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Abstract 

An analysis of elastic-plastic layered media indented by a rigid sphere is developed based on 

finite element simulation results in order to determine the conditions for measuring the real 

material hardness. The critical interference distance, below which substrate effects are 

insignificantly small, is determined from the variation of the equivalent hardness with the 

interference distance. A relation between hardness, yield strength, and elastic modulus, derived 

from finite element indentation simulations of a homogeneous medium, is used in conjunction 

with a previously developed contact constitutive model, to determine the minimum interference 

distance, above which sufficient plasticity occurs in order to obtain the real material hardness. A 

new scheme of hardness measurement for layered media is presented and validated by finite 

element results for an elastic-perfectly plastic layered medium. 
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1. Introduction 

Hardness is a property characterizing the resistance of a material to indentation and wear. 

In traditional indentation tests, the applied normal load is of the order of hundreds to thousands 

of Newtons and the diameter of the indentation is of the order of micrometers to millimeters. 

Recently, hardness testing has evolved from microhardness to nanohardness measurement, where 

residual impressions have diameters of the order of micrometers or even nanometers, measured 

with high-power microscopes or atomic force microscopes. This is a result of the increasing use 

of layered media in various engineering applications where surface durability is of critical 

importance. Micro- and nano-indentation testing for layered media is an effective method of 

extracting information about the mechanical properties of thin surface layers. As a consequence, 

a large number of theoretical and experimental indentation studies have been performed to 

elucidate the effect of the surface layer on the mechanical response of layered media. 

Pharr (1998) reviewed and discussed techniques for measuring mechanical properties by 

ultra-low load indentation techniques. Emphasis was given on the measurement of the elastic 

modulus and hardness using sharp indenters. One of the most widely used methods is that of 

Oliver and Pharr (1992), which expands on ideas developed by Loubet et al. (1984) and Doerner 

and Nix (1986). In this method, hardness and elastic modulus can be determined from load and 

displacement sensing in indentation experiments. Lichinchi et al. (1998) used the finite element 

technique to study the stress-strain field in thin hard coatings subjected to nanoindentation 

loading. For titanium nitride coatings on high-speed steel, the substrate material was found to 

exhibit an effect on the hardness measurement for indentation depths greater than 15% of the 

film thickness. Pelletier et al. (2000) used the finite element method to analyze hardness 

measurement with a sharp pyramidal indenter, such as a Berkovich or Vickers indenter. The 
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indenter tip radius was shown to exhibit a strong effect on the load-displacement response. A 

method was proposed to determine the tip radius of an equivalent conical indenter that was used 

in the finite element analysis as an approximation of the Berkovich indenter. Chen and Vlassak 

(2001) used the finite element method to investigate substrate and pileup effects on hardness and 

stiffness measurements of layered media. They defined a substrate effect factor and constructed a 

map that may be useful in the interpretation of indentation measurements when it is not possible 

to obtain sufficiently shallow indentations to avoid the influence of the substrate on the 

measurements. Martinez and Esteve (2001) studied nanoindentation of very hard and elastic thin 

layers, and reported that the hardness measured with a blunt indenter exhibited significant 

variation at small penetration depth. 

The mechanical properties of a layered medium measured from indentation tests, such as 

hardness and elastic modulus, include the combined response of both the surface layer and the 

substrate materials. Bhattacharya and Nix (1988) studied the elastic and plastic deformation due 

to indentation of thin layers on relatively harder and softer substrates using the finite element 

method and derived semi-empirical relations for the hardness in terms of interference distance, 

layer thickness, and elastic-plastic material properties of the layer and the substrate. King (1987) 

analyzed the normal contact problem of a layered isotropic elastic half-space using basis function 

and singular integral equation technique, and modified the relation for the effective elastic 

modulus of a layered medium, originally proposed by Doerner and Nix (1986).  

The previous studies enable us the determination of the layer hardness and elastic 

modulus from the equivalent hardness and elastic modulus of the layered medium when the 

substrate properties are known, although in the model of Bhattacharya and Nix (1988) a relation 

between the hardness and yield strength of layer is required. Despite valuable insight into 
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indentation mechanics and hardness measurement of layered media, there are several important 

issues requiring further analysis in order to determine the conditions under which the real 

hardness can be obtained. For example, if substrate properties are unknown, under what 

conditions can the layer hardness be approximated by the equivalent hardness? Another 

important issue is the minimum interference distance for a valid hardness measurement. Hence, 

the main objective of this study is to provide an analysis that gives answers to the previous 

issues. The critical interference distance to avoid the substrate effect was derived using the model 

of Bhattacharya and Nix (1988). A contact constitutive model, presented in a previous study 

(Komvopoulos and Ye, 2001) was used in conjunction with experimental results from other 

studies to derive the minimum interference distance for measuring the real material hardness. A 

general relation between hardness, yield strength, and elastic modulus, obtained from a finite 

element model, was used together with the model of Bhattacharya and Nix (1988) to obtain a 

scheme of extracting layer material properties. Example calculations are given to illustrate the 

appropriateness and predictability of the presented analytical scheme for hardness measurement.  

2. Finite Element Model 

An axissymmetric finite element model was developed using the general-purpose finite 

element code ABAQUS to simulate indentation of a homogeneous or layered medium by a rigid 

sphere of radius R. Figure 1 shows the mesh of the finite element model, which consists of 218 

eight-node isoparametric axissymmetric elements with a total of 677 nodes. The normalized 

dimensions of the mesh are x/R = z/R = 8. The nodes of the bottom boundary of the mesh were 

constrained in the z-direction and the nodes of the symmetry axis (x = 0) were constrained against 

the x-direction. A series of homogeneous half-spaces with different effective elastic modulus-to-
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Poisson's ratios and elastic moduli of the half-space and rigid sphere) were analyzed. The 

materials were assumed to exhibit elastic-perfectly plastic behavior. The layer and substrate 

material properties used in the finite element model are listed in Table 1. Contact between the 

rigid sphere and the half-space medium was modeled with special contact elements, and the 

contact interface was assumed to be frictionless. Typically, an indentation simulation was 

completed in 5 time steps, each consisting of 100-500 increments. The computation time on an 

Intel Pentium III 550 workstation was between 2400 and 3600 CPU seconds. 

3. Hardness Analysis 

A theoretical treatment of the hardness of layered media is introduced in this section. The 

analysis yields the critical interference distance, above which the effect of the substrate material 

on the equivalent hardness of the layered medium is significant, and the minimum interference 

distance, below which the occurrence of insufficient plastic deformation in the layer prevents the 

direct measurement of material hardness. 

3.1 Critical Interference Distance to Avoid the Substrate Effect 

 If the mechanical properties of the substrate are unknown, the layer hardness can be 

approximated by the hardness measured from an indentation test performed on the layered 

medium, provided the indentation depth (interference distance) is sufficiently small to avoid the 

effect of the deformation of the substrate. The indentation hardness relations of Bhattacharya and 

Nix (1988) for relatively hard and soft surface layers can be used to determine the critical 

interference distance for the substrate effect to be insignificant. 

For a layer harder than the substrate, the equivalent hardness, He, is given by 
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(Bhattacharya and Nix, 1988) 
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where H is the hardness, h is the layer thickness, E is the elastic modulus, σ is the yield strength, 

δ is the interference distance between the indenter and the surface of the deformable medium, 

and subscripts l and s denote the layer and substrate material properties, respectively. Equation 

(1) can be rewritten as, 
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For the equivalent hardness to be close to the layer hardness, the contribution of the first term of 

Eq. (2) must be appreciably greater than that of the second term. Hence, 
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where ξ is a tolerance parameter less than 1 (e.g., ξ = 10%) indicating that the contribution of the 

substrate material deformation to the hardness measurement is negligibly small. Then, the critical 

interference distance to avoid the substrate effect can be written as 
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According to Eq. (5), the critical interference distance is a function of the tolerance parameter, 

elastic-plastic material properties of the layer and the substrate media, and layer thickness. Since 

for a layer harder than the substrate,  
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Eq. (5) is satisfied if )1ln(/ +≤ ξδ h . For ξ << 1, ξξ ≈+ )1ln( , and Eq. (5) can be approximated 

as 
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Thus, according to this empirical relation (Eq. (7)) the critical interference distance depends on 

the selected tolerance constant and hard layer thickness. 

For a layer softer than the substrate, the effect of the substrate material deformation on the 

equivalent hardness can be determined from relation (Bhattacharya and Nix, 1988), 
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Thus, the critical interference distance is given by 
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For a layer softer than the substrate, 
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Although the critical interference distance can be determined from Eq. (5) (or Eq. (9)), 

the minimum interference distance to obtain the layer hardness cannot be obtained from this 
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equation. According to Eq. (1) (or Eq. (8)), when the interference distance approaches zero, the 

measured hardness approaches the layer hardness. Since this is true only for a pyramidal indenter 

with infinitely sharp tip (i.e., zero tip radius of curvature), Eq. (1) (or Eq. (8)) cannot be used for 

shallow indentations, where the assumption of infinitely sharp indenter tip is not valid. Hence, it 

is necessary to obtain an analysis of material indentation by a finite tip radius indenter. 

3.2 Relation Between Hardness, Yield Strength, and Elastic Modulus 

For a spherical indenter and relatively small interference distance, the resulting small 

plastic zone may yield a mean contact pressure that is not representative of the layer hardness. 

This is demonstrated by finite element simulation results shown in Figs. 2-4 for a homogeneous 

medium with effective elastic modulus-to-yield strength ratio E*/σY = 10, 33, 100, and 200 

indented by a rigid sphere. Figure 2 shows the dependence of the mean contact pressure, pm, on 

representative strain rE Y ′σδ /* , where σY is the yield strength and r '  is the radius of the 

truncated contact area. For all material properties, the mean contact pressure increases with 

representative strain to a peak value and then decreases, in agreement with the findings of 

Mesarovic and Fleck (1999), who observed a decrease of the mean contact pressure after rising to 

a value of about 3 times the yield strength for E*/σY ≥ 250. Figure 2 shows that the peak value of 

the normalized mean contact pressure depends on E*/σY. This is consistent with the observation 

of Marsh (1964), who performed a series of indentation tests with various materials.  

Figures 3 and 4 show the evolution of plasticity in the subsurface of homogeneous 

elastic-perfectly plastic half-space media with E*/σY = 10 and 100, respectively. There are some 

similarities between the plastic zones in the two half-spaces. The general trend is for the plastic 

zone to expand radially as the indenter penetrates deeper in the medium (Figs. 3(a), 3(b), 4(a), 
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and 4(b)). The plastic zone is initially contained in the subsurface surrounded by elastic material. 

Deeper indentations cause spreading of the plastic zone to the surface (Figs. 3(c), 3(d), 4(c), and 

4(d)). However, a comparison of Figs. 3(a) and 4(d) shows that for a similar interference 

distance, the material with the higher E*/σY value yields a much larger plastic zone. Moreover, 

the plastic zone of the material with lower E*/σY occurs always below the contact region, while 

the plastic zone of the material with higher E*/σY spreads outside of the contact region after 

reaching the surface (Fig. 4(d)). The representative strain corresponding to the plastic zones 

shown in Figs. 3(d) and 4(d) is associated with the maximum value of the mean contact pressure.  

The representative strain and mean contact pressure for each plastic zone shown in Figs. 3 and 4 

are given in Table 2. The maximum value of pm/σY for E*/σY = 10 and 100 is equal to 1.71 and 

2.58, respectively. 

Since the mean contact pressure depends on the representative strain (or interference 

distance), it is not straightforward to determine which is the interference distance (or strain) that 

yields the material hardness. A unique hardness value can be determined if the peak value of the 

mean contact pressure is set equal to the material hardness. This is consistent with the hardness 

definition of ductile materials, such as metals with typically E*/σY > 200, for which full plasticity 

is more easily achieved, where the maximum contact pressure (hardness) is equal to ~3σY. 

However, as shown in Fig. 2, the peak contact pressure-to-yield strength ratio depends on the 

elastic-plastic material properties. 

Before introducing the minimum interference distance for hardness measurement, it is 

instructive to examine the relation between hardness, yield strength, and elastic modulus of 

elastic-plastic homogeneous materials. Finite element results for the material hardness, H 

(assumed equal to the peak value of the mean contact pressure) are plotted in Fig. 5 and 
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compared with experimental results obtained by Marsh (1964). The difference between 

simulation and experimental results is attributed to the Vickers indenter used in the experimental 

study and the constitutive relation adopted in the finite element simulations that may not be 

appropriate for the experimental materials. Since shallow indentations are required for the 

determination of the minimum interference distance to obtain an accurate measurement of the 

layer hardness, a spherical indenter approximates more closely those used in this type of 

indentation tests. According to the best-fit line of the numerical data (with a correlation 

coefficient of 0.99), the material hardness is given by 
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As pointed out previously, for very thin layers, the interference distance (i.e., indention 

depth) must be sufficiently small in order to avoid the effect of the substrate material properties 

on the hardness measurement. However, if the indentation is too shallow, plastic deformation in 

the layer may be limited and the resulting mean contact pressure may not be representative of the 

layer hardness. Although mean contact pressure values can be obtained at any given indentation 

depth from the indentation load-depth curve, the mean contact pressure will not be equal to the 

layer hardness if the interference distance is not sufficient for the plastic zone in the layer to be 

fully developed. Thus, if the minimum interference distance is not reached, the layer hardness 

will be underestimated. 

3.3 Minimum Interference Distance for Layer Hardness Measurement 

A relation for the minimum interference distance required for the mean contact pressure 

to reach a value equal to the material hardness can be derived using Eq. (12) and the contact 

constitutive model of the normalized mean contact pressure and the representative strain for a 
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spherical indenter in normal contact with a homogeneous medium derived in a previous study 

(Komvopoulos and Ye, 2001). According to this analysis, elastic, elastic-plastic, and fully-plastic 

deformation regimes may occur. Clearly, interference distances corresponding to the elastic 

regime cannot be used to determine the hardness because deformation in this regime is purely 

elastic. Furthermore, in the fully-plastic regime the mean contact pressure is invariant. However, 

in view of the continuous transition from the elastic-plastic to the fully-plastic regime, the 

relation of the elastic-plastic regime given by 
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can be used to determine the interference distance for full plasticity. The representative strain, 

E*δ /σYr’, is also related to the normalized interference distance, δ/R. By equating the mean 

contact pressure with the material hardness, the corresponding interference distance can be 

determined from the contact constitutive model (Eq. (13)). The number of independent variables 

can be reduced by using the hardness relation obtained from finite element simulations (Eq. 

(12)).  

Because only shallow indentations are considered to obtain the minimum interference 

distance, the analysis can be simplified to that of a homogeneous half-space with layer material 

properties. Using Eqs. (12) and (13), the minimum interference distance is obtained as 

47.0
* )(41.1

' Er
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Hence, by introducing the indenter radius of curvature, the following relation must be satisfied in 

order for the real material hardness to be obtained, 
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Equation (15) gives the minimum interference distance as a function of the indenter radius of 

curvature and effective elastic modulus-to-yield strength ratio . For relatively small values of 

E*/σY (e.g., E*/σY = 10), a deeper interference distance is needed for the mean contact pressure to 

reach a value equal to the material hardness (Fig. 2-4, Table 2). This is due to the increase of the 

material resistance to plastic flow with a decreasing E*/σY. Equation (15) can be used to estimate 

the minimum interference distance if the elastic modulus and yield strength of the layer are 

known, and reflects the hardness dependence on geometry factors and material properties.  

If the layer material properties are unknown, various indentation depths must be used to 

verify whether the minimum interference distance was reached. If the layer is too thin, there may 

be no indenter with sufficiently sharp tip to ensure that the minimum interference distance 

required to directly measure the layer hardness is less than the critical interference distance to 

avoid the substrate effect. In this case, the hardness of a very thin layer can be determined from 

the measured equivalent hardness using Eqs. (1) (or Eq. (8)) and (12). 

From the variation of the hardness of the layered medium with the interference distance, 

it is possible to determine whether Eq. (1) or Eq. (8) describes the hardness of the layered 

medium. The compliance determined from the unloading portion of the indentation curve can be 

used to determine the value of El /(1-νl
2), because the effective elastic modulus of the layered 

medium is related to the initial unloading stiffness through *2/ erEddLS =≡ δ  (Sneddon, 1965), 

where the effective elastic modulus of a layered medium, *
eE , is given by (King, 1987) 
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where α is a geometrical factor depending on the indenter shape, r is the radius of the projected 

contact area, and subscript i denotes the indenter material properties. However, the hardness of 

the layer cannot be calculated solely from either Eq. (1) or Eq. (8), because the yield strength of 

the layer is unknown, direct inversion of Eq. (1) or Eq. (8) is not possible. Therefore, Eq. (12) 

must be solved simultaneously with Eq. (1) or Eq. (8). According to Eq. (15), the interference 

distance must be greater than a minimum value that depends on the radius of curvature of the 

indenter tip and the layer material properties. Therefore, an arbitrary interference distance does 

not guarantee a valid hardness measurement. Instead, indentations for a series of interference 

distances must be performed in order to determine whether Eq. (1) or Eq. (8) should be used and 

to verify whether the real hardness of the layer was measured. Therefore, at each interference 

distance, Eqs. (1) (or Eq. (8)) and (12) are solved together, and the calculated hardness and yield 

strength of the layer, c
lH  and c

lσ , respectively, are obtained as functions of interference distance. 

(The term “calculated” is used to denote that the data do not necessarily correspond to the real 

layer material properties.) The calculated hardness (or mean contact pressure) increases with 

interference distance, reaching a peak value corresponding to the real material hardness, as 

shown in Fig. 2. If the calculated hardness versus interference distance curve increases 

continuously without reaching a maximum, then none of the data yields the material hardness. 

This would be the case of too shallow indentations, or too large radius of curvature of the 

indenter tip, to induce sufficient plasticity. 

4. Numerical Simulation Results 

Numerical results are presented in this section to demonstrate the appropriateness of the 

developed analysis for hardness measurement of layered media and to validate the hardness 
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measurement scheme presented. For relatively hard layer of known thickness and unknown 

substrate material properties, the equivalent hardness of the layered medium can be assumed to 

be equal to the layer hardness, provided the interference distance is such that to avoid the 

substrate effect (Eq. (7)). As an example, consider a rigid spherical indenter and El = 168 GPa, σl 

= 13 GPa, Es = 130 GPa, σs = 2.67 GPa, and νl = νs = 0.3. Using Eq. (12), the layer hardness and 

the substrate hardness are found to be Hl = 24.5 GPa and Hs = 6.34 GPa, respectively. If the 

tolerance constant ξ is set equal to 10% and δ /h is chosen to be 0.1, the equivalent hardness 

obtained from Eq. (1) is He = 23.2 GPa, which differs from the layer hardness by only 5%. Then, 

the minimum interference distance can be used either to verify whether the hardness of the layer 

was reached or to select the right indenter tip. Assuming a hard layer thickness equal to 100 nm, 

the interference distance for ξ = 0.1 is estimated to be less than 10 nm (Eq. (7)). To satisfy Eq. 

(15), δ /R ≥  0.28; therefore, the indenter tip radius of curvature must be less than 35 nm.  

A finite element simulation of a layered medium with a hard layer indented by a rigid 

sphere was performed to illustrate the hardness evaluation scheme presented in the previous 

section. The layer thickness and material properties used in this simulation were identical to 

those given in Table 1. It is assumed that these equivalent hardness data were obtained from an 

indentation test performed on a layer of given thickness and unknown material properties 

deposited on a substrate with known material properties. Figure 6 shows the indentation load, L, 

versus interference distance, δ, of the layered medium obtained from the finite element analysis. 

The value of El /(1-νl
2), determined from the elastic stiffness (S = 2.94 µN/nm) obtained from the 

slope of the unloading curve at maximum load and Eq. (16), was found to be equal to 179 GPa, 

which differs from the input value in the finite element model by only 3%. Figure 7(a) shows 

finite element results for the equivalent hardness (or mean contact pressure) versus interference 
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distance. Since the ratio between the equivalent hardness of the layered medium and the substrate 

hardness is greater than 1, it is concluded that the layer is harder than the substrate. In Eqs. (1) 

and (12) (using layer material properties) the values of He, El /(1-νl
2), Es /(1-νs

2), σs, δ, and h are 

known. The value of Hs can be obtained from Eq. (12) using substrate material properties. Then, 

Eqs. (1) and (12) are solved simultaneously to obtain c
lH  and c

lσ  at different interference 

distances using an iteration procedure. Results for the ratio of calculated and real layer properties 

are plotted in Fig. 7(b) in terms of interference distance. Both the calculated hardness and yield 

strength of the layer increase with interference distance, reaching a peak value at δ /R = 0.4. 

According to the scheme proposed earlier, the calculated hardness and yield strength at δ /R = 0.4 

are the real material properties of the layer. Compared to the layer yield strength inputted in the 

finite element model and the hardness calculated from Eq. (12) using the material properties 

inputted in the finite element model, the error is less than 5%. For the layer material properties 

given in Table 1, Eq. (15) yields that the interference distance must be greater than 0.37R in order 

to obtain the real layer hardness, which is in fair agreement with the value predicted by the finite 

element simulation. Therefore, even for large plastic deformation and significant substrate effect, 

Eq. (15) can provide a fairly good estimate of the minimum interference distance required to 

obtain the real material hardness. Hence, this numerical experiment demonstrates the correctness 

of the proposed scheme. 

The evolution of plasticity in the layer and substrate media of the previous simulation is 

shown in Fig. 8. At small interference distances (Figs. 8(a) and 8(b)) the plastic zone is confined 

in the layer and is similar to that obtained for a homogeneous medium (Figs. 3(a) and 3(b)). As 

the interference distance increases, plastic deformation initiates at the layer/substrate interface 

(Fig. 8(c)). Further penetration causes the plastic zone in the layer to grow toward the surface and 
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the plastic zone in the substrate to expand downward and parallel to the interface (Figs. 8(d) and 

8(e)). Eventually, the two plastic zones merge together (Fig. 8(f)). As can be seen in Fig. 8(f), the 

plastic zone in the substrate is comparable to that in the layer when δ /R = 0.4, indicating that the 

substrate effect is significant.  

5. Conclusions 

A general hardness analysis for layered and homogeneous media was introduced that 

builds upon finite element simulation results and hardness relations derived in previous studies. 

In view of the presented results and discussion, the following main conclusion can be drawn. 

(1) For the hardness of the layered medium to be close to that of the layer material, the 

interference distance must be less than a critical value that depends on the layer thickness 

and elastic-plastic properties of the layer and substrate materials in order to avoid the effects 

of the substrate deformation. 

(2) For sufficient plasticity to occur in the layer such that the mean contact pressure to reach a 

value close to the real hardness of a material, the interference distance must be larger than a 

minimum value, which is a function of the radius of the indenter tip, effective elastic 

modulus, and yield strength of the material. 

(3) The dependence of hardness on yield strength and elastic modulus was elucidated in light of 

finite element simulation results. A numerical scheme to determine the layer hardness from a 

series of indentation data was proposed and its effectiveness was validated by numerical 

results for a layered medium with a hard surface layer. 
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Table 1. Thickness and properties of layer and substrate media of the finite element model 

Medium Layer Substrate 

Thickness, h/R 1 7 

Elastic modulus, E (GPa) 168 160 

Poisson ratio, ν 0.3 0.3 

Yield strength, σl or σs (GPa) 18.46 7 

 

 

Table 2. Interference distance, equivalent strain, and mean contact pressure in Figs. 3 and 4.  
 

E
*
/σY δ /R E

*
δ /σY r´  pm /σY 

10 0.072 1.93 1.12 

 0.100 2.29 1.24 

 0.200 3.33 1.50 

 0.400 5.00 1.71 

    
100 0.005 5.01 1.79 

 0.007 5.93 1.91 

 0.040 14.34 2.52 

 0.059 17.48 2.58 
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List of Figures 

Fig. 1 Axissymmetric finite element mesh used in indentation simulations of both 

homogeneous and layered media. (The inset of the figure shows the refinement of the 

mesh of the contact region.) 

Fig. 2 Normalized mean contact pressure versus representative strain for different material 

properties of homogeneous media. 

Fig. 3 Plastic zone evolution in a homogeneous material with E
*
/σY = 10 indented by a rigid 

sphere: (a) δ /R = 0.072,  (b) δ /R = 0.1, (c) δ /R = 0.2, and (d) δ /R = 0.4. 

Fig. 4 Plastic zone evolution in a homogeneous material with E
*
/σY = 100 indented by a rigid 

sphere: (a) δ /R = 0.005,  (b) δ /R = 0.02, (c) δ /R = 0.04, and (d) δ /R = 0.059. 

Fig. 5 Comparison between finite element results and experimental data for the normalized 

hardness versus effective elastic modulus-to-yield strength ratio. 

Fig. 6 Indentation load versus interference distance for a layered medium with El
*
/σl = 10. 

Fig. 7 (a) Equivalent hardness of a layered medium normalized by the substrate hardness 

versus normalized interference distance, and (b) calculated layer hardness and yield 

strength normalized by corresponding real values versus normalized interference 

distance.  

Fig. 8 Plastic zone evolution in a layered medium with El
*
/σl = 10: (a) δ /R = 0.072,  (b) δ /R = 

0.1, (c) δ /R = 0.2, (d) δ /R = 0.243, (e) δ /R = 0.3, and (f) δ /R = 0.4. 
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