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ABSTRACT 
 

In this report, we discuss two modifications to the DIRECT algorithm: 
one to handle tolerance (minimum side lengths) and one to deal with hidden 
constraints. Some numerical experiments were carried out using these 
modifications and then the modified DIRECT algorithm was applied to 
slider ABS optimization. The results show that these two modifications can 
improve the efficiency of the DIRECT algorithm and that they also make the 
slider ABS optimization program more flexible. 
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1.  INTRODUCTION 
 
 

The DIRECT algorithm is a global deterministic algorithm developed by 
Jones et al. in 1993 [5]. DIRECT is guaranteed to converge [4] and has a very 
fast convergence rate. Thus, it can find the global minimum points very 
quickly as compared with other algorithms [5] [6].  

 
We presented the details of the DIRECT algorithm, the results of 

numerical experiments, and its application to the slider Air Bearing Surface 
(ABS) optimization in a previous CML technical report [1]. The results verify 
the very fast convergence rate of the DIRECT algorithm and show that it is 
suitable for slider ABS optimization. 

 
We have also presented three locally biased variations of the standard 

DIRECT algorithm in another CML technical report [2]. Our investigations 
show that the three locally biased variations of the DIRECT algorithm 
generally have higher convergence rates than does the standard DIRECT 
algorithm. The variations perform especially well in some situations and 
they may dramatically reduce the time needed to find the global minimum 
points.  
 

For the slider ABS optimization, the evaluation of an ABS design is a 
time-consuming process. Therefore, it is desirable to further increase the 
efficiency of the DIRECT algorithm in order to shorten the computational 
time for the optimization process needed to find the global optimized ABS 
design.  

 
Here, we report on two modifications to the standard DIRECT algorithm. 

After reviewing the standard DIRECT algorithm, we present the 
modifications, and discuss our numerical experimental results. Then we 
apply these modifications to the slider ABS optimization. Finally, we 
present results for several slider ABS optimization test cases and draw our 
conclusions.  
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2.  NUMERICAL METHOD 
 
 

2.1   Standard DIRECT algorithm 
 
DIRECT is an acronym for DIviding RECTangles, a key step in the 

algorithm. It is a global deterministic algorithm based on the classical one-
dimensional Lipschitzian optimization algorithm known as the Shubert 
algorithm. It is a multi-dimensional Lipschitzian optimization method which 
can be used without knowing the Lipschitz constant. DIRECT is designed to 
solve problems subjected to bounded constraints. 

 
Without loss of generality, in the DIRECT algorithm we always assume 

that every variable has a lower bound of 0 and an upper bound of 1, since we 
can always normalize the variables to this interval. Thus, the search space is 
an n-dimensional unit hyper-cube. There are two main components in the 
DIRECT algorithm: one is the dividing strategy for the hyper-cubes and the 
hyper-rectangles (they are referred to as “boxes” in our reports); the other is 
the selection of the potentially optimal boxes. We briefly introduce them in 
sections 2.1.1 and 2.1.2. For more details, please see Ref. [1]. 
 
2.1.1 Dividing strategy 

 
The dividing strategy of the DIRECT algorithm for the hyper-cubes and 

the hyper-rectangles is as follows: 
 
A. Partition of a hyper-cube 

Assume m is the center point a hyper-cube. We sample the points m ± 
δ ei , where δ  equals 1/3 of the side length of the cube and ei is the i-
th Euclidean base-vector. We define si = min { f (m–δ ei), f (m+δ ei) }, 
then the partition will be in the order given by si, starting with the 
lowest si. This means the hyper-cube is first partitioned along the 
direction with the lowest si, then the remaining field is partitioned 
along the direction of the second lowest si, and so on until the hyper-
cube is partitioned in all directions. 
 

B. Partition of a hyper-rectangle 
Hyper-rectangles are only partitioned along their longest sides. This 
partition strategy ensures a reduction in the maximal side length of a 
hyper-rectangle. 
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BOX SIZE 

 
2.1.2 Selection of potentially optimal boxes 

 
Let mi denote the center point of the i-th hyper-rectangle, and di the 

distance from the center point to the vertices. Then the potentially optimal 
boxes are defined as follows: 

 
Definition 2.1 Let ε > 0 be a positive constant and fmin be the current 

lowest function value. A hyper-rectangle (box) j is said to be potentially 
optimal if there exists some rate-of-change constant K~  > 0 such that 

 
      f(mj)  – K~ dj  ≤  f(mi) – K~ di     for any i  (2.1) 

    f(mj)  – K~ dj  ≤  fmin  – ε |fmin|   (2.2) 
 
 

2.2   Modifications of the standard DIRECT algorithm 
 

2.2.1 Tolerance  
 

It is clear from section 2.1 that the standard DIRECT algorithm almost 
always identifies the box containing the minimum point as the potentially 
optimal box, as illustrated in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Illustration of the convex hull and the potentially optimal boxes 
 

OBJECTIVE 
FUNCTION 

VALUE 

Minimum 
value Convex hull 
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In fact, imagine that we draw a line with a positive slope K below all the 
data points and then move it upward. If K is positive but small enough, the 
first data point that the line intersects would be the point with the lowest 
objective function value. [1] The only exception is when there is another data 
point that has a very similar small value to the actual minimum point and the 
inequality (2.2) is satisfied. In that case, the minimum point will not be 
chosen as the potentially optimal point. 
 

Since the DIRECT algorithm usually partitions the box containing the 
minimum point at each iteration step, it is possible that the box containing 
the best point will become smaller and smaller as the optimization process 
goes on. This accounts for the fast convergence property of the DIRECT 
algorithm. 

 
However, in applications, we do not want the partitioning to continue 

once the size of the box containing the best point shrinks to a certain level. 
The main reason is that since the practical head manufacturing process has a 
limitation on the processing resolution, it cannot differentiate very minor 
differences among sample designs. Another possible reason is that, instead 
of pursuing the “perfectly” optimized design, we might just need a certain 
level of resolution from the engineering point of view. Therefore, we are 
introducing the concept of “tolerance”, that is, the minimal side lengths for 
all the sides of all the boxes. Each side may have a different tolerance.  

 
When a box is to be partitioned, all of its side lengths will be checked to 

see if they are greater than the tolerances defined. If a certain side length is 
greater than the tolerance value prescribed, that side will be partitioned; 
otherwise, it will not be partitioned. 

 
It follows that the introduction of the tolerance can prevent the DIRECT 

algorithm from becoming too local around the current best point, wasting 
valuable function evaluation time. Therefore, the algorithm can search more 
globally on a fixed number of function evaluations. Consequently, this 
modification will improve the efficiency of the standard DIRECT algorithm. 

 
2.2.2 Hidden Constraints 

 
As far as the DIRECT algorithm is concerned, the search space is a multi-

dimensional unit hyper-cube. If no hidden constraints exist in the search 
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space, every sample point in the search space can be evaluated and has a 
definite objective function value.  

 
However, if there are hidden constraints in the search space, things will be 

quite different. Let’s call the sample points that satisfy the hidden constraints 
the infeasible points. Similarly, the sample points that do not satisfy the 
hidden constraints are referred as the feasible points.  

 
It is impossible to evaluate the infeasible points such that they return 

definite objective function values. For the DIRECT algorithm, however, all 
the sample points must have values so that the algorithm can find the 
potentially optimal ones. Also notice that we cannot simply discard those 
infeasible points. The reason is simple: if a midpoint of a large box is an 
infeasible point, discard that point and its box will result in the loss of all 
other possible feasible points within that large box.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Illustration of the strategy to handle hidden constraints 

 

1 2 

Feasible point Infeasible point 
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In order to handle these hidden constraints, we use the method proposed 
by Gablonsky[7]. This method provides a pseudo-value for the infeasible 
point depending on its neighboring points’ values. 
 

Figure 2 demonstrates how we deal with the infeasible points. The square 
area is the search space for a 2-D problem. The solid round dots represent 
the infeasible points, which satisfy the hidden constraints. The hollow round 
dots represent the feasible points. All the feasible points have definite 
objective function values. 

 
To determine the pseudo-value an infeasible point should have, we take 

the following steps:  
 
1. Double the size of the box which contains the infeasible point. (The 

double size box is shown as the shadow box with dashed side lines in 
Fig. 2.) 

2. Check the status of all the sample points inside the double size box 
(including those points on the boundary of the box) except the 
infeasible point being considered.  

3. If all the sample points inside that enlarged box are infeasible points 
(for example, the case of infeasible point 1 in Fig. 2), then that 
infeasible point is marked as a “real” infeasible point and is given a 
pseudo-value as:  fmax + 1, where fmax  is the current maximum 
objective function value of all the feasible points. 

4. If the sample points inside that enlarged box are not all infeasible 
points, (for example, the case of infeasible point 2 in Fig. 2), then the 
infeasible point is given a pseudo-value as:  fmin + ε |fmin| , where fmin is 
the minimum value of all feasible points inside the enlarged box, and 
ε is a small prescribed value. We set ε as 10-6 in our optimizations. 

 
Note that the pseudo-values of the infeasible points may change for every 

iteration. 
 
The above strategy ensures that, for the boxes of the same size, the ones 

containing “real” infeasible points will get partitioned last, because they 
have the highest (pseudo) objective function value. This is good because the 
boxes containing feasible points are potentially better choices for partition 
than the ones containing “real” infeasible points. 
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The above strategy also ensures that near some feasible points, even the 
boxes containing the infeasible points still have a good possibility of being 
partitioned very quickly. Thus the algorithm maintains its high convergence 
rate while dealing with the hidden constraints. 
 
 
 
3.  NUMERICAL EXPERIMENTS 
 
 
3.1 Testing function with one minimum point 

 
For a simple demonstration of the numerical experimental results, we 

chose 2-D testing functions. The testing function used here has only one 
minimum point. It is defined as follows: 

 
F(x1, x2) = (x1 – 0.4)2 + (x2 – 0.2)2 .     

 
Where x1∈[0,1], x2∈[0,1]. It has a minimum point at (0.4, 0.2) and the 
minimum value is 0. 
 

Figure 3 shows contour lines of the 2-D function. Figure 4 shows its 
surface shape.  

 

      
          Fig. 3 Contour lines                         Fig. 4 Surface shape 
 
 
Figures 5 ~ 8 show the optimization results after 500 function evaluations. 

In Fig. 5 tolerance is not used, whereas in Fig. 7 the tolerance is set at 0.01 
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for both of the independent variables x1 and x2. Figures 6 and 8 show the 
local zoom-ins around the best point for Figs. 5 and 7, respectively. 

 
In Figs. 5 ~ 8, X and Y represent the variables x1 and x2, respectively. The 

tiny dots inside the boxes are the sample points generated by the DIRECT 
algorithm. The circle represents the best point found by the algorithm.  

 
 

 
Fig. 5 Results with no-tolerance case             Fig. 6 Local zoom-in 
 
             

 
 Fig. 7 Results with tolerance case                  Fig. 8 Local zoom-in 

 



 10 

For the no-tolerance case, the best point found after 500 function 
evaluations is (3.999983E-01, 2.000006E-01). The minimum value is 
3.186636E-12. The side lengths of the box containing the best point are 
Lx=1.693509E-05 and Ly=5.645029E-06. For the case considering tolerance, 
the best point found after 500 function evaluations is (4.012346E-01, 
1.995885E-01). The minimum value is 1.693509E-06. The side lengths of 
the box containing the best point are Lx=4.115226E-03 and Ly=4.115226E-
03. Figure 8 shows that when both sides of a box are smaller than the 
tolerance prescribed, which is 0.01 in this case, that box will no longer be 
partitioned. 

 
We can also define different tolerance values for different independent 

variables. In the following case, we set the tolerance for x1 as 0.15 and the 
tolerance for x2 as 0.05. After 100 function evaluations, i.e., after 100 sample 
points are generated, the best point found is (3.888889E-01, 2.037037E-01). 
The side lengths of the box containing the best point are Lx=1.111111E-01 
and Ly=3.703704E-02. The optimization results are shown in Fig. 9. 

 

 
 

Fig. 9 Optimization results for different tolerance values 
 

It is clear from Fig. 9 that because variable x2 (Y) has a smaller tolerance 
value (0.05) than that of the variable x1 (X), which is 0.15, side x2 gets more 
partitioning than does x1 side. Because the box containing the best point has 
reached the tolerance limit, it will not be further partitioned in the 
subsequent optimization process. Because the testing function only has one 
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minimum point, the best point found at this stage will not change if the 
optimization process continues. 

 
Next we introduce some hidden constraints for the testing function. The 

tolerance is set at 0.01 for both x1 and x2. The number of function 
evaluations is 3000. Figure 10 shows the optimization results without hidden 
constraints. Figures 12, 14, and 16 show the optimization results with 
various hidden constraints. Figures 11, 13, 15, 17 show local zoom-ins 
around the best points for Figs. 10, 12, 14, and 16, respectively. 

 
The hidden constraints for Fig. 12 are: 
 
(x1 – 0.35)2 + (x2 – 0.35)2  ≤ 0.152  or  x2 ≤ x1

2 . 
 
The hidden constraints for Fig. 14 are: 
 
(x1 – 0.4)2 + (x2 – 0.2)2  ≥ 0.12   and  (x1 – 0.4)2 + (x2 – 0.2)2  ≤ 0.22 . 
 
The hidden constraint for Fig. 16 is: 
 
(x1 – 0.4)2 + (x2 – 0.2)2  ≤ 0.12 . 
 
In Fig. 12 the hidden constraint areas are the areas inside the circle and 

the area below the parabolic line. In Fig. 14 the hidden constraints areas are 
the areas between the two concentric circles. In Fig. 16 the hidden constraint 
area is inside the circle that centers at (0.4, 0.2). The sample points that 
satisfy the hidden constraints are referred as the infeasible points, and are not 
evaluated. The shadowed boxes are the ones containing infeasible points. 

 
Figures 12 ~ 15 show that inside the hidden constraint areas, the regions 

that are adjacent to the best point get partitioned more often. 
 
Note that there are infinite minimum points in Fig. 16. These minimum 

points are all on the circumference of the circle. The optimization results 
clearly show the clustering of the feasible points around that circle, which 
means that the algorithm found all the global minimum points. The 
infeasible points also show a similar clustering pattern around that circle. 
This is logical, because the algorithm is expected to search more intensively 
around the best points, for both feasible areas and infeasible areas. 
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Fig. 10 Optimization results without hidden constraints 

 

 
Fig. 11 Local zoom-in around the best point without hidden constraints 
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Fig. 12 Optimization results with hidden constraints, case 1 

 

 
Fig. 13 Local zoom-in around the best point for case 1 
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Fig. 14 Optimization results with hidden constraints, case 2 

 

 
Fig. 15 Local zoom-in around the best point for case 2 
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Fig. 16 Optimization results with hidden constraints, case 3 

 

 
Fig. 17 Local zoom-in around the best point for case 3 
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3.2 Testing functions with multiple minimum points 
 
The first testing function considered here is called the “six-hump” 

function, defined as: 
 
F(x1, x2) = 4x1

2 – 2.1x1
4 + (1/3)x1

6 + x1x2 – 4x2
2 + 4x2

4, 
 

where x1∈[-2, 2], x2∈[-1, 1]. This function has two global minimum points 
and four other local minimum points. If we normalize the range of variables 
x1 and x2 into [0,1], then its global minimum points are (0.52246, 0.14367) 
and (0.47754, 0.85633) and its global minimum is -1.03163. 

 
The contour lines and the surface shape of the six-hump function are 

shown in Figs. 18 and 19, respectively. The round dots in Fig. 18 represent 
the global minimum points. The six “humps” can be clearly discerned from 
these two figures.  

 

          
           Fig. 18 Contour lines                              Fig. 19 Surface shape 

 
Figures 20 and 21 show the optimization results with no tolerance and 

with 0.02 tolerance for both independent variables, respectively. The number 
of function evaluations for both cases is 500. The tiny dots represent the 
sample points in the center of the boxes. The centers of the circles represent 
the position of the global minimum points. We see from Figs. 20 and 21 that 
when the tolerance is defined, the algorithm will be biased toward a global 
search for the fixed number of function evaluations. Figure 21 clearly shows 
that the algorithm explores more “bigger boxes” with tolerance included 
than it does without tolerance (Fig. 20). 
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Fig. 20 Optimization results with no tolerance 

 

 
Fig. 21 Optimization results with 0.02 tolerance 
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Fig. 22 Optimization results with hidden constraints 

 
 

Figure 22 shows the optimization results with hidden constraints for the 
six-hump function. The tolerance is also set at 0.02 for both x1 and x2, and 
the number of function evaluations is still 500. 

 
The hidden constraints for Fig. 22 are: 
 
0.2 ≤  x1 ≤ 0.8  and  0.2 ≤  x2 ≤ 0.8  . 
 
In Fig. 22 the hidden constraint areas are the areas inside the dashed-line 

square. The shadowed boxes represent the boxes that contain the infeasible 
points. Similar to the one minimum point testing function cases, Fig. 22 also 
shows that, inside the hidden constraint areas, the regions that are adjacent to 
the minimum points get partitioned more often. 

 
The second testing function considered is the Branin function, defined as: 
 
F(x1, x2) = [1 – 2x2 + (1/20) sin(4π x2) – x1]2 + [x2 – (1/2) sin(2π x1)]2 , 
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where x1, x2∈[-10,10]. This function has five global minimum points and the 
global minimum is 0. If we normalize the range of variables x1 and x2 into 
[0,1], then the five global minimal points are (0.55, 0.5), (0.50743, 
0.52010), (0.52013, 0.51437), (0.57987, 0.48563) and (0.59257, 0.47990).  
The contour lines and the surface shape of the Branin function are shown in 
Figs. 23 and 24, respectively. The five round dots in Fig. 23 represent the 
global minimum points.  

 

         
           Fig. 23 Contour lines                              Fig. 24 Surface shape 

 
  

                        
A        B 

Fig. 25 Results of standard DIRECT without tolerance 
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 A        B 

Fig. 26 Results of DIRECT-III without tolerance 
 
 

                        
A        B 

Fig. 27 Results of standard DIRECT with 0.002 tolerances 
 
 

                         
A        B 

Fig. 28 Results of DIRECT-III with 0.002 tolerances 



 21 

Figures 25 ~ 28 show the optimization results for different cases of the 
Branin function after 400 function evaluations. The tiny dots in Figs. 25A ~ 
28A (left) on the left represent the sample points. Figures 25B ~ 28B (right) 
are the respective local zoom-ins around the global minimum points. The 
centers of the circles denote the locations of the global minimum points. 

 
Figure 25 shows the optimization results using the standard DIRECT 

algorithm with no tolerance. The sample points cluster around 4 of the 5 
global minima after 400 function evaluations. The algorithm found 4 of the 
5 global minimum points for this case. 

 
Figure 26 shows the optimization results using the DIRECT-III algorithm 

with no tolerance. DIRECT-III is a strong locally biased variation of the 
standard DIRECT algorithm, which combines the features of DIRECT-I and 
DIRECT-II. Detailed information about DIRECT-III can be found in Ref. 
[2]. Figure 26 shows that DIRECT-III only found 3 of the 5 global minimum 
points at this stage. This is because the locally biased property of DIRECT-
III results in a more intensive local search around only one of the best points, 
thus preventing it from finding all global minima as fast as the standard 
DIRECT algorithm. Notice that the pattern of the optimization results in 
Figs. 25 and 26 are quite different. There are 3 large unexplored boxes in 
Fig. 26, another verification of the locally biased property of DIRECT-III. 

 
Figures 27 and 28 illustrate the optimization results using the standard 

DIRECT algorithm and DIRECT-III respectively, but with 0.002 tolerances 
for each case. Since the definition of the tolerances ensures that the 
algorithm will not spend time partitioning the boxes with sizes smaller than 
the tolerances prescribed, the algorithm can search more unexplored larger 
boxes. Figure 27 shows that the DIRECT algorithm found all 5 global 
minima for this case. 

 
The interesting thing about Fig. 28 is that DIRECT-III also found all 5 

global minima, with a pattern similar to Figs. 25 and 27. This is because, to 
some extent, the globally biased property of defining tolerances balances the 
locally biased property of DIRECT-III. 
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4.  SLIDER AIR BEARING DESIGN OPTIMIZATION CASE   
 
 
4.1 Air bearing design optimization problem 
  

Given a prototype slider ABS design, we wish to optimize it to obtain 
uniform flying heights near the target flying height with a flat roll profile, 
and to increase its air bearing stiffness if possible. 

 
In this case we used the NSIC 7nm flying height slider as the prototype. 

The rail shape and the 3-dimensional rail geometry are shown in Figs. 29 
and 30, respectively. 

 

 
 

Fig. 29 Rail shape of the initial ABS design 
 

 
 

Fig. 30 3-D rail shape of the initial ABS design 
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The slider is a Pico slider (1.25×1.0mm) that flies over a disk rotating at 
7200 RPM. Its flying heights are all around 7nm from OD to ID. In this case 
we want to lower all the flying heights to the target flying height, i.e. 5nm, 
and at the same time maintain a flat roll profile at the three different radial 
positions OD, MD and ID. The objective or cost function is defined as: 

 
1× (FH Max Difference) + 
9 × (FH) + 
1 × (Roll) + 
1 × (Roll Cutoff) + 
1 × (Pitch Cutoff) + 
1 × (Vertical Sensitivity) + 
1 × (Pitch Sensitivity) + 
1 × (Roll Sensitivity) + 
1 × (Negative Force). 
 
 
 

 
Fig. 31 Constraints defined on the initial design 

Symmetric 
constraints Relative 

Constraints 

Relative 
constraints Original 

constraints 

1st constraint 
point 

2nd constraint 
point 
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The goal of the optimization is to minimize this multi-objective function 

under the given constraints. Note that since we are primarily concerned with 
the flying heights, we put a heavier weight (9) on that term. All the objective 
terms are normalized and their definitions can be found in the “CML 
optimization program version 2.0 user’s manual”. [3] The constraints are 
shown in Fig. 31, and the definition of those constraints can also be found in 
the user’s manual. 
 
 
4.2 Some special features of slider ABS optimization 

 
For slider ABS optimization problems, the tolerance mentioned in 2.2.1 is 

referred to as the manufacturing tolerance. The actual slider ABS fabricating 
process determines the magnitude of the manufacturing tolerance, which is 
generally different from company to company.  

 
Notice that in the previous chapter the hidden constraints are related only 

to the independent variables. The infeasible points are generated but not 
evaluated. However, for the slider ABS optimization problems, the hidden 
constraints are not directly related to the independent variables (i.e., the so 
called “original constraints points”[3]). They are associated with the 
numerical results because we cannot judge an ABS design until we know its 
actual Flying Heights (FH), Rolls, and Pitches etc. from the results. So the 
question here is: “Can the definition of hidden constraints improve our 
optimization and thereby improve its efficiency?” The answer is yes. 

 
One special feature in slider ABS optimization is that we not only 

evaluate the slider performance at a single disc radial position, but instead 
we evaluate it at multiple radial positions, such as OD (Outer Diameter), 
MD (Middle Diameter) and ID (Inner Diameter). If a sample ABS design 
satisfies the hidden constraints we prescribed, then no further calculation is 
necessary. So if the hidden constraints are satisfied at any radial position, the 
calculation will not be continued and that ABS design will be marked as 
infeasible. It will also be given a pseudo-value depending on the status of its 
neighboring ABS designs. Therefore all the infeasible ABS designs will be 
at least partially calculated. 
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4.3 Simulation results 
 
Using the same initial design, constraints, and objective function, we 

carried out the optimization for three different cases. We used 200 function 
evaluations for all three cases. 

 
In case 1 we carried out the optimization without defining any 

manufacturing tolerance or hidden constraints. In this case, all the sample 
points generated by the algorithm are fully evaluated and have definite 
objective function values. Figure 32 shows the optimization results. The 
horizontal axis X and the vertical axis Y represent the 1st and 2nd constraint 
points defined in Fig. 31, respectively. 

 
Figure 33 shows the contour lines in the search space drawn from the 

results in Fig. 32. The circular dot represents the best point. The contour 
map gives us an overall view of the performance property for every ABS 
sample point in the search space. Interestingly, by looking at the gradient 
value around the best point, we can evaluate the sensitivity of the optimized 
ABS design at those two constraint points. If we compare Figs. 33 and 34, it 
is clear that the pattern of the results generated using the DIRECT algorithm 
reflects the shape of the contour lines. This again verifies the high efficiency 
of the search strategy of the DIRECT algorithm, as well as its fast 
convergence rate. 

 
In cases 2 and 3 we defined both the manufacturing tolerance and the 

hidden constraints. The manufacturing tolerance is set at 1µm for the two 
original constraint points for both cases.  

 
In case 2 we used loose hidden constraints that are defined as: 
 
FH ≤ 2 nm   or    FH ≥ 10 nm    or   Roll ≤ -30 µrad    or   Roll ≥ 30 µrad. 
 
But in case 3 we used strict hidden constraints that are defined as: 
 
FH ≤ 4 nm   or    FH ≥ 6 nm    or   Roll ≤ -10 µrad    or   Roll ≥ 10 µrad. 
 
Figures 34 and 35 show the optimization results for case 2 and case 3, 

respectively. In Figs. 32, 34 and 35 the tiny dots represent the sample points 
generated by the algorithm; the shadowed boxes represent the boxes 
containing the infeasible points; and the circle represents the best point 
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found by the algorithm. It is not surprising that strict hidden constraints yield 
larger infeasible regions than loose hidden constraints. 

 
The infeasible regions in the search space also tell us how we should 

search for the optimized designs. For example, Fig. 34 shows that we cannot 
get better ABS designs by moving the 2nd constraint point toward the trailing 
edge (Y = 0.5 represents the 2nd constraint point’s initial position). 
Empirically, this makes sense because if we move the 2nd constraint point 
toward the trailing edge we will increase the total areas of the rails. Thus, it 
will result in higher FHs, which is contrary to our optimization goal of  
lowering the FHs. 

 
Figures 36 ~ 38 show the variation of the objective function value for 

cases 1, 2 and 3 respectively. In all these figures, Costini means the initial 
objective function value, and Costopt means the objective function value for 
the final optimized design. The Percentimp signifies the percentage of 
improvement for the cost function value, which is defined as: 

 

%100×
−

=
ini

optini
imp Cost

CostCost
Percent

 
 
 Ngen and Nopt represent the number of the ABS designs generated and 

optimized, respectively. Nign represents the number of the infeasible ABS 
designs. 

 
The dark circles represent the optimized designs generated during the 

process. The optimized designs are the ones with the best-so-far objective 
function values. 

 
For case 1, because no hidden constraints are defined, there are 0 

infeasible designs. For the loose hidden constraints defined in case 2, 
however, there are 22 infeasible designs out of total 203 designs generated. 
Note that all the designs with an objective function value higher than 40 
have been cut off. For the strict hidden constraints defined in case 3, there 
are 107 infeasible designs out of a total of 205 designs generated. With 
stricter hidden constraints, all the designs with an objective function value 
higher than 20 have been cut off. 
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Figures 36 ~ 38 show that all three cases yield the same optimized ABS 
design with an objective function value of 5.571. In case 3, more than half of 
the ABS designs generated are infeasible. These infeasible designs are only 
partially evaluated. If we assume that every infeasible design takes half of 
the calculation time of an average feasible design, then case 3 saved ¼ of the 
total calculation time as compared with case 1. Therefore, using strict hidden 
constraints costs less calculation time for the fixed number of samples 
generated.  

 
Figure 39 shows a comparison of the initial ABS design (light-colored) 

and the optimized ABS design (dark-colored). Table 1 shows the summary 
of the optimization results, demonstrating that the optimized ABS design has 
very uniform flying heights around the target 5nm FH, and a reasonably flat 
roll profile. 

 
Figures 40, 42 and 44 show the variations of the objective function terms 

for cases 1, 2 and 3, respectively. These show impressive minimization of 
the Flying Height term, i.e. the 2nd objective function term, on which we put 
a heavier weight. The roll term also was improved, along with some 
improvement for the Vertical Sensitivity and the Pitch Sensitivity terms. 
However, Roll Sensitivity has not been improved. The 1st term, the FH 
Maximum difference term, has not been improved either. Some objective 
terms such as the Pitch cutoff term and Negative Force term remain zero for 
all the optimized designs. The combinatorial effect results in the 
minimization of the total value of the objective function. By minimizing the 
multi-objective cost function we obtained our final optimized designs. 

 
 Figures 41, 43 and 45 show the variations of the slider performance 

parameters for all the best-so-far designs for cases 1, 2 and 3 respectively. 
The optimized design has uniform FHs around the target FH and a flat roll 
profile. 
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Fig. 32 Results without manufacturing tolerance or hidden constraints 

 

 
Fig. 33 Contour lines in the search space 
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Fig. 34 Results with manufacturing tolerance and loose hidden constraints 

 

 
Fig. 35 Results with manufacturing tolerance and strict hidden constraints 
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Fig. 36 Variation of the objective function value for case 1 

 

 
Fig. 37 Variation of the objective function value for case 2 

 
 

 
Fig. 38 Variation of the objective function value for case 3 
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Fig. 39 Comparison of the initial design and the optimized design 
 
 
 

Initial ABS design Optimized ABS design 
 

OD MD ID OD MD ID 

FH (nm) 6.91 7.11 6.90 5.13 4.88 5.14 

Roll (µµµµrad) -4.55 -1.54 -2.27 -4.35 -1.36 -2.42 

Pitch (µµµµrad) 207.8 167.3 116.2 213.2 175.6 125.2 

 
Table 1 Summary of the optimization results 
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Fig. 40 Variations of the objective function terms (case 1) 

 

 
Fig. 41 Variations of the slider performance parameters (case 1) 
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Fig. 42 Variations of the objective function terms (case 2) 

 

 
Fig. 43 Variations of the slider performance parameters (case 2) 
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Fig. 44 Variations of the objective function terms (case 3) 

 

 
Fig. 45 Variations of the slider performance parameters (case 3) 
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7.  CONCLUSION 
 

 
The DIRECT algorithm is a deterministic global optimization technique 

used to find the minimum of a Lipschitz continuous function without 
knowing the Lipschitz constant.  

 
Here we discussed our investigations of two modifications to the DIRECT 

algorithm: one to handle the tolerance (minimum side lengths) and one to 
deal with hidden constraints.  

 
We carried out some numerical experiments using these modifications. 

The results show that by defining the tolerance, the algorithm can avoid 
wasting time in partitioning boxes with sides smaller than the tolerance. 
Thus, the algorithm can put more effort into exploring larger boxes in the 
search space. In other words, the algorithm will be globally biased. The 
numerical results also show that the strategy we adopted for dealing with 
hidden constraints is reasonable and effective.  

 
We then applied the modified DIRECT algorithm to the slider ABS 

optimization and investigated three cases, i.e. case 1, in which no 
manufacturing tolerance or hidden constraints were defined; case 2, in which 
manufacturing tolerance and loose hidden constraints were defined; and case 
3, in which manufacturing tolerance and strict hidden constraints were 
defined. The results show that defining the manufacturing tolerance and 
hidden constraints can save calculation time for the fixed number of designs 
generated, and thus improve the efficiency of the DIRECT algorithm. 

 
The results also show that defining stricter hidden constraints can save 

even more calculation time. However, one must be careful when using very 
strict hidden constraints, since if the constraint points are not properly 
defined the algorithm may not be able to yield optimized designs. 

 
In summary, these two modifications to the DIRECT algorithm can 

improve its efficiency and make it more flexible. 
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