smaller objective function value means a better design, the DIRECT algorithm 

obtained a better-optimized design than ASA algorithm. 

 

Figures 25 and 26 show the optimized designs found by ASA and DIRECT, 

respectively. The gray lines in those two figures represent the initial ABS designs, and the 

dark lines represent the optimized ABS designs. Figures 27 and 28 show the comparison 

between the FH and the Roll of the optimized ABS designs found by ASA and DIRECT, 

respectively. Figures 27 and 28 show that both algorithms found greatly optimized ABS 

designs, but the optimized ABS design found by DIRECT has even more uniform FHs 

around the 5nm target FH and flatter rolls. Moreover, DIRECT found the optimized design 

much faster than did ASA, due to its much faster convergence rate. 

 

4. CONCLUSION 

 

The ASA algorithm is one of the latest developments of the Simulated Annealing 

(SA) family, and it has been applied to many areas. The DIRECT algorithm is a relatively 

new algorithm and has not yet been widely used.  
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The ASA algorithm and the DIRECT algorithm are both global optimization 

techniques. Both algorithms are powerful tools for dealing with strongly non-linear 

problems, and neither require a definite form of the objective function. The only requirement 

for both algorithms is that the objective function must be continuous within the search space. 

 

However, these two algorithms belong to two fundamentally different categories. 

ASA is a stochastic algorithm, which means it introduces a random process within it. 

DIRECT is a deterministic algorithm and no random process is involved.  

 

Both ASA and DIRECT are quite robust. ASA generally needs to be “tuned up” in 

order to be successfully applied to a specific problem. Also, since ASA is a stochastic 

algorithm, it is reasonable to expect different optimization results for a limited number of 

samples generated for any changes in initial conditions or algorithm parameters However, 

statistically, ASA gives the same results if a large number of samples are generated. DIRECT 

is a deterministic algorithm, and therefore there are no random factors involved in the 

optimization process. DIRECT does not need to be “tuned up”. Thus, DIRECT is more 

convenient for practical usage. 

 

Although DIRECT is initially more difficult to implement than is ASA, it also has a 

much higher convergence rate than dose ASA. Thus, DIRECT can find the global minimum 

more quickly than ASA. This property is observed more clearly for higher dimensional 

problems. We have verified this by numerical simulations as well as in slider ABS 

optimization case studies.  
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Also notice that it is quite easy for DIRECT to handle the manufacturing tolerance 

issue. This, together with its high convergence rate, makes DIRECT more suitable for the 

slider ABS optimization. 

 

In summary, the DIRECT algorithm clearly outperforms the ASA algorithm in our 

test cases, and we consider it more suitable for the slider ABS optimization than is ASA. 
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Fig. 1 Convergence comparison for 2-D case 

 

 

Fig. 2 Convergence comparison for 10-D case 
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Fig. 3 Convergence comparison for 20-D case 

 

 

    

Fig. 4 Contour lines                                         Fig. 5 Surface shape 
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Fig. 6 Convergence comparison 

 

 

Fig. 7 Convergence comparison for different initial points using ASA 
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Fig. 8 Convergence comparison for 4-D Colville function 

 

 

 

                      Fig. 9 Contour lines                                          Fig. 10 Surface shape 
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Fig. 11 Convergence comparison for local Shubert function 

 

        

        

        

        

        

        

        

        

 

Fig. 12 Optimization results for different initial points for ASA 

 



25 

 

    

Fig. 13 Rail shape of the initial ABS design 

 

 

 

Fig. 14 3-D rail shape of the initial ABS design 
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Fig. 15 Constraints defined on the initial design in the 2-D case 

 

         

Fig. 16 Constraints defined on the initial design in the 3-D case 
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Fig. 17 Convergence comparison for the 2-D ABS optimization problem 
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Fig. 18 Optimized design obtained by DIRECT in the 2-D case 

 

 

Fig. 19 Optimized design obtained by ASA in the 2-D case 
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Fig. 20 Optimization results using DIRECT in the 2-D case 

 
Fig. 21 Optimization results using ASA in the 2-D case 
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Fig. 22 Illustration of the “band” pattern of the optimization results using ASA 

 

 
Fig. 23 ASA probability function 
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Fig. 24 Convergence comparison for the 3-D ABS optimization problem 
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Fig. 25 Optimized design obtained by DIRECT in the 3-D case 

 

 

Fig. 26 Optimized design obtained by ASA in the 3-D case 
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Fig. 27 Comparison of the FH for the 3-D ABS optimization case 
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Fig. 28 Comparison of the Roll for the 3-D ABS optimization case 

 


