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Abstract 

The coupled effects of mechanical and thermal surface traction on the deformation of layered 

media were analyzed with the finite element method. A three-dimensional model of an elastic 

spherical asperity sliding over an elastic-plastic layered medium was developed and validated by 

comparisons of finite element results with analytical and numerical solutions for the surface 

stresses and temperature distribution on an elastic homogeneous half-space. The evolution of 

deformation in the layered medium due to thermomechanical surface traction is interpreted in 

light of the dependence of temperature, von Mises equivalent stress, first principal stress, and 

equivalent plastic strain on the layer thickness, Peclet number, and sliding distance. The 

propensity for plastic flow and microcracking in the layered medium is discussed in terms of the 

layer thickness and thermal properties, sliding speed, medium compliance, and normal load. It is 

shown that friction and thermal traction promote stress intensification and plasticity, especially in 

the case of relatively thin layers of low thermal conductivity.  
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1.  Introduction 

The occurrence of thermal and mechanical traction at sliding interfaces of components is 

of great importance in a wide range of engineering applications, such as face seals, bearings, 

automotive brake systems, electric motor brushes, computer head-disk interface, and electrical 

switches. Catastrophic failure in electromechanical devices is inevitable without fundamental 

knowledge of the thermomechanical behavior of contacting surfaces. In view of the dependence 

of the reliability and endurance of various mechanical systems on the response of sliding 

components to thermomechanical traction, numerous analytical and numerical studies of the 

temperature rise at sliding interfaces have been conducted, with reference to the pioneering 

works of Blok (1937) and Jaeger (1942).  

Significant advances in analytical and numerical techniques for analyzing material 

response due to thermomechanical surface traction were encountered in past years. The focus in 

early studies was the thermal response under constant heat flux and different sliding contact 

conditions. Kennedy (1981) developed a finite element model to predict the surface temperature 

in a layered sliding system due to frictional heating and reported a strong effect of the sliding 

speed on the temperature rise. Tian and Kennedy (1993) determined the temperature rise at 

sliding contacts for a range of Peclet number using a pseudo three-dimensional model of a coated 

semi-infinite body and an integral transform method. Vick et al. (1994) adopted a variation of the 

boundary element method to examine the influence of surface coatings on the temperature due to 

frictional heating at the sliding contact interface of a layered medium. Tian and Kennedy (1994) 

used a Green’s function method to analyze the temperature rise at the surface of a semi-infinite 

body due to different moving heat sources. 

Thermal and mechanical responses of solids subjected only to thermal loading has been 
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the objective of several studies. Leroy et al. (1989, 1990) used a fast Fourier algorithm and a two-

dimensional finite element model to study the effects of the layer (overcoat) thickness and 

properties on the temperature and stresses in a layered medium due to a moving heat source. 

Significantly higher coating stresses were obtained for elastic modulus and thermal expansion 

coefficient of coating material higher than those of the substrate. Ju and Farris (1997) also used 

fast Fourier transformation to study the thermal and mechanical response of an elastic half-space 

due to a moving heat source. However, although in several analyses the mechanical response was 

determined from the applied thermal load, the distribution area of the heat flux was assumed to 

be unaffected by the mechanical response. 

Most studies dealing with both thermal and mechanical behavior of solids under 

thermomechanical loading have been based on the finite element technique, evidently due to the 

complex analytical relations of fully coupled thermomechanical contact problems. Kennedy and 

Ling (1974) developed a finite element model to study thermal instabilities in disk brakes. Day 

and Newcomb (1984) performed finite element simulations and experiments to examine the 

thermomechanical behavior of automotive brakes. However, since the contact pressure and 

interface region were fixed at each time step to determine the frictional heat and the temperature 

distribution, this study does not provide a fully coupled thermomechanical analysis. Kulkarni et 

al. (1991) developed a two-dimensional finite element model for a thermomechanical load 

translating over an elastic-plastic half-space, and reported results for the temperature distribution, 

stresses, and plastic strains. Although temperature and displacement fields were solved 

simultaneously, the thermomechanical load was assumed to be constant despite changes in 

temperature and displacements. Gupta et al. (1993) used the finite element technique to study 

two-dimensional rolling and sliding over a semi-infinite half-space under the assumption of 
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invariant contact pressure with changing temperature. Cho and Komvopoulos (1997) conducted a 

linear elastic fracture mechanics analysis of subsurface cracking in a homogeneous half-space 

subjected to moving thermomechanical surface traction and reported that the effect of frictional 

heating on the crack growth behavior becomes more pronounced with increasing contact friction, 

crack length-to-depth ratio, and Peclet number.  

Previous investigations produced invaluable insight into thermomechanical sliding 

contact. However, most studies were based on simplistic constitutive models (e.g., purely elastic 

behavior), ignored the interdependence of thermal and mechanical responses, and assumed 

constant contact pressure distribution. In sliding contact, the generated frictional heat depends on 

the contact area and contact pressure profile and vice versa. Therefore, to accurately determine 

the stress field and contact pressure due to thermomechanical surface traction, it is necessary to 

use more realistic constitutive models (e.g., elastic-plastic material behavior) and to account for 

the coupling of thermal and mechanical solutions. Consequently, the main objective of this study 

was to investigate the thermomechanical response of elastic-plastic media (both homogeneous 

and layered) under sliding contact. To meet this goal, a three-dimensional fully coupled 

thermomechanical finite element model was developed, and its accuracy was validated by 

favorable comparisons of simulation results with analytical solutions from previous studies. 

Finite element results for the temperature, stresses, and plastic strain in an elastic-plastic layered 

medium under thermomechanical surface traction are presented for different thickness and 

thermal conductivity of the layer, Peclet number, and distance (time) from the onset of sliding. 

The significance of thermal and mechanical traction and the propensity of the layered medium to 

undergo yielding and cracking are interpreted in the context of simulation results.  
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2. Finite Element Model 

A thermomechanical finite element model was developed to simulate sliding of an elastic 

spherical asperity of radius R on elastic-perfectly plastic homogeneous and layered media 

modeled by three-dimensional, eight-node, coupled temperature-displacement finite elements. 

Due to symmetry, only one-half of the sphere and the medium were modeled in order to reduce 

the computation time. Figure 1 shows a cross section (x =0) of a typical three-dimensional finite 

element mesh used in this study, consisting of 13563 elements with a total of 19902 nodes. The 

normalized mesh dimensions are x/R = 1, y/R = 0.976, and z/R = 3, while those of the 

homogeneous medium are x/R = 1, y/R = 1.4, and z/R = 3. Plane x = 0 is a symmetry plane, and 

the positive z-direction coincides with the sliding direction. The nodes on planes x/R = 0 and 1 

were fixed against displacement in the x-direction, the nodes on plane y/R = -0.976 were fixed 

against displacement in the y-direction, and the nodes on planes z/R = -1 and -2 were fixed 

against displacement in the z-direction. The temperature at the nodes of planes z/R = -1 and 2 was 

set equal to zero. The top boundary of the mesh (y/R = 0) was thermally insulated except the 

contact area. The layered medium consists of a layer of thickness h/R = 0.02, 0.05, and 0.1 and a 

substrate of corresponding thickness h/R = 0.956, 1.3, and 1.3 and different material properties. 

Thickness and physical properties of the layer and substrate materials are given in Table 1. These 

data are typical of carbon overcoats and magnetic layers used in hard disks. The asperity 

properties are identical to those of the layer material (conductivity is fixed at 5.2 W/m . K). 

In sliding contact, mechanical energy is transformed to heat due to the friction effect. As 

frictional heat flows into the interacting bodies, the contact area changes due to thermal 

expansion affecting the contact pressure distribution. Since these changes in the contact 

conditions affect the heat generation rate and thermal boundary conditions, the mechanical and 
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thermal analyses are interdependent and the temperature and stress/strain fields must be 

determined simultaneously rather than sequentially as in most previous studies. In the present 

study, the temperature was integrated using a backward-difference scheme T , 

where T is the temperature and subscript i indicates the i

11 ��
��� iii TtT �

th time step, and the coupled system was 

solved using Newton’s method. The adopted technique automatically invokes an asymmetric 

matrix storage and solution scheme to improve the convergence history because the stiffness 

matrix is not symmetric due to friction.  

Contact between the sliding asperity and the half-space medium was modeled with 

contact elements. The contact pressure at a point of the interface p is a function of the 

“overclosure” � of the surfaces, i.e.,  

p = 0,    for ��< 0,  (no contact)          (1a) 

p = K���� for���  0,  (contact)          (1b) �

where K is the stiffness in stick, determined through an iterative procedure that satisfies 

equilibrium. Relations given by Eq. (1) indicate that the contact pressure decreases to zero when 

the two surfaces are separated, and assumes a nonzero value at contact nodal points. The actual 

contact pressure depends on the material properties and boundary conditions. 

 A shear stress � develops between the contacting surfaces with the occurrence of a very 

small relative tangential displacement (stick). Macroscopic lateral movement (slip) commences 

when � = � p, where � is the coefficient of friction. Thus, the stick and slip conditions at the 

contact interface can be expressed as 

 � < � p   (stick)              (2a) 

� � = � p   (slip)              (2b) 
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In all simulation cases, the coefficient of friction specified to the contact elements was set equal 

to 0.5. The contact area depends on the fraction of energy dissipated during frictional slip in the 

contacting bodies � and the fraction of heat dissipated into each surface f1 and f2, respectively. 

The heat flux density  due to frictional heating is given by gq

t
sq g

�

�
��� ,                 (3) 

where �s is the incremental slip and �t is the incremental time. Heat is instantaneously 

conducted into each body depending on the values of f1 and f2. The contact interface is assumed 

to have no heat capacity but can exchange heat through conduction. 

The heat flux density into the asperity and half-space medium q1 and q2, respectively, is 

given by 

gk qfqq 11 ��� ,              (4a) 

and 

gk qfqq 22 �� ,              (4b) 

where qk is the heat flux across the contact interface due to conduction. While the heat flux due 

to radiation could be taken into account, it was neglected in this study since it is normally much 

smaller than that due to conduction. When both bodies are at the same temperature, the heat flux 

into each body is equal to 0.5 ; however, as the asperity becomes hotter due to continuous 

sliding, heat conduction q

gq

k occurs across the contact interface (Eq. (4)).  

Simulations were performed for f1 = f2 = 0.5 under the assumption that all frictional 

energy is dissipated as heat (� = 1), consistent with Kennedy’s finding (1984). It should be noted 
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that the fraction of heat generated in each body differs from the traditional heat partition factor, 

which is equal to q1/q2.  

Heat flux due to conduction is assumed to be of the form 

)( 21 �� �� gk kq ,                (5) 

where �1 and �2  are temperatures at surface elements of the sphere and half-space, respectively, 

and the gap conductance kg is assumed to be equal to k/(�l/10), where k� is the thermal 

conductivity of the layer material and �l is the size of the smallest element at the mesh surface. 

The rationale for the selection of these parameters is the continuity of the temperature across the 

contact interface. In addition, the produced high gap conductance reduces the sensitivity of the 

results on the generated heat fractions f1 and f2. 

 Both layer and substrate materials are assumed to exhibit elastic-perfectly plastic material 

behavior, obeying yield condition 

YijijM SS �� ��

2
3  ,               (6) 

where �M is the von Mises equivalent stress, Sij is the deviatoric stress tensor 

( /3, where �ijkkijijS ��� �� ij is the stress tensor and �ij is Knonecker’s delta function), and �Y is 

the yield strength in uniaxial tension. The material is assumed to behave as linear elastic until the 

yield condition is reached. Thereafter, the usual flow rule  

ij
p

ij Sdd �� � ,                  (7) 

is assumed, where  is the plastic strain increment and d	 is a scalar that depends on the 

plastic strain rate. 

p
ijd�
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Quasi-static sliding contact simulations were performed with the multi-purpose finite 

element code ABAQUS using six steps, each having 8-23 increments. The simulations 

comprised indentation of the half-space by the asperity (at z/R = 0) to a depth corresponding to a 

fixed normal load, followed by five incremental displacements �z/R = 0.05, 0.15, 0.35, 0.65, and 

0.95 of the asperity under the given load in the z direction. The typical computational time on a 

Pentium III 550 PC was about 55040 CPU seconds. 

3. Model Validation 

Normal contact simulations with and without frictional heating were performed in order 

to evaluate the appropriateness of the finite element model. Figure 2 shows a comparison 

between finite element results and analytical solutions (Huber, 1904) for elastic homogeneous 

half-space with properties those of the layer material (Table 1) indented by a rigid sphere. The 

stresses are normalized by the maximum contact pressure p0 and coordinate z by the contact 

radius r. The figure shows that the variations of the normal stress components at the surface 

along the z-direction (x = y = 0) predicted by the two methods are in good agreement. Results for 

the surface temperature distribution obtained from a thermomechanical finite element analysis of 

an asperity sliding over an elastic homogeneous half-space are shown in Fig. 3 (� = 1, and � = 

0.5). The figure shows the evolution of the surface temperature T with time for Peclet number Pe 

= 30 (Pe = vr/
, where v is the sliding speed and 
 is the thermal diffusivity). In this figure, as 

well as in subsequent figures, the temperature is normalized by 2rqm/k, where qm is the average 

heat flux into the medium and k is the thermal conductivity, and time t is normalized by t0, which 

is the time corresponding to a sliding distance equal to the contact radius. The z-coordinate of the 

asperity center is denoted by z0. The maximum temperature increases with time and its location 
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shifts gradually toward the trailing edge of the contact region due to the effect of the moving heat 

source (asperity). This trend and magnitude of peak temperature (Fig. 3) are in fair agreement 

with the analysis of Tian and Kennedy (1994). Favorable comparisons of the results shown in 

Figs. 2 and 3 with those of other studies demonstrate the suitability of the finite element model 

and the appropriateness of the assumed boundary conditions for thermomechanical sliding 

contact analysis. 

4. Results and Discussions 

In this section, finite element solutions for temperature, stress, and strain fields in a 

layered medium subjected to thermal and mechanical surface traction are interpreted in terms of 

the thickness and thermal conductivity of the layer, Peclet number, and distance of sliding. All 

simulation results presented below were obtained for � = 1 (unless stated otherwise) and � = 0.5. 

The significance of frictional heating and tangential (friction) traction on the deformation 

behavior, in particular the tendency for yielding and cracking in the layered medium, is 

elucidated in light of stress and strain results.  

Figures 4 illustrates the effect of frictional heating on the distribution and maximum 

value of the von Mises equivalent stress in a homogeneous elastic-plastic half-space with 

properties those of the layer material (Table 1, k = 0.052 W/m.K) for Pe = 30 and � = 0 and 1. 

The maximum indentation load and penetration depth during sliding were the same in both 

thermomechanical (� = 1) and mechanical (� = 0) simulation cases. The maximum von Mises 

equivalent stress occurred always at the surface. This is consistent with analytical results of 

Hamilton (1983) and Sackfield and Hills (1983) demonstrating that the maximum von Mises 

stress is always encountered at the surface when � > 0.3. However, frictional heating was found 
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to affect the location of the peak Mises stress at the surface. For � = 0, the peak Mises stress 

occurred near the front edge of the contact region (i.e., z > z0, where z0 is the z coordinate of the 

asperity center), whereas for � = 1, it occurred at the center of contact (z = z0). For � = 1, the 

temperature at the contact interface rises as the sphere slides over the medium, leading to thermal 

expansion of both sphere and half-space media. Figure 4(a) shows that growth of the contact 

region due to thermal expansion affected the steady-state contact stress distribution (t/t� = 6.5). 

Moreover, as shown in Fig. 4(b), the effect of frictional heating is negligible during indentation, 

evidently due to the very small relative slip at the contact interface. Under purely mechanical 

traction (� = 0), the maximum Mises stress increases rapidly with the onset of sliding, reaching a 

peak at sliding distance approximately equal to the contact radius (t/t� = 1). However, when 

frictional heating occurs simultaneously with mechanical loading at the contact interface (� = 1), 

the maximum Mises stress continues to increase during sliding, thus increasing the probability 

for yielding at the contact interface. Since the thermal effect on the contact stress field becomes 

more pronounced with increasing Peclet number, surface plasticity is more likely to occur at 

interfaces of components involving high sliding speeds, low diffusivity materials, high normal 

loads, and high-compliance interfaces producing large contact areas.    

Temperature results for a layered medium with properties given in Table 1 (h/R = 1.3 

(substrate); h/R = 0.1 and k = 5.2 W/m.K (layer)) subjected to both thermal and mechanical 

traction are shown in Fig. 5 for PeL = 0.29. The Peclet number is obtained in terms of the thermal 

diffusivity of the layer 
L = (k/�c)L, where � and c are the density and heat capacity of the layer 

material, respectively. The temperature is normalized by the thermal conductivity of the substrate 

ks. Figures 5(a) and 5(b) show the temperature evolution at the surface (y/h = 0) and interface (y/h 

= -1) of the layered medium, respectively. A steady-state surface temperature profile is obtained 
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after reaching a sliding distance of about four times the contact radius (i.e., t/t� = 4.62), in 

agreement with the findings of another study (Kennedy, 1981). Figure 5(b) shows that the 

interface temperature is significantly lower than that at the surface. The main reason is the very 

low thermal conductivity of the layer (~5.3 percent that of the substrate). This is the case of a 

thermally conductive substrate coated with an insulating material. Thus, the small fraction of 

frictional heat reaching the layer interface is effectively conducted into the substrate yielding an 

interface temperature an order of magnitude less than that at the surface. 

Figures 6 and 7 show the effect of layer properties and thickness on the maximum 

temperature rise at the surface and interface of the elastic-plastic layered medium. Three cases of 

different layer thermal conductivity (kL = 0.052, 0.52, and 5.2 W/m.K) and fixed thickness (h/R = 

0.02 (layer) and 0.956 (substrate)), and three cases of fixed layer thermal conductivity (kL = 5.2 

W/m.K) and different layer thickness (h/R = 0.02, 0.05, and 0.1, and corresponding substrate 

thickness h/R = 0.956, 1.3, and 1.3) were simulated for the same normal load and sliding 

velocity. The maximum surface temperature increases with Peclet number (Fig. 6(a)), thus 

increasing the probability for thermal cracking at the surface of the layered medium, while the 

temperature at the interface exhibits an opposite trend (Fig. 6(b)). The increase of PeL can be 

associated with higher sliding speed, larger conduct radius, and lower diffusivity materials. 

Hence, in the case of a fast moving heat source (asperity microcontact) and/or insulating layer 

material, heat conduction through the layer is prevented and high temperatures are encountered 

only at the contact region. A similar trend is observed with increasing layer thickness (Fig. 7). 

However, considering the change in temperature versus range of Peclet number and layer 

thickness, it is concluded that the effect of the layer thickness is significantly more pronounced 

than that of the layer thermal conductivity. Therefore, a thicker and less conductive layer is more 
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effective in protecting the substrate from thermal softening and phase transformation (annealing), 

although under certain circumstances this might have an adverse effect on the protective layer.  

To examine the effect of the layer thickness and properties on the likelihood of yielding 

and cracking in the layered medium due to thermomechanical traction (� = 1), the maximum von 

Mises equivalent stress � , maximum first principal stress � , and maximum 

equivalent plastic strain �  are plotted in Figs. 8 and 9 in terms of sliding time t/t

0
max / pM

max
p

max
M

0
max / pI

0 and layer 

thickness h/R. Stresses are normalized by the peak pressure p0 corresponding to h/R = 0.1 and t/t0 

= 0. Open (filled) symbols in Fig. 8 denote the layer surface (interface), while open (filled) 

symbols in Fig. 9 denote the bulk (interface) of the substrate. The same normal load was used in 

all simulation cases. Both �  and �  increase rapidly with the onset of sliding in both layer 

and substrate media, evidently due to the development of shear traction, reaching steady-state 

values at sliding distances of 2-6 times the contact radius, depending on the layer thickness. The 

significantly higher maximum von Mises and first principal stresses obtained with relatively thin 

layers indicate a greater propensity for thin overcoats to undergo plastic deformation and 

cracking due to thermomechanical surface traction. 

max
I

The layer thickness plays an important role on the location of �  and � . For 

relatively thin layers (h/R = 0.02), sliding causes to shift from the surface to the layer 

interface (Fig. 8(a)), while � occurs always at the layer surface (Fig. 8(b)). For layers of 

intermediate (h/R = 0.05) or large (h/R = 0.1) thickness, an opposite trend is observed after the 

onset of sliding (t/t

max
M

max
I�

max
I

max
M�

max
I

0 > 1), i.e., the location of �  eventually shifts from the interface to the 

surface of the layer, indicating a significant friction (thermal) effect on the location where 

plasticity commences first in the layer (Fig. 8(a)). However, the location of  (interface) for 

max
M
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h/R = 0.02 and 0.05 is not affected by the shear and thermal traction resulting from sliding 

contact (Fig. 8(b)). 

Regarding deformation in the substrate, it was found that plastic deformation during 

sliding always commenced at the interface (Fig. 9(b)). (For the range of layer thickness, material 

properties, and normal load analyzed, plasticity was confined in the substrate for all simulation 

cases.) The magnitude of � increases as the layer thickness decreases, suggesting a greater 

likelihood for plastic flow in the substrate in the case of thinner overcoats. In addition, the 

thinner layer produces a higher maximum tensile stress at the layer/substrate interface (Fig. 9(a)). 

The shift of � from the bulk of the substrate to the interface illustrates the effect of shear and 

thermal traction on the location where microcracking is likely to occur in the substrate material. 

The results shown in Figs. 8 and 9 demonstrate the important role of the layer thickness on the 

resistance against plastic deformation and cracking of layered media subjected to 

thermomechanical surface traction. 

max
p

max
I

5. Conclusions 

A thermomechanical finite element analysis for sliding contact of layered media was 

performed in order to elucidate the role of the surface layer (overcoat) material properties and 

thickness on the evolution of temperature, stress, and strain fields. The finite element model 

accounts for elastic-plastic deformation and conduction of frictional heat in both contacting 

solids. Based on the presented results and discussion, the following main conclusions can be 

drawn. 

(1) A three-dimensional model for thermomechanical contact analysis was developed and 

validated by comparisons of simulation results with solutions from an elastic normal contact 
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analysis and temperature rise results from a thermomechanical numerical analysis of sliding 

contact. 

(2) A steady-state temperature distribution is reached at the layer surface and layer/substrate 

interface at sliding distances equal to 4-6 times the contact radius.  

(3) The layer thickness exhibits a more pronounced effect on the interface temperature rise, 

while the influence of the Peclet number (i.e., layer thermal properties, sliding speed, 

medium compliance, and normal load) is relatively secondary.  

(4) Frictional heating coupled with shear surface traction in sliding contact may intensify the 

stress field in layered media significantly. The likelihood for yielding and cracking increases 

with decreasing layer thickness. The location of the maximum von Mises equivalent stress, 

maximum tensile stress, and maximum equivalent plastic strain depends on the layer 

thickness and the frictional heat conducted through the layer, controlled by the thermal 

conductivity of the layer material, coefficient of friction, contact interface compliance, and 

normal load. 
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Table 1. Thickness and properties of layer and substrate media of the finite  

element modela  
Medium Layer  Substrate 
Thickness, h/R 0.02, 0.05, 0.1 0.956, 1.3, 1.3 
Elastic modulus, E (GPa) 168 130 
Poisson ratio, � 0.3 0.3 
Yield strength, �Y (GPa) 13 2.67 
Conductivity, k (W/m . K) 0.052, 0.52, 5.2 98 
Specific heat, c (J/g . K) 0.5 0.42 
Density, �  (kg/m3) 2150 8800 
Thermal expansion, a (K-1 2 x 10-6 13 x 10-6 
Thermal diffusivity, � (m2 4.837 x 10-6 26.52 x 10-6 
aThe elastic modulus and thermal modulus of the asperity are identical  
to those of the layer material. 
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