
1

The CML Air Bearing Optimization Program Version 2.0

Hong Zhu and David B. Bogy

Computer Mechanics Laboratory

Department of Mechanical Engineering

University of California at Berkeley

Berkeley, CA 94720

ABSTRACT

This report presents a detailed description of the air bearing optimization program

version 2.0 developed at the Computer Mechanics Laboratory at the University of California

at Berkeley. The program provides the tools necessary for the optimization of air bearing

designs for hard disk drives. Version 2.0 was developed from the previously released

optimization program Version 1.5.

Unlike the old version, which has only one kind of simulated annealing algorithm,

this new version includes the more powerful Adaptive Simulated Annealing algorithm as

well as other variations in that family. Also, new solvers have been implemented to make the

code more flexible and more efficient than its previous version. Generally speaking, the

2

efficiency of the new version of the optimization code is 3 to 4 times higher than the old

version.

The program implements the CML Air Bearing Steady Codes to evaluate the designs

generated during the optimization process. Therefore, the CML steady codes (rectangular

mesh solver Quick419 and triangular mesh solver Quick5) must be available in order for this

optimization program to be used.

This optimization program is capable of multi-objective optimization with an

arbitrary number of constraints, and can find the optimal ABS design in the search space.

3

1. INTRODUCTION

Optimization is the process of trying to minimize a function subject to conditions on

the variables. This function is generally referred to as the “objective” or “cost” function. The

conditions set on the variables are referred to as constraints.

Figure 1 illustrates the optimization technique types according to the search space,

search method and search scale, respectively.

The optimization algorithm implemented here is the Simulated Annealing

optimization algorithm. It is an analogy of the physical annealing process wherein a system’s

temperature is gradually cooled down in order to reach its lowest energy state. It can be used

to find a global minimum of an objective function in parameter space. It is a stochastic global

optimization technique for constrained optimization problems. The simulated annealing

algorithm has been widely used in many areas such as chemistry, biology, economics, and

circuit design, and it has been proven to be a very successful and powerful technique for

solving non-linear multi-objective optimization problems.

In this program, we implemented the latest addition to the simulated annealing

family, i.e. the Adaptive Simulated Annealing (ASA) algorithm, along with the Standard

Simulated Annealing (SA) algorithm, the Fast Simulated Annealing (FA) algorithm, and a

self-defined Simulated Annealing algorithm, which was the only algorithm used by the

previous version 1.5.

4

ASA has a much faster cooling schedule and a self-adaptive mechanism to reflect the

differing sensitivities of different constraint points. Therefore, it can converge much faster

than other simulated annealing algorithms. Also it can effectively avoid the final phase

“freezing” phenomenon, which appears in other simulated annealing algorithms. The

technical details of these algorithms can be found in CML technical report no. 00-010.

2. STRUCTURE OF THE CML OPTIMIZATION PROGRAM

To perform the optimization, we need two closely integrated parts: the optimization

algorithm, and the solver. The optimization algorithm is used to generate different sample

designs, which are then sent to the solver for calculation. From these results, the algorithm

will evaluate the quality of the current design and, based on that evaluation, will generate a

new design.

Here we used the simulated annealing algorithm and the CML steady solvers,

including the CML rectangular mesh solver Quick419 and the CML triangular mesh solver

Quick5. Figure 2 presents a schematic illustration of the structure of the optimization

program version 2.0.

The flow chart of the CML optimization program version 2.0 is shown in Fig. 3.

5

3. COMPARISON BETWEEN THE CURRENT VERSION 2.0 AND THE OLD

VERSION 1.5

There are a number of differences between the old and new versions. For clarity, we

list only the main differences in Table 1.

4. INPUT FILE

The file constraint.dat is the only input file to the program (other than the files

rail.dat and run.dat which are necessary to run the CML Air Bearing Design rectangular

mesh solver Quick419, or the files rail.dat, run.dat and trigrid.dat which are necessary to run

the CML Air Bearing Design triangular mesh solver Quick5). Before running the

optimization program, users should copy the file rail.dat to rail.dat.orig and rail.dat.opt and

copy the file run.dat to run.dat.orig and run.dat.opt. This is necessary in order to create an

initial reference design, because the optimization program will generate new designs during

the running process and overwrite these two files. We always regard the initial design as the

first optimized design.

All variables that are not set explicitly in the constraint.dat file are taken from rail.dat

and run.dat. Please refer to the CML Air Bearing Design Program manual for a detailed

explanation of these two files.

Now let’s look at the input file constraint.dat.

6

The first two lines of the constraint.dat file describe the optimization program

information and the way to report bugs. They should not be edited. They are:

CML Optimization Code Version 2.0 CONSTRAINT.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

The next two lines define the solver you would like to use and they should not be

edited. They are:

Select solver (1=rectangular solver 2=triangular solver)

The choice (1 or 2) should be entered in the following line.

The next line defines which optimization algorithm you would like to use and it

should not be edited. It is:

Select optimization algorithm (1=SA 2=FA 3=ASA 4=Self-defined)

The choice (1, 2, 3 or 4) should be entered in the following line. Choice 3 (ASA) is

recommended.

The next line defines whether constraints for the solver results should be used and it

should not be edited. It is:

7

Set constraints on solver results? (0=No 1=Yes)

Setting constraints on the solver will accelerate the optimization process. This is

because we usually need to evaluate the ABS designs at different radial positions (e.g., OD,

MD and ID). The optimization will invoke the CML steady code to calculate results for these

different positions. If for a certain design we find that some important parameters are very

bad at a certain radial position (e.g., having a very high Roll), the best course is to skip this

design, and no longer calculate it for the rest of the radial positions. Essentially, we think this

design is bad and should not be accepted. If we set constraints for the solver results, we can

let the optimization program skip a design automatically according to the conditions we set,

and probably save some time during the optimization process.

The choice (0 or 1) should be entered in the following line. Choice 1 is

recommended.

The next two lines describe the format for solver constraints and they should not be

edited. They are:

Format for solver constraints:

FH_L(nm) FH_U(nm) Roll_L(urad) Roll_U(urad) Pitch_L(urad) Pitch_U(urad)

The FH_L and FH_U represent the lower and the upper limits of the flying height

(nm), respectively. Similarly, Roll_L and Roll_U represent the lower and the upper limit of

the roll (µrad), respectively, and Pitch_L and Pitch_U represent the lower and the upper limit

of the pitch (µrad), respectively.

8

If we set the constraints for the solver, and if the flying height, roll or pitch falls

beyond their range of the lower and the upper limit, then the evaluated design will be

considered to be unacceptable and will be skipped.

Note: If the range of these parameters is too tight, then very few promising designs

will emerge.

The magnitude of these six parameters should be entered on the following line.

The next line defines which screen output mode is preferred and it should not be

edited. It is:

Screen display mode (1=verbose 2=concise)

Verbose mode means the program will show the entire screen output for both the

solver and the algorithm. Concise mode means only the most important information will be

output to the screen, including the flying height, roll, and pitch for each radial position of a

certain design, and a few important parameters for the algorithms. Below is a typical concise

screen output:

Point# 1 : FH= 4.8864 ROLL= 2.7764 PITCH= 275.9209

Point# 2 : FH= 4.2947 ROLL= 5.6050 PITCH= 233.4297

Point# 3 : FH= 5.3174 ROLL= -3.4249 PITCH= 182.3231

Quick419 is DONE!

N_gen: 45 N_acc: 15 N_opt: 2

9

Cost: 1.568647e+001 Cost_bsf: 1.389004e+001

T_cost = 7.673284e-001 T_param = 4.486467e-002

The first three lines give the flying heights (nm), rolls (urad) and pitches (urad) for

the three radial positions (OD, MD, ID). The next line shows the solver used by the program

(Quick419 in this case). N_gen, N_acc and N_opt represent the number of generated designs,

number of accepted designs and number of optimized designs so far, respectively. Cost

represents the value of the objective function (also called the cost function) for the current

design. Cost_bsf means the best so far cost function value. T_cost represents the temperature

for the cost function and T_param represents the temperature for the parameters (or only the

first parameter temperature if the algorithm we choose is ASA).

The choice (1 or 2) should be entered on the following line. Choice 1 is

recommended.

The next three lines describe the format of the seven parametric constraints and

should not be edited. They are:

Format for non-geometric constraints:

variable name lower value upper value initial value

The following seven lines actually define constraints for the problem. To skip

optimizing a particular parameter listed here, simply set the upper and lower bounds to be the

same. Here is an example:

10

load(kg) 1.5e-3 1.5e-3 1.5e-3

x offset 0.0 0.0 0.0

y offset 0.0 0.0 0.0

taper length 0.0 0.0 0.0

taper angle 0.0 0.0 0.0

recess depth 2.5e-6 2.5e-6 2.5e-6

step depth 0.3e-6 0.3e-6 0.3e-6

Note that x offset, y offset, taper length, recess depth, and step depth are all given in

unit meters, consistent with the new CML Air Bearing Design program. Taper angle is given

in radians.

The next two lines describe the related parameters of recess depth and step depth

optimization and should not be edited. They are:

recess index, step index, mid index, property (1=proportional 2=fixed normal dist.)

The recess index, step index and mid index represent the wall profile indices for the

base recess (cavity depth), whereas step is the segment between them. When the program

modifies the recess and step, the wall profiles associated with them should also be changed

accordingly. We can change the wall profiles proportionally or with a fixed normal distance.

These two options are shown in Figs. 4 and 5.

The three index numbers and one property number should be given in the following

line. Please refer to the rail.dat file for the corresponding index numbers.

11

The next three lines describe how the geometric constraints should be constructed and

should not be edited. They are:

Format for original geometric constraints:

rail# vertex# dir low val. up val. init val.

Here we define the geometric constraints, of which there are three different kinds.

Original constraints are mutually independent. Symmetric constraints require some vertices

to vary symmetrically with the original constraint points. Relative constraints require some

vertices to maintain fixed spatial relationships between the original constraint points and the

symmetrical constraint points.

Multiple vertices can be given a range in which to vary. Each constraint takes up one

line. The rail# field defines on which rail the vertex resides as defined in the CML Air

Bearing Design program. Similarly, the vertex# field defines which vertex is to be varied on

this rail and is also used as it is defined in the CML Air Bearing Design program. The dir

field defines in which direction a vertex is to move. The field should read x (or X) if the

vertex is to move in the slider length direction, or y (or Y) if the vertex is to move in the

slider width direction. These conventions are consistent with the CML Air Bearing Design

program. The low val. field gives the lower value of the geometric constraint. Note that

unlike the previous version 1.5, now all the geometric constraints are given in absolute

coordinates in unit meters, which is consistent with the CML Air Bearing Design program.

The next field, up val., gives the upper limit on the value of the constraints. The following

field, initial val., gives the values that are used for the starting point of the optimization.

12

Note that if a parameter range has the same lower and upper bounds (e.g., this parameter is

not to be included in the optimization), then the initial val. field will be ignored and the

value read in the rail.dat that already exists in the current directory will be used.

The next two lines describe how the symmetric constraints should be constructed and

should not be edited. They are:

Format for symmetric constraints

rail# vertex# dir to be symmetric with: rail# vertex#

Here we define the symmetric constraints for the problem. Each line consists of five

fields. The first two fields, rail# and vertex#, indicate which rail and vertex will be varied

symmetrically. The dir field defines in which direction the specified vertex should vary. The

final two fields, (to be symmetric with:) rail# and vertex#, define the vertex with which the

current vertex will vary symmetrically.

The next two lines describe how the relative constraints should be constructed and

should not be edited. They are:

Format for relative constraints

rail# vertex# to be moved relative to: rail# vertex#

Here we define the relative constraints for the problem. A relative constraint fixes a

specified vertex to move with the same relative distance to another specified vertex

throughout the optimization. Each line consists of four fields. The first two fields, rail# and

13

vertex#, define which vertex will be moving relatively. The second two fields, (to be moved

relative to:) rail# and vertex#, define the vertex to move relative to.

Figure 6 shows the rail shape and some rail indices of the initial ABS design of the

example case. Figure 7 shows its 3-D rail geometry. Figure 8 shows the constraints

prescribed for the example case.

The corresponding parts for these constraints defined in the constraint.dat file are:

Format for original geometric constraints:

rail# vertex# dir low val. up val. init val.

5 1 x 0.70e-3 0.85e-3 0.80e-3

5 2 x 0.94e-3 1.09e-3 1.05e-3

5 8 x 0.72e-3 0.86e-3 0.82e-3

Format for symmetric constraints

rail# vertex# dir to be symmetric with: rail# vertex#

10 1 x 5 1

10 2 x 5 2

10 8 x 5 8

Format for relative constraints

rail# vertex# to be moved relative to: rail# vertex#

3 11 5 1

3 12 5 8

5 3 5 2

5 4 5 2

5 5 5 2

5 6 5 2

5 7 5 2

8 11 10 1

8 12 10 8

10 3 10 2

10 4 10 2

10 5 10 2

10 6 10 2

10 7 10 2

14

The next three lines describe the format for evaluation points and should not be

edited. They are:

Format for evaluation points (from OD to ID):

radius(meters) skew(degrees)

Typically, the optimization program evaluates slider flying height, roll, pitch, etc. at

different radial positions. Where, and how many of these evaluations are made are described

in this section. Two fields are needed to define exactly where the slider is to be evaluated for

the cost function. The first field, radius , determines the radial distance from the center of the

disk and the next field, skew, determines the corresponding skew. Please note that we have

adopted the IDEMA standard regarding positive and negative skews, which is opposite of

what we used in our earlier version. Please refer to the latest CML Air Bearing Design

program manual to make sure your input is correct.

The final section dictates the weight given to the various terms of the objective

function. The first two lines of this section are a separator line and a description of the

section and should not be edited. They are:

Weightings for objective function:

The next line is an informational line and should not be edited. The line after that is

the weight for the maximum difference in flying height (nm) term, the 1st term defined in

15

the objective function. Note that all nine terms in the objective function have been

normalized, which means that if they have an initial value, it will be 1; otherwise it will be 0.

By normalizing the objective function terms we can more easily define their weightings

according to our optimization goals, and we can also readily see improvement in different

terms. An example of these two lines is:

(1)-----Weight for maximum difference in flying height (nm) term:

 1.0

This term is defined as:

)(__

)(__

0FHdifferenceFHMaximum

FHdifferenceFHMaximum
 ,

where FH means the flying heights of the current design and FH0 means the flying heights of

the initial design (parameters with sub-index 0 will be regarded as the parameters of the

initial design). We can see that for the initial design, the value of this term is always 1.

An important note about the definition of the flying height: in the CML Air Bearing

Design program, there are several different kinds of flying heights in the result file (e.g.,

nominal flying height, minimum flying height, etc). The flying height we define here is the

transducer flying height, or “actual flying height”, which is the clearance between the read-

write sensor and the disk surface. In this optimization program, we always define the read-

write sensor point as our first point of interest in the rail.dat file and the program will take

the flying height at the first point of interest as the actual flying height. So please make sure

you define the read-write sensor point as the first point of interest in your rail.dat file.

16

The next two lines in the constraint.dat file describe and define the weight for the

flying height term, which is the 2nd term of the objective function. Note that, as we just

mentioned, “flying height” in this case means the transducer flying height. This term is used

to check the uniformity of the flying heights around our target flying height. The target flying

height is described and defined in the following two lines of the constraint.dat file. An

example of these lines is:

(2)-----Weight for flying height(nm) term:

 9.0

 Target flying height (nm):

 5.0

This term is defined as:

∑

∑

=

=

−

−

n

i
etti

n

i
etti

FHFH

FHFH

1

2
arg0

1

2
arg

)(

)(

 ,

where FHtarget represents our target flying height and n is the number of the evaluation points.

We can see that for the initial design, the value of this term is always 1.

The next two lines in the constraint.dat file describe and define the weight for the roll

(µµrad) term, which is the 3rd term of the objective function. This term represents the flatness

of the roll profile. An example of these lines is:

(3)-----Weight for roll (urad) term:

 1.0

17

This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

Roll

Roll

1

2
0

1

2

 .

Again we see that for the initial design, the value of this term is always 1.

The next two lines in the constraint.dat file describe and define the weight for the roll

– roll cutoff (µµrad) term, which is the 4th term of the objective function. The roll cutoff

(µrad) is described and defined in the following two lines; here is an example:

(4)-----Weight for roll - roll cutoff (urad) term:

 1.0

 Roll cutoff (urad):

 5.0

This term will define the acceptable range for roll (e.g., from –5µrad to +5µrad).

Rolls within this range are all acceptable, although smaller is still better. This roll cutoff term

acts like a penalty function. If the rolls are all in the range we defined, this term has the value

of 0. Otherwise it won’t be 0. The more the rolls deviate from our acceptable range, the

greater an effect this term will have.

This term is defined as:

18

∑

∑

=

=

n

i
i

n

i
i

cutoffRoll

cutoffRoll

1

2
0

1

2

_

_

 ,

where

>−
≤

=
cutoffRollRollifcutoffRollRoll

cutoffRollRollif
cutoffRoll

ii

i
i __

_0
_ .

For this term, if the ∑
=

n

i
icutoffRoll

1

2
0_ is equal to 0, then we define the initial value

of this term to be 0. For this case, this term will be defined as ∑
=

n

i
icutoffRoll

1

2_ to avoid

dividing by zero.

The next two lines in the constraint.dat file describe and define the weight for the

pitch – pitch cutoff (µµrad) term, which is the 5th term of the objective function (the pitch

cutoff (µrad) is itself described and defined in the two lines immediately following).

An example of these two lines is:

(5)-----Weight for pitch - pitch cutoff (urad) term:

 1.0

 Pitch cutoff (urad):

 300.0

19

The need for this term is quite similar to that for the roll cutoff term. That is,

sometimes we don’t want the pitch exceed a certain upper limit. Again we have created a

penalty function. This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

cutoffPitch

cutoffPitch

1

2
0

1

2

_

_

 ,

where

>−
≤

=
cutoffPitchPitchifcutoffPitchPitch

cutoffPitchPitchif
cutoffPitch

ii

i
i __

_0
_ .

For this term, if the ∑
=

n

i
icutoffPitch

1

2
0_ is equal to 0, then we define the initial value

of this term as 0. For this case, this term will be defined as ∑
=

n

i
icutoffPitch

1

2_ to avoid

dividing by zero.

The next six lines define the weights for the three stiffness terms, i.e. vertical

stiffness (g/nm) term, pitch stiffness (µµN-m/µµrad) term and roll stiffness (µµN-m/µµrad)

term. Note that “sensitivity” is simply the inverse of “stiffness”. Therefore, increasing the

stiffness is equivalent to decreasing the sensitivity. These lines define the 6th, 7th and 8th

terms of the objective function. An example of these lines is:

(6)-----Weight for vertical sensitivity (nm/g) term:

 1.0

(7)-----Weight for pitch sensitivity (urad/uN-m) term:

 1.0

(8)-----Weight for roll sensitivity (urad/uN-m) term:

 1.0

20

The vertical sensitivity term is defined as:

∑

∑

=

=

n

i i

n

i i

stiffnessVertical

stiffnessVertical

1

2

0

1

2

_
1

_
1

 .

The pitch sensitivity term is defined as:

∑

∑

=

=

n

i i

n

i i

stiffnessPitch

stiffnessPitch

1

2

0

1

2

_
1

_
1

 .

The roll sensitivity term is defined as:

∑

∑

=

=

n

i i

n

i i

stiffnessRoll

stiffnessRoll

1

2

0

1

2

_
1

_
1

 .

Note that the CML triangular mesh solver Quick5 doesn’t calculate the stiffness

matrix. When using Quick5, please set the weights of all these sensitivity terms to 0. Also, if

you want to optimize these sensitivities using the CML rectangular mesh solver Quick419,

you must set the stiffness matrix flag istiff in the run.dat file to 1.

21

The last two lines define the weight for the negative force (g) term, the 9th term of

the objective function. They describe and define the negative force target (absolute value).

An example of these lines is:

(9)-----Weight for negative force(g) term :

 1.0

 Negative force target (g) (note: give as absolute value)

 2.0

Again, the need for this term is similar to that for the roll cutoff and pitch cutoff

terms. When designing a slider ABS, we sometimes want to maintain a high negative force

value to achieve certain slider performance targets (e.g., load-unload). Again, this is a penalty

function for this purpose. If the absolute value of the negative force is higher than the

negative force target, this term is set to 0. If the negative force is lower than the target, it will

be non-zero, and will have an effect.

This term is defined as:

∑

∑

=

=

n

i
i

n

i
i

cutoffNegative

cutoffNegative

1

2
0

1

2

_

_

 ,

where

<−
≥

=
ettiiett

etti
i forceNforceNifforceNforceN

forceNforceNif
cutoffNegative

argarg

arg

__0
_ .

22

Here N_force means negative force. For this term, if the ∑
=

n

i
icutoffNegative

1

2
0_ is

equal to 0, then we define the initial value of this term as 0. For this case, this term will be

defined as ∑
=

n

i
icutoffNegative

1

2_ to avoid dividing by zero.

The total objective function value is the total linear summation of the nine terms

(including their weights). It is:

()∑
=

×=
9

1

i

ii termobjecitveweightvaluefunctionObjective

5. OUTPUT FILE

In addition to the result files of the CML Air Bearing Design program, there are a

total of 10 output files generated by the optimization program. These output files are:

rail.dat.opt

run.dat.opt

cost.dat

nacost.dat

optcost.dat

opti_res.dat

opt.dat

scr_sav.dat

asa.dat

asa_res

23

These files are all text files.

The rail.dat.opt and run.dat.opt files contain all the necessary information about the current

optimal design. They have the same structure as the corresponding rail.dat and run.dat input

files used by CML Air Bearing Design program. For detailed information about these two

files, please refer to the User’s Manual for the CML steady code.

The cost.dat file contains information about every configuration or design generated

by the optimization program. It has 13 fields:

 total objective function value

 maximum difference in flying height term

 flying height term

 roll term

 roll cutoff term

 pitch cutoff term

 vertical sensitivity term

 pitch sensitivity term

 roll sensitivity term

 negative force term

 cost temperature

 parameter temperature (the first parameter temperature for the ASA)

 number of designs generated

24

The files nacost.dat and optcost.dat have one additional field:

number of designs accepted

The file nacost.dat keeps a record of all accepted designs and optcost.dat keeps track

of optimized designs, i.e., it is only updated when a design is found to be the best-so-far

design (that is, the objective function value is by far the lowest).

The file opti_res.dat keeps track of the optimization progress. This file writes the

current annealing temperature for both the parameters and the cost, the number of designs

generated so far, the number of designs accepted, and the current optimal value of all the

parameters used in the optimization. An example of this part of the file for our example case

is as follows:

num_generated so far: 41

asa->para_k[0] so far: 29.687326

asa->para_k[1] so far: 31.119396

asa->para_k[2] so far: 30.316471

The current *cost_T: 1.027722e+000

The current asa->cost_t: 1.569854e-001

The current *param_T: 2.341335e-002

The current asa->para_t[0]: 2.341335e-002

The current asa->para_t[1]: 2.149885e-002

The current asa->para_t[2]: 2.254466e-002

rail: 5, vertex: 1, x direction: 7.311987e-004

rail: 5, vertex: 2, x direction: 1.005120e-003

rail: 5, vertex: 8, x direction: 7.549578e-004

rail: 10, vertex: 1, x direction (symmetric to r5, v1): 7.311987e-004

rail: 10, vertex: 2, x direction (symmetric to r5, v2): 1.005120e-003

25

rail: 10, vertex: 8, x direction (symmetric to r5, v8): 7.549578e-004

rail: 3, vertex: 11, (relative to r5, v1): 7.311987e-004 9.680000e-004

rail: 3, vertex: 12, (relative to r5, v8): 7.549578e-004 8.200000e-004

rail: 5, vertex: 3, (relative to r5, v2): 1.024120e-003 9.640000e-004

rail: 5, vertex: 4, (relative to r5, v2): 1.040120e-003 9.540000e-004

rail: 5, vertex: 5, (relative to r5, v2): 1.050120e-003 9.380000e-004

rail: 5, vertex: 6, (relative to r5, v2): 1.054320e-003 9.190000e-004

rail: 5, vertex: 7, (relative to r5, v2): 1.054320e-003 8.700000e-004

rail: 8, vertex: 11, (relative to r10, v1): 7.311987e-004 3.200000e-005

rail: 8, vertex: 12, (relative to r10, v8): 7.549578e-004 1.800000e-004

rail: 10, vertex: 3, (relative to r10, v2): 1.024120e-003 3.600000e-005

rail: 10, vertex: 4, (relative to r10, v2): 1.040120e-003 4.600000e-005

rail: 10, vertex: 5, (relative to r10, v2): 1.050120e-003 6.200000e-005

rail: 10, vertex: 6, (relative to r10, v2): 1.054320e-003 8.100000e-005

rail: 10, vertex: 7, (relative to r10, v2): 1.054320e-003 1.300000e-004

new load: 1.500000e-003

new xf0: 0.000000e+000

new yf0: 0.000000e+000

new xt: 0.000000e+000

new ht: 0.000000e+000

new recess: 2.500000e-006

new step: 3.000000e-007

Total cost: 6.616694e+000.

FH max_diff term: 1.685984e+000 * 1.000000e+000 = 1.685984e+000,

FH term: 1.452572e-001 * 9.000000e+000 = 1.307315e+000,

Roll term: 8.615574e-001 * 1.000000e+000 = 8.615574e-001

Roll cutoff term: 0.000000e+000 * 1.000000e+000 = 0.000000e+000

Pitch term: 0.000000e+000 * 1.000000e+000 = 0.000000e+000

Vertical sens. term: 8.071782e-001 * 1.000000e+000 = 8.071782e-001

Pitch sens. term: 7.600304e-001 * 1.000000e+000 = 7.600304e-001,

Roll sens. term: 1.194629e+000 * 1.000000e+000 = 1.194629e+000,

Negative force term: 0.000000e+000 * 1.000000e+000 = 0.000000e+000.

The file opt.dat saves all the important results for all the optimized designs at

different radial positions. It has the following six fields :

flying heights (nm) (note: actual flying heights)

minimum flying heights (nm)

26

nominal flying heights (nm)

pitches (urad)

rolls (urad)

negative forces (g)

Each field will have N real numbers, where N is the number of evaluation points.

Generally we choose evaluation points at OD, MD and ID, so N is equal to 3.

The file scr_sav.dat keeps all the screen display information during the whole

optimization process if you have chosen the concise display mode (mode 2). If you choose

the verbose mode (mode 1) in the constraint.dat file, this file will not be generated.

The file asa.dat keeps all the temperature parameters and the step information for the

algorithm during the optimization process. It has six fields:

number of designs generated

number of designs accepted

cost temperature

all the parameter temperatures

number of time step for cost temperature

number of time steps for all the parameter temperatures

27

The file asa_res keeps all the information similar to those of asa.dat. It is used

mainly to debug the ASA algorithm.

6. MATLAB POST-PROCESS FILE

For post-processing, there are four Matlab files that make use of our input files and

output files to provide users with a direct graphic explanation of the optimization results. All

of them run under Matlab Version 5 or higher. These files are:

conrail.m (together with xline.m, yline.m and lplot.m)

plotopt.m

history.m

objterm.m

To illustrate the use of these Matlab post-process files, let’s first look at the example

case. The initial slider is a pico slider with a flying height of around 7nm. The rail shape of

the slider is shown in Figs. 6 and 7. We wish to optimize it to fly uniformly at 5nm while still

maintaining a flat roll profile. The input files constraint.dat, rail.dat and run.dat are listed in

Lists 1, 2 and 3, respectively. The constraints defined for this example case are shown in

Fig. 8.

The Matlab post-process file conrail.m is used to show the differences between the

optimized design and the initial design. It also shows all the constraints (original, symmetric

28

and relative) defined by the user. For the example case, conrail.m yields results shown in Fig.

9.

In Fig. 9, the gray lines show the rail shape of the initial design whereas the dark lines

show the rail shape of the optimized design. The three black dots show the original constraint

points. The fine solid lines and fine dashed lines represent the symmetric and relative

constraints, respectively. We see from Figure 9 that the optimized ABS has a smaller rail

area as compared with the initial design. Thus, its flying heights are lowered.

The Matlab post-process file plotopt.m shows the variation of the objective function

value throughout the optimization process.

For the example case, plotopt.m yields the results shown in Fig. 10. The small hollow

squares represent the different designs generated. The small solid squares represent designs

that were skipped or ignored due to a breach of the solver constraints we set, or due to a

slider crash. The larger squares represent the designs that were accepted. Lastly, the dark

circles represent all the “best-so-far” optimized designs we obtained during the optimization

process. We see that these best-so-far designs have the lowest objective function values so

far.

Figure 10 also shows the change in the total objective function value and the

percentage of improvement, which is defined as:

%100×
−

=
ini

optini
imp Cost

CostCost
Percent ,

29

where Costini means the initial objective function value, and Costopt means the objective

function value for the final optimized design. Ngen, Nign, Nacc, Nopt represent the number of

the designs generated, ignored, accepted and optimized, respectively.

The Matlab post-process file history.m shows six parameters for all the best-so-far

optimized designs: actual flying height (nm), minimum flying height (nm), nominal flying

height (nm), roll (µrad), pitch (µrad) and negative force (g). By running this post-process file

for the example case, we generate Fig. 11.

In each of these six small pictures, the horizontal coordinates represent the index

number of the best-so-far optimized designs. In this case, index 1 is our initial design and

index 7 is the final optimized design. We see that the optimization program found an

optimized design with very uniform flying heights around the target flying height (5nm), and

with a flat roll profile.

The Matlab post-process file objterm.m shows the variations in all nine objective

function terms for all the best-so-far optimized designs, and gives the percentage of

improvement for each term (defined similarly to the improvement in the objective function

value). By running objterm.m under Matlab, we generate Fig. 12.

Similarly to Fig. 11, the horizontal coordinates all represent the index number for the

different best-so-far optimized designs. From Fig. 12 we see that, for the 2nd objective

function term (i.e., the flying height term), the percentage of improvement is very high:

30

97.07%. That means the final optimized design has a very constant flying height profile

around the target flying height. The roll (as seen in the 3rd objective function term), also

improved.

In summary, for this example case a greatly optimized ABS design was obtained by

using the CML optimization program version 2.0.

7. HOW TO RUN THE PROGRAM

The optimization program is written in the PC Windows version of “C”. As yet, the

optimization program doesn’t have a graphic user interface. To use it, download the version

you need from the CML website http://cml.me.berkeley.edu, and install it on your PC.

Download the ZIP file opti2.ZIP and unzip it under the desired root directory (e.g.,

the root directory of drive C). You should see a new set of directories:

C:/opti/program

C:/opti/quick

C:/opti/m_files

C:/opti/example

The directory C:/opti/program contains the optimization executable program opti.exe.

31

The directory C:/opti/quick contains the CML Air Bearing Design executable

program Quick419.exe (rectangular mesh solver) and Quick5.exe (triangular mesh solver).

The directory C:/opti/m_files contains the Matlab post-process files conrail.m,

xline.m, yline.m, lplot.m, plotopt.m, history.m and objterm.m.

The directory C:/opti/example contains an example case with all of its input and

output files.

When you are ready to do an actual optimization, copy the file c:/opti/opti.exe to your

current working directory and make sure you have all the necessary input files. Then, run the

optimization program under Windows by double-clicking on it.

During any stage of the process, you can use the Matlab post-process files to check

the results. To do this, start Matlab (version 5 or higher). Then, in the Matlab console

window, enter:

>> cd C:/your_current_working_directory

>> path (path, ‘C:/opti/m_files’)

Finally, under the Matlab prompt, enter conrail, plotopt, history or objterm to see the

related results.

32

8. WHEN TO STOP

At present, the internal parameters are set to keep the optimization program running

until the number of generated designs reaches 1000, or the number of accepted designs

reaches 500, or the cost temperature reaches 1.0E-7.

In practice, we suggest that you only run the program until the number of generated

designs reaches 300 ~ 400. Because the latest optimized design will always be saved in files

rail.dat.opt and run.dat.opt, it is okay to stop or interrupt the optimization program once you

think you have the optimized design you want.

9. SOME TIPS FOR SUCCESSFUL OPTIMIZATION

• Combine the use of the optimization code with the use of CMLAir32 software.

The latest CML Air Bearing Design program CMLAir32 v6.0 (PC Windows

version) has a graphic user interface and it’s very easy to use. Using CMLAir32 is a

good way to prepare your initial design, and will also make it quite easy for you to

define the constraints.

• Try to get a better initial design.

A better initial design will always help you to find the optimized design more

quickly.

33

• Define the constraints reasonably.

Although constraint points can be set arbitrarily, and the optimization program will

always try to find the optimized design with whatever constraints the user has

defined, it helps a lot if you can define them more “wisely.” Generally, the fewer

the constraint points defined, the faster the optimization goes. We recommend that

users choose no more than 6 or 7 original constraint points for faster optimization.

If you have some experience or insight as to which points will affect the

performance of the slider most, then those points will be the best candidates for

constraint points. You can build such experience by playing with the optimization

program.

• Use the Matlab post-process file conrail.m to check the constraints you defined.

Make sure that all the constraints are defined correctly. Running an optimization is

a time-consuming process (at least 2 days in most cases). Although the process is

automatic (so you don’t need to take care of it once it starts running), you still don’t

want to generate a useless “optimized” design because you defined the constraints

incorrectly.

Before you start the optimization program, it is a good strategy to use the Matlab

post-process file conrail.m to check the constraints you defined. To do this, copy

the file rail.dat to rail.dat.orig and rail.dat.opt and copy the file run.dat to

run.dat.orig and run.dat.opt.

34

• Try to make use of the constraints for the solver.

This too will save you some time in the optimization process. However, don’t be

too “greedy” and try to set very tight solver constraints. This will hinder the so-

called “hill climbing” effect of the optimization algorithm and might cause the

program to become “trapped” at some local minimum point.

When you define the evaluation points in the file constraint.dat, remember to enter

the points from OD to ID. By doing so the solver invoked by the optimization

program will always evaluate the slider performance at OD first. In our experience,

bad performance happens most likely at OD, due to its high linear velocity. If this is

the case, the program will only need to evaluate the slider design at the first position

and then will skip the rest.

• Choose the weights for different objective function terms reasonably.

A general rule is to weight the items of greatest concern most heavily. While this

may seem obvious, it should be executed with some care. For example, if the most

important characteristic of a specific design is that it fly completely flat over the

radius of the disk at the target flying height, then the flying height and roll terms

will need to be weighted more heavily than the other terms you also want to

optimize (e.g., sensitivity). In other words, try to avoid sacrificing uniform flying

heights or flat rolls to gain stiffness.

• Use multiple optimizations to get better designs.

35

If you are not satisfied with the optimized design, use it as another initial design.

Redefine the constraints and let the program optimize it again. Repeated iterations

will gradually bring you closer to your final optimized design.

36

List 1: Example listing of the constraint.dat file

CML Optimization Code Version 2.0 CONSTRAINT.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

Select solver (1=rectangular solver 2=triangular solver)

1

Select optimization algorithm (1=SA 2=FA 3=ASA 4=Self-defined)

3

Set constraints on solver results? (0=No 1=Yes)

1

Format for solver constraints:

FH_L(nm) FH_U(nm) Roll_L(urad) Roll_U(urad) Pitch_L(urad) Pitch_U(urad)

2 10 -30 30 100 400

Screen display mode (1=verbose 2=concise)

2

Format for non-geometric constraints:

variable name lower value upper value initial value

load(kg) 1.5e-3 1.5e-3 1.5e-3

x offset 0.0 0.0 0.0

y offset 0.0 0.0 0.0

taper length 0.0 0.0 0.0

taper angle 0.0 0.0 0.0

recess depth 2.5e-6 2.5e-6 2.5e-6

step depth 0.3e-6 0.3e-6 0.3e-6

recess index, step index, mid index, property (1=proportional 2=fixed normal dist.)

1 3 2 1

Format for original geometric constraints:

rail# vertex# dir low val. up val. init val.

5 1 x 0.70e-3 0.85e-3 0.80e-3

5 2 x 0.94e-3 1.09e-3 1.05e-3

5 8 x 0.72e-3 0.86e-3 0.82e-3

Format for symmetric constraints

rail# vertex# dir to be symmetric with: rail# vertex#

10 1 x 5 1

10 2 x 5 2

10 8 x 5 8

Format for relative constraints

37

rail# vertex# to be moved relative to: rail# vertex#

3 11 5 1

3 12 5 8

5 3 5 2

5 4 5 2

5 5 5 2

5 6 5 2

5 7 5 2

8 11 10 1

8 12 10 8

10 3 10 2

10 4 10 2

10 5 10 2

10 6 10 2

10 7 10 2

Format for evaluation points (from OD to ID):

radius(meters) skew(degrees)

0.031 17.39

0.023 9.1

0.015 -1.22

Weightings for objective function:

(1)-----Weight for maximum difference in flying height (nm) term:

1.0

(2)-----Weight for flying height(nm) term:

9.0

Target flying height (nm):

5.0

(3)-----Weight for roll (urad) term:

1.0

(4)-----Weight for roll - roll cutoff (urad) term:

1.0

Roll cutoff (urad):

5.0

(5)-----Weight for pitch - pitch cutoff (urad) term:

1.0

Pitch cutoff (urad):

300.0

(6)-----Weight for vertical sensitivity (nm/g) term:

1.0

(7)-----Weight for pitch sensitivity (urad/uN-m) term:

38

1.0

(8)-----Weight for roll sensitivity (urad/uN-m) term:

1.0

(9)-----Weight for negative force(g) term :

1.0

Negative force target (g) (note: give as absolute value)

2.0

39

List 2: Example listing of the original rail.dat file

CML Version 4.019 RAIL.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

1.2500E-003 1.0000E-003 3.0000E-004

 10 3

 13 1

1.0609E-003 3.7500E-004 2

1.2100E-003 3.7500E-004 0

1.2100E-003 6.2500E-004 2

1.0609E-003 6.2500E-004 2

8.4772E-004 5.5000E-004 2

8.2872E-004 5.4600E-004 2

8.1272E-004 5.3500E-004 2

8.0172E-004 5.1900E-004 2

7.9772E-004 5.0000E-004 2

8.0172E-004 4.8100E-004 2

8.1272E-004 4.6500E-004 2

8.2872E-004 4.5400E-004 2

8.4772E-004 4.5000E-004 2

3.0000E-007

 13 1

8.8159E-004 5.5000E-004 3

8.6259E-004 5.4600E-004 3

8.4659E-004 5.3500E-004 3

8.3559E-004 5.1900E-004 3

8.3159E-004 5.0000E-004 3

8.3559E-004 4.8100E-004 3

8.4659E-004 4.6500E-004 3

8.6259E-004 4.5400E-004 3

8.8159E-004 4.5000E-004 3

1.1259E-003 3.7500E-004 1

1.2100E-003 3.7500E-004 0

1.2100E-003 6.2500E-004 1

1.1259E-003 6.2500E-004 3

0.0000E+000

 13 1

4.0000E-004 7.8000E-004 2

3.0000E-004 6.7000E-004 2

3.0000E-004 5.0000E-004 0

5.0000E-005 5.0000E-004 2

40

5.0000E-005 7.1500E-004 2

5.3000E-005 7.4800E-004 2

6.1000E-005 7.8000E-004 2

7.4000E-005 8.1000E-004 2

9.2000E-005 8.3800E-004 2

2.0000E-004 9.6800E-004 2

8.0221E-004 9.6800E-004 0

8.2348E-004 8.2000E-004 2

6.0000E-004 7.8000E-004 2

3.0000E-007

 12 1

1.0000E-004 5.8000E-004 3

1.0000E-004 7.1500E-004 3

1.0300E-004 7.4800E-004 3

1.1100E-004 7.8000E-004 3

1.2400E-004 8.1000E-004 3

1.4200E-004 8.3800E-004 3

2.5000E-004 9.6800E-004 1

5.1694E-004 9.6800E-004 3

5.1694E-004 8.2000E-004 3

3.8000E-004 8.2000E-004 3

2.7000E-004 7.0000E-004 3

2.7000E-004 5.8000E-004 3

0.0000E+000

 8 1

8.0221E-004 9.6800E-004 1

1.0491E-003 9.6800E-004 1

1.0681E-003 9.6400E-004 1

1.0841E-003 9.5400E-004 1

1.0941E-003 9.3800E-004 1

1.0983E-003 9.1900E-004 1

1.0983E-003 8.7000E-004 1

8.2348E-004 8.2000E-004 3

0.0000E+000

 4 1

1.2100E-003 6.2500E-004 0

1.2100E-003 3.7500E-004 0

1.2500E-003 3.7500E-004 0

1.2500E-003 6.2500E-004 0

1.5000E-008

 4 1

1.2200E-003 5.0025E-004 0

41

1.2200E-003 4.9975E-004 0

1.2199E-003 4.9975E-004 0

1.2199E-003 5.0025E-004 0

0.0000E+000

 13 1

4.0000E-004 2.2000E-004 2

3.0000E-004 3.3000E-004 2

3.0000E-004 5.0000E-004 0

5.0000E-005 5.0000E-004 2

5.0000E-005 2.8500E-004 2

5.3000E-005 2.5200E-004 2

6.1000E-005 2.2000E-004 2

7.4000E-005 1.9000E-004 2

9.2000E-005 1.6200E-004 2

2.0000E-004 3.2000E-005 2

8.0221E-004 3.2000E-005 0

8.2348E-004 1.8000E-004 2

6.0000E-004 2.2000E-004 2

3.0000E-007

 12 1

1.0000E-004 4.2000E-004 3

1.0000E-004 2.8500E-004 3

1.0300E-004 2.5200E-004 3

1.1100E-004 2.2000E-004 3

1.2400E-004 1.9000E-004 3

1.4200E-004 1.6200E-004 3

2.5000E-004 3.2000E-005 1

5.1694E-004 3.2000E-005 3

5.1694E-004 1.8000E-004 3

3.8000E-004 1.8000E-004 3

2.7000E-004 3.0000E-004 3

2.7000E-004 4.2000E-004 3

0.0000E+000

 8 1

8.0221E-004 3.2000E-005 1

1.0491E-003 3.2000E-005 1

1.0681E-003 3.6000E-005 1

1.0841E-003 4.6000E-005 1

1.0941E-003 6.2000E-005 1

1.0983E-003 8.1000E-005 1

1.0983E-003 1.3000E-004 1

8.2348E-004 1.8000E-004 3

42

0.0000E+000

 10 10 10

 0.0000E+000 1.3822E-006 2.7644E-006 4.1467E-006 5.5289E-006 6.9111E-006

8.2933E-006 9.6756E-006 1.1058E-005 1.2440E-005

 0.0000E+000 5.2469E-007 9.8765E-007 1.3889E-006 1.7284E-006 2.0062E-006

2.2222E-006 2.3765E-006 2.4691E-006 2.5000E-006

 0.0000E+000 1.2222E-006 2.4444E-006 3.6667E-006 4.8889E-006 6.1111E-006

7.3333E-006 8.5556E-006 9.7778E-006 1.1000E-005

 3.0000E-007 7.6173E-007 1.1691E-006 1.5222E-006 1.8210E-006 2.0654E-006

2.2556E-006 2.3914E-006 2.4728E-006 2.5000E-006

 0.0000E+000 1.6933E-007 3.3867E-007 5.0800E-007 6.7733E-007 8.4667E-007

1.0160E-006 1.1853E-006 1.3547E-006 1.5240E-006

 0.0000E+000 6.2963E-008 1.1852E-007 1.6667E-007 2.0741E-007 2.4074E-007

2.6667E-007 2.8519E-007 2.9630E-007 3.0000E-007

0.0000E+000 0.0000E+000 2.5000E-006

2.5400E-008 2.5000E-009 0.0000E+000

 1.2200E-003 1.2200E-003 2.4100E-004 2.4100E-004

 5.0000E-004 6.5000E-004 9.7400E-004 2.6000E-005

43

List 3: Example listing of the original run.dat file

CML Version 4.019 RUN.DAT

REPORT BUGS TO INFO@CML.ME.BERKELEY.EDU

***************Solution Control***************

istiff isolv ioldg iadpt isave

 1 1 0 1 0

***************Initial Attitude***************

hm(m) pitch(rad) roll(rad)

7.0000E-009 1.5000E-004 5.0000E-006

***************Runs***************

irad irpm ialt

 3 1 0

radii(m)

 3.1000E-002 0.023 0.015

skews(deg)

 1.7390E+001 9.1 -1.22

RPMs

 7.2000E+003

altitudes(m)

***************Air Parameters***************

p0(pa) al(m) vis(nsm^-2)

1.0135E+005 6.3500E-008 1.8060E-005

***************Load Parameters***************

f0(kg) xf0(m) yf0(m)

1.5000E-003 0.0000E+000 0.0000E+000

xfs(µNM) yfs(µNM) emax

0.0000E+000 0.0000E+000 1.0000E-003

***************Grid Control***************

nx ny

 289 289

nsx nsy isymm

 1 1 0

xnt(i), i = 2, nsx

nxt(i), i = 2, nsx

dxr(i), i = 1, nsx

 1

ynt(i), i = 2, nsy

44

nyt(i), i = 2, nsy

dyr(i), i = 1, nsy

 1

***************Adaptive Grid***************

difmax decay ipmax

 40 40 0

***************Reynolds Equation***************

ischeme imdoel akmax

 2 3 1.0000E-007

***************Partial Contact***************

icmodel stdasp(m) dnsasp(m^-2)

 0 6.0000E-009 1.0000E+012

rdsasp(m) eyoung(pa) yldstr(pa)

1.0000E-008 1.0000E+010 1.0000E+012

frcoe pratio

 0.3 0.3

***************Sensitivities***************

crowninc(m) camberinc(m) twistinc(m)

0.0000E+000 0.0000E+000 0.0000E+000

tlnginc(m) tanginc(rad) loadinc(kg)

0.0000E+000 0.0000E+000 0.0000E+000

ptrqinc(µNM) rtrquinc(µNM) recessinc(m)

0.0000E+000 0.0000E+000 0.0000E+000

iwscale

 1

***************Comments***************

""

45

Optimization Program
Version 1.5

Optimization Program
Version 2.0

Operating Platform UNIX Windows

Algorithm Self-defined SA SA, FA, ASA,
Self-define SA

Solver Quick300 rectangular
mesh solver

Quick419 rectangular
mesh solver,

Quick5 triangular
mesh solver

Table 1 Differences between the old and new versions

46

Fig. 1 Optimization technique categories

Fig. 2 Structure of optimization program version 2.0

Optimization
Technique

Search
Space

Search
Method

Search
Scale

Constrained

Unconstrained

Global

Local

Stochastic

Deterministic

Optimization
Algorithm

Solver

Simulated
Annealing

CML Steady
Solvers

47

Fig. 3 Flow chart of the CML optimization program version 2.0

Start

Initial Design

CML Steady Solver

Calculate the Objective Function

Temperature Annealing Process

Evaluate the Current Design

Generate a New Design

Continued?

End

Yes

No

Solver
Part

Algorithm
Part

48

Fig. 4 Modification of wall profiles in proportional mode

Fig. 5 Modification of wall profiles in fixed normal distance mode

Base recess
wall profile

Step wall profile

Wall profile
in-between

Original
recess
depth

Modified
recess
depth

Modified
step
depth

Original
step

depth

Base recess
wall profile

Step wall profile

Wall profile
in-between

Original
recess
depth

Original
step

depth

Modified
recess
depth

Modified
step
depth

49

Fig. 6 Rail shape and some rail indices of the initial ABS design

Fig. 7 Three-dimensional rail shape of the initial ABS design

3

8

5

10

50

Fig. 8 Constraints defined in the example case

Fig. 9 Comparison between the initial and the optimized designs

Original
constraints

Symmetric
constraints

Relative
constraints

Relative
constraints

51

Fig. 10 Variation of the objective function value

Fig. 11 Variations of the slider performance parameters

52

Fig. 12 Variations of the objective function terms

