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ABSTRACT

In this report, we investigate three locally biased forms of the DIRECT
algorithm. The first form, referred to as DIRECT-I, was developed by
Gablonsky and Kelley, and uses fewer groups than does DIRECT. The other
two variations are proposed here, one of which uses a double partition for
the hyper-rectangle containing the best sample point and is referred to as
DIRECTH-II; the other, referred to as DIRECT-III, combines the features of
DIRECT-I and DIRECT-II. We tested all three variations and compared the
results with those obtained by using the standard DIRECT algorithm.
Results show that for some cases, locally biased variations obtain the global
minimum point quicker. We also tested the locally biased variations of the
DIRECT algorithm in the context of a slider air bearing surface (ABS)
optimization problem. It is found that the three locally biased variations of
the DIRECT algorithm generally have higher convergence rates than does
the standard DIRECT algorithm. The variations perform especially well in
some situations and they may dramatically reduce the time needed to find
the global minimum points.



1. INTRODUCTION

Optimization is the process of minimizing a function subject to conditions
on the variables. This function is generally called the objective function or
cost function. The conditions set on the variables are referred to as
constraints.

We can state the optimization problem as:
Minimize {f(x) | xS}, where f{x) is the objective function, and S is the
search space.

In this report, we consider the bounded constrained optimization problem

Minimize {f{x) | xe[u,v]}, where x,u,v are n-dimensional vectors.

There are many global optimization algorithms, and they can be divided
into two fundamentally different categories, i.e. deterministic algorithms and
stochastic algorithms. For the deterministic algorithms, every new search
point is chosen in a definite way so no random processes are involved. For
the stochastic algorithms, random elements are introduced to generate the
new search points.

The DIRECT algorithm is a global deterministic algorithm developed by
Jones et al. in 1993 . The DIRECT algorithm is guaranteed to converge
and it has a very fast convergence rate. Thus it can find the global minimum
very quickly compared with other algorithms *I"* .

We have presented the details of the DIRECT algorithm and the results of
numerical experiments as well as its application to the slider Air Bearing
Surface (ABS) optimization in a CML technical report .

In this report, we report on three locally biased variations of the standard
DIRECT algorithm. We first introduce the standard DIRECT algorithm and
then we present the three variations. Subsequently, we discuss our results
from experimentation using combinations of all forms of these variations.
Finally we present results for a test case of slider ABS optimization.



2. NUMERICAL METHOD

2.1 Standard DIRECT algorithm

DIRECT is an acronym for DIviding RECTangles, a key step in the
algorithm. It is a global deterministic algorithm based on the classical one-
dimensional Lipschitzian optimization algorithm known as the Shubert
algorithm. It is a multi-dimensional Lipschitzian optimization method which
can be used without knowing the Lipschitz constant. DIRECT is designed to
solve problems subjected to bounded constraints.

Without loss of generality, in the DIRECT algorithm we always assume
that every variable has a lower bound of 0 and an upper bound of 1, since we
can always normalize the variables to this interval. Thus, the search space is
an n-dimensional unit hyper-cube. There are two main components in the
DIRECT algorithm: one is the dividing strategy for the hyper-cubes and the
hyper-rectangles (they are referred to as “boxes” in our reports); the other is
the selection of the potentially optimal boxes. We briefly introduce them in
sections 2.1.1 and 2.1.2. For more details, please refer to Ref. [1].

2.1.1 Dividing strategy

The dividing strategy of the DIRECT algorithm for the hyper-cubes and
the hyper-rectangles is as follows:

A. Partition of a hyper-cube

Assume m is the center point a hyper-cube. We sample the points m +
0 e; , where 6 equals 1/3 of the side length of the cube and ¢; is the i-
th Euclidean base-vector. We define s; = min { f(m—de,), f(m+de;) },
then the partition will be in the order given by s;, starting with the
lowest s;. This means the hyper-cube is first partitioned along the
direction with the lowest s;, then the remaining field is partitioned
along the direction of the second lowest s;, and so on until the hyper-
cube is partitioned in all directions.

B. Partition of a hyper-rectangle
Hyper-rectangles are only partitioned along their longest sides. This
partition strategy ensures a reduction in the maximal side length of a
hyper-rectangle.



2.1.2 Selection of potentially optimal boxes

Let m; denote the center point of the i-th hyper-rectangle, and d; the
distance from the center point to the vertices. Then the potentially optimal
boxes are defined as follows:

Definition 2.1 Let € > 0 be a positive constant and f,,;, be the current
lowest function value. A hyper-rectangle (box) j is said to be potentially

optimal if there exists some rate-of-change constant K > 0 such that

fim) — Kd; < fim)— Kd; foranyi (2.1)

~

f(m]) - Kd] Sf‘mm — & me| (22)

2.2 Locally biased variations of the standard DIRECT algorithm
2.2.1 DIRECT algorithm with fewer groups

The first variation we discuss was developed by Gablonsky and Kelley'®,
and uses fewer groups. In this report, we refer to it as DIRECT-I.

The only difference between the standard DIRECT algorithm and this
variation is the definition of the measure of the groups. For the standard
DIRECT algorithm, the group measure is defined as the distance from the
center point of a box to its vertices, which is illustrated in Fig. 1. For
DIRECT-I, the group measure is defined as the length of the longest side of
a box, which is illustrated in Fig. 2.

From Figs. 1 and 2 it is clear that by changing the definition of the group
measure, DIRECT-I has relatively fewer groups than the standard DIRECT
does. Since only the point with the lowest value in a group is eligible to be
potentially optimal, DIRECT-I will bias the search toward the local minima.

2.2.2 DIRECT algorithm with double partitions
We developed a second locally biased variation of the standard DIRECT

algorithm, referred to here as DIRECT-II. The purpose of this variation is to
partition the box containing the point of the lowest function value twice



during each iteration. By doing this, we double the weight on the search
around the point with the lowest function value. Thus, the algorithm
searches more intensively around the point with the lowest function value.

2.2.3 DIRECT algorithm with both features
Based on the above two variations, we propose a third variation which

combines their features, i.e. fewer groups and double partitions. This third
variation is referred as DIRECT-III.

Since the DIRECT-III algorithm combines the two locally biased features,
it is expected that its search will be heavily biased toward the local minima.

Group b Group ¢

Fig. 1 Example of different groups in standard DIRECT

Group a Group b
Fig. 2 Example of different groups in DIRECT-I



2.3 Process demonstration of the algorithms

Here we use a 2-D example to demonstrate the process of the DIRECT
algorithm and its three locally biased variations. The function used is:

F(x;, x2) =10 (|x;— 0.4]"7 )+ 50 (|x— 0.2"? )  where x,, x,€[0,1]

Figures 3A ~ 3F, Figs. 4A ~ 4F, Figs. SA ~ 5F and Figs. 6A ~ 6F show
the first 5 iterations for the standard DIRECT algorithm, DIRECT-I,
DIRECT-II and DIRECT-III, respectively.

For those pictures on the left-hand side, the x-axis stands for variable x;
and the y-axis stands for variable x,, so the unit square is the search space.
The shadowed areas are the potentially optimal boxes (can be squares or
rectangles) just partitioned. The dots represent the center points of the boxes.
The circular dot shows the sample point with the lowest function value. The
numbers under those dots are the function values at those center points.

For those pictures on the right-hand side, the horizontal axis stands for the
group measure and the vertical axis stands for the function value. The
circular points represent the center points of the non-optimal boxes. The
solid round points represent the center points of the potentially optimal
boxes. The lines connecting these potentially optimal points form the convex
hull of all the data points.

Figure 3A shows the initial state of the standard DIRECT algorithm. In
this state only one central point is evaluated and it is designated as the
potentially optimal point. The box located in this way is partitioned as
shown in Fig. 3B.

s; =min {13,148} = 13
s, =min {3.47,28.4} = 3.47

The x, direction (y) gets partitioned first, followed by the x; direction (x).
Because only one potentially optimal point is chosen in Fig. 3B, only one
box containing that point is partitioned in Fig. 3C. The rectangle is only
partitioned along its longest side.

For the DIRECT-I algorithm, which defines the longest side length of a
box as its group measure, fewer groups will be used. For the standard



DIRECT algorithm, the numbers of groups from the initial state to the
iteration five are: 1, 2, 2, 3, 3, 5; for DIRECT-I, the numbers are: 1, 2, 2, 2,
2,3.

Since DIRECT-I uses fewer groups, it also has fewer potentially optimal
points at each iteration and the search will be more locally focused.

For the DIRECT-II algorithm, the box containing the lowest function
value is partitioned twice during each iteration. Because its definition of the
group measure is the same as that of the standard DIRECT algorithm, and
because more boxes will be partitioned during each iteration, the result
should be more groups in each iteration compared with the standard
DIRECT algorithm. From Figs. SA ~ 5F, we see that the numbers of groups
from the initial state to the fifth iteration for DIRECT-II are: 1, 2, 3, 5, 7, 8.

Because the DIRECT-III algorithm combines the above two locally
biased measures, it has a strong locally orientated search strategy.

If we compare Figs. 3F, 4F, 5F and 6F, which are the results at iteration
five for DIRECT, DIRECT-I, DIRECT-II and DIRECT-III respectively, it is
clear that DIRECT-II and DIRECT-III generate more sample points around
the local minimum points for a given number of iterations than DIRECT
does. Since DIRECT-I generates fewer sample points in each iteration as
compared with the standard DIRECT algorithm, it follows that, if the
number of function evaluations is fixed, all three locally biased variations of
the standard DIRECT algorithm will have more sample points around the
local minima than would the standard DIRECT algorithm.
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3. NUMERICAL EXPERIMENTS

3.1 Testing functions with one global and local minimum point

The testing functions used here include 2-D, 3-D, 5-D, 10-D and 20-D
functions. These functions have only one global and local minimum point,
and the minimum values of these functions are zero. They are defined as
follows:

2-D: F(x;, x2) = (x;— 0.4)° + (x2— 0.2)".
3-D: F(xp, x5 x3) = (x1— 0.2)° + (x— 0.3)° + (x;— 0.4)".

5-D: F(x}, X3 X3, X4, X5) = (x;— 0.1)° + (x2— 0.3)> + (x;— 0.5)* +
(xs— 0.7 + (xs— 0.9)°.

10-D: F(x;, x5, X3, X4 X5, X6, X7, X8, X9, X109) = (x;— 0. ])2 + (x,— 0.2)2 +
(x;— 0.3 + (xs— 0.4)° +
(xs— 0.5 + (xs— 0.6)° +
(x7—0.7) + (xs— 0.8)° +
(xo— 0.9 + (x;0— 1.0)°.

20-D: F(x1,x2,X3,X4X5,X6X7,X8,X9,X10,X11,X12,X13,X14X15X16,X17:X18,X19,X20) =
(x;—0.05)7 + (x2— 0.1 + (x3— 0.15)° + (x,—0.2)° +
(xs—0.25)0 + (xs— 0.3 + (x,—0.35)° + (xs— 0.4)° +
(xo— 0.45)° + (x;0— 0.5 + (x;1— 0.55)° + (x1,— 0.6)° +
(13— 0.65) + (x14— 0.7)° + (x;5— 0.75)* + (x15— 0.8)° +
(x17—0.85) + (x15— 0.9)° + (x;9— 0.95)° + (x290— 1.0)".

For all these cases, x;€/0,1], i =1,...20.
The results for the 2-D case are shown in Figs. 7 ~ 13.

Figure 7 shows the surface shape of the 2-D function. Figure 8 shows its
contour lines.

Figures 9 ~ 12 show the optimization results obtained by using DIRECT,
DIRECT-I, DIRECT-II and DIRECT-III respectively.

16



0g %
0s
o7
06
S0EE
0.4
03
0z

1A

(=]

0z 0.4 0A 0a
X

1

Fig. 7 Surface shape Fig. 8 Contour lines

1 1
0.9 : ) L 0.9
R ‘ : ‘ ' ‘ ‘ 08
074 - ) L 0.7
0F - . . t 0k

w— 054 . . . . . . — -t =064 =
044 . . . . . 7 r 044 . . - . . .
AER NN I (KR I B C1 0T R
2 .ﬁ.ﬁé@. T S N e CCR
014 pEHOOE | 0 pHoon!
0 T T T T T T T T T
o o1 02 03 04 05 0B OF 08 09 1 o0 01 02 03 04 05 06 07 08 09 1
X X

Fig. 9 Results of DIRECT Fig. 10 Results of DIRECT-I

1 1
08 - 0.8
na- ) ) ) - 08
07 - 0.7 1
0B+ : ' . F 06
w054 - . . . . . . . . w 054
(1 (R I IR IR I o]t 0.4 A
03_ . . --- - - . r Da_ - - " lll " "
o GhlE I | - SHENE
0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1
% %

Fig. 11 Results of DIRECT-II Fig. 12 Results of DIRECT-III

17



| —— Standard DIRECT
| —a— DIRECT with fewer groups
| —+— DIRECT with double partitions

E —— DIRECT with hoth features

lowest function value found

1
il 20 40 g0 a0 100 120
number of function evaluations

Fig. 13 Convergence comparison for the 2-D case

From Figs. 9 ~ 12 it’s clear that all four algorithms converge to the global
minimum point. However, the locally biased variations focus more on a
local search, thus leaving a relatively larger unexplored area. Using
DIRECT, we have only one unexplored box (the largest one, with side
length of 1/3). However, we have 5, 3 and 6 such boxes for DIRECT-I,
DIRECT-II and DIRECT-III, respectively. Figure 13 shows the convergence
comparison among these four algorithms.

Figures 14 ~ 17 show the convergence comparison for the 3-D, 5-D, 10-D
and 20-D cases, respectively. In these figures the locally biased variations
generally have a faster convergence rate than does the standard DIRECT
algorithm. DIRECT-I and DIRECT-II have similar convergence rates.
DIRECT-III, which combines those two locally biased measures, has the
fastest convergence rate. Since higher dimension problems require a larger
search space, a fairly fast convergence rate is of great importance in
obtaining the global minimum within the limited number of function
evaluations. Since DIRECT-III has the fastest convergence rate, it shows
superior performance for higher dimension problems such as the 10-D and
the 20-D problems.
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Fig. 14 Convergence comparison for the 3-D case
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Fig. 15 Convergence comparison for the 5-D case
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Fig. 16 Convergence comparison for the 10-D case
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Fig. 17 Convergence comparison for the 20-D case
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As an example, let’s take a look at the 20-D case. Figure 18 shows the
optimization results for the 20-D case.

Table 1 shows the values of the best points found by the three locally
biased variations within 2000 function evaluations and the exact solution.
Table 1 also shows the relative errors. The results obtained by using
DIRECT-III have the smallest relative errors among the standard DIRECT
algorithm and its three variations.

From Fig. 18 and Table 1, it is clear that, after 2000 function evaluations,
the results obtained by using DIRECT-III almost match the exact solution
precisely, far better than the results obtained by using DIRECT, DIRECT-I
and DIRECT-II.

E Standard DIRECT

DIRECT with fewer groups
DIRECT with double partitions
B DIRECT with both features

[ Exact solution

Value

x20 "\
x19 "\ 1.0
x18 N\ ’
x17 N 0.9
x16 N\
x15 N\ -0.8
x14
x13 XX -0.7

x12
x11 X 70-6
x10 N\ L 0.5
Independent ~ x9 8\ :

variables X XX 0.4

x7 X
x6 -0.3
x5 N\
x4 Xx -0.2
x3
x2 \{ 0.1

x1 0.0

Fig. 18 Comparison of the final optimization results for the 20-D case
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Best Point Relative Error (%)
DIRECT- | DIRECT- | DIRECT- | Exact DIRECT- | DIRECT- | DIRECT-
DIRECT I | 111 Solution | DTRECT 1 | 11
x | 0.167 0.056 0.167 0.051 0.05 | 234.00 | 12.00 234.00 2.00
x2 | 0.167 0.093 0.167 0.105 0.10 67.00 -7.00 67.00 5.00
xs | 0.167 0.167 0.167 0.154 0.15 11.33 11.33 11.33 2.67
xs | 0.167 0.204 0.167 0.204 020 | -16.50 2.00 -16.50 2.00
xs | 0.167 0.241 0.167 0.253 0.25 | -33.20 -3.60 -33.20 1.20
xe | 0.167 0.315 0.278 0.302 030 | -44.33 5.00 -7.33 0.67
x; | 0.500 0.352 0.389 0.352 0.35 42.86 0.57 11.14 0.57
xs | 0.500 0.389 0.500 0.401 0.40 25.00 -2.75 25.00 0.25
xo | 0.500 0.463 0.500 0.451 0.45 11.11 2.89 11.11 0.22
xi0 | 0.500 0.500 0.500 0.500 0.50 0.00 0.00 0.00 0.00
xu | 0.500 0.500 0.500 0.549 0.55 -9.09 -9.09 -9.09 -0.18
xi2 | 0.500 0.537 0.500 0.599 0.60 | -16.67 | -10.50 | -16.67 -0.17
xi3 | 0.500 0.537 0.611 0.648 0.65 | -23.08 | -17.38 -6.00 -0.31
xis | 0.833 0.796 0.722 0.698 0.70 19.00 13.71 3.14 -0.29
xis | 0.833 0.648 0.833 0.747 0.75 11.07 | -13.60 11.07 -0.40
xi6 | 0.833 0.796 0.833 0.796 0.80 4.13 -0.50 4.13 -0.50
xi7 | 0.833 0.648 0.833 0.846 0.85 -2.00 -23.76 -2.00 -0.47
xis | 0.833 0.944 0.833 0.895 0.90 -7.44 4.89 -7.44 -0.56
x| 0.833 0.648 0.944 0.944 095 | -1232 | -31.79 -0.63 -0.63
x0 | 0.944 0.944 0.944 0.998 1.00 -5.60 -5.60 -5.60 -0.20

Table 1 Summary of the optimization results for the 20-D case

3.2 Testing functions with one global minimum point and multiple local
minimum points

Here we consider two functions, the Rosenbrock function and the local

Shubert function.

The Rosenbrock function is a standard test function in optimization
theory, and is defined as: F(x;, x;) = 100 (x; — xf)z + (1 — x1)2, where x;,
x,€[-2.048, 2.048]. If we normalize the range of variables x; and x, into
[0,1], then the global minimum point is (0.74414, 0.74414) and the
global minimum is 0. The global minimum point is located in a long
narrow flat valley with lots of local minima.

The surface shape and the contour lines of the Rosenbrock function are

shown in Figs. 19 and 20. The round dot in Fig. 19 represents the global
minimum point.
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Fig. 21 Convergence comparison for the Rosenbrock function
The convergence comparison in Fig. 21 shows that DIRECT-I and

DIRECT-III have faster convergence rates in the early stage. However, all
four algorithms show similar convergence rates in the final phase.
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Fig. 24 Convergence comparison for the local Shubert function

The second
follows:

function is the local Shubert function, which is defined as

F(x1,x5) =—(§,isin((i+1)x1 +1)+ %jsin((j+1)x2 +7)),

i=1 J=1
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where x;, x,e/-5, 5]. It has one global minimum point and 100 local
minimum points. If we normalize the range of variables x; and x, into 0,1/,

then its global minimum point 1s (0.4508609, 0.4508609) and the
global minimum is -24.062499. The 3-D surface and 2-D contour of the
local Shubert function are shown in Figs. 22 and 23, respectively. The
round dot in Fig. 22 denotes the global minimum point.

The convergence comparison given in Fig. 24 shows that, for this case,
DIRECT has the fastest convergence rate and DIRECT-III has the slowest.
However, all the algorithms converge to the same global minimum point. It
is easy to imagine that, because the local Shubert function has many local
minimum points, it would be likely for the locally biased variations of the
DIRECT algorithm to spend too much time on the local searches. These
locally biased variations get to the global minimum point slower than does
the standard DIRECT algorithm.

3.3 Testing functions with multiple global and local minimum points

The first testing function considered here is called the ‘“six-hump”
function, defined as:

F(x;, x3) = dx” = 2. Ix," + (1/3)x16 +x, — 4x + 4xy,

where x;€/-2, 2], x,e[-1, 1]. This function has two global minimum points
and 4 other local minimum points. If we normalize the range of variables x;
and x, into [0,1], then its global minimum points are (0.52246,
0.14367) and (0.47754, 0.85633) and its global minimum is -1.03163.

The surface shape and the contour lines of the six-hump function are
shown in Figs. 25 and 26. The round dots in Fig. 25 represent the global
minimum points. We can clearly discern the six “humps” from these two
figures. Figures 27 ~ 30 show the optimization results obtained by using
DIRECT, DIRECT-I, DIRECT-II and DIRECT-III, respectively. The tiny
dots represent the sample points in the center of the boxes. The centers of the
circles represent the position of the global minimum points. We can observe
the strongly biased property of the DIRECT-III by looking at its large
unexplored area.
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Fig. 31 Convergence comparison for the six-hump function

It’s clear from Figs. 27 ~ 30 that sample points cluster around the two
global minimum points for both the standard DIRECT algorithm and its
variations. Thus, all algorithms found the two global minimum points.
Figure 31 shows the convergence comparison. The DIRECT algorithm and
its variations show very similar fast convergence rates.

The second testing function we considered is the Branin function, defined
as:

F(x;, x3) = [1 = 2x5 + (1/20) sin(4mx;)—x;]° + [x2— (1/2) sin(2wx,)]’,

where x;, x;€/[-10,10]. This function has five global minimum points and the
global minimum is 0. If we normalize the range of variables x; and x, into
[0,1], then the five global minimal points are (0.55, 0.5), (0.50743,
0.52010), (0.52013, 0.51437), (0.57987, 0.48563) and (0.59257,
0.47990). The surface shape and the contour lines of the Branin function
are shown in Figs. 32 and 33. The five round dots in Fig. 32 represent the
global minimum points.
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Figures 34 ~ 37 show the optimization results after 500 function
evaluations using DIRECT, DIRECT-I, DIRECT-II and DIRECT-III,
respectively. The tiny dots in the figures on the left represent the sample
points. The figures on the right are the local zoom-ins of the ones on the left,
around the global minimum points. The centers of the circles denote the
locations of the global minimum points.

Figure 34 shows that DIRECT found all of the five global minimum
points at this stage, while Figs. 35, 36 and 37 show that only four global

minimum points were found by the three locally biased variations of
DIRECT.
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Fig. 38 Convergence comparison for the Branin function

Figure 38 shows the convergence comparison. The locally biased
DIRECT algorithms clearly have higher convergence rates than does the

standard DIRECT algorithm with DIRECT-III having the fastest
convergence rate among them.

Therefore, for this testing case the locally biased DIRECT algorithms
have faster convergence rate, but the standard DIRECT algorithm found all
the global minimum points more quickly.

Next we will discuss the performance of the standard DIRECT algorithm

and its three locally biased variations in the slider Air Bearing Surface
(ABS) optimization.
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4. SLIDER AIR BEARING DESIGN OPTIMIZATION CASE

4.1 Air bearing design optimization problem

Given a prototype slider ABS design, we wish to optimize it to get
uniform flying heights near the target flying height with a flat roll profile,
and to increase its air bearing stiffness if possible.

In this case we used the NSIC 7nm flying height slider as the prototype.
The rail shape and the 3-dimensional rail geometry are shown in Figs. 39
and 40, respectively.

000 016 031 047 0863 078 084 109 125

Length(mm)

Fig. 39 Rail shape of the initial ABS design

Fig. 40 3-D rail shape of the initial ABS design

31



The slider is a Pico slider (1.25x1.0mm) that flies over a disk rotating at
7200 RPM. Its flying heights are all around 7nm from OD to ID. For this
case we want to lower all its flying heights to the target flying height, i.e.
5Snm, and at the same time maintain a flat roll profile at the three different
radial positions OD, MD and ID. The objective function or cost function is
defined as:

I1x (FH Max Difference) +
9 X (FH) +

1 X (Roll) +

1 X (Roll Cutoff) +

1 x (Pitch Cutoff) +

1 x (Vertical Sensitivity) +
1 x (Pitch Sensitivity) +

1 X (Roll Sensitivity) +

1 X (Negative Force).

. 10
I "' I ILL_I——-—‘-———_:L_l
L R S A
e \
0aer
/ Relative
L constraints
Original
el constraints
0afr
04k Symmetric
;| constraints Relative
_ \ Constraints
0.2} = /
o NN b e
| | 1 L.___‘__________-‘_-‘______-l__-l-_-
} 1 L
] ! 1 ' : : |
0 02 0.4 06 08 ! 12
10"

Fig. 41 Constraints defined on the initial design
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The goal of the optimization is to minimize this multi-objective function
under the given constraints (note that since we are primarily concerned with
the flying heights, we put a heavier weight (9) on that term). All the
objective terms are normalized and their definitions can be found in the
“CML optimization program version 2.0 user’s manual”®!. The constraints
we defined are shown in Fig. 41, and the definition of those constraints can
also be found in the user’s manual.

4.2 Simulation results

Using the initial design, constraints and objective function, we carried out
the optimization using the DIRECT algorithm and its three locally biased
variations.

Figure 42 shows the convergence comparison. For this testing case, all
four algorithms show a similarly fast convergence rate. The best objective
function values obtained by using DIRECT, DIRECT-I, DIRECT-II and
DIRECT-III are 4.46, 4.46, 4.43 and 4.43.

Convergence comparison among the DIRECT algorithm and its variations

1"1 T T T T
—— Standard DIRECT
Y I S S —— DIRECT with fewer groups 1
' ! —— DIRECT with double partitions
—=— DIRECT with both features
12 Loy Y ) ________1 oo - —- -

lowest function value found
[Lu]

0 a0 100 150 200 250
number of function evaluations

Fig. 42 Convergence comparison for the ABS optimization case
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Figures 43 ~ 46 show the optimized ABS designs obtained after 200
function evaluations by using DIRECT, DIRECT-I, DIRECT-II and
DIRECT-III, respectively. In these figures, the green lines (light-colored)
show the rail shape of the initial design and the blue lines (dark-colored)
show the rail shape of the optimized design. The four optimized ABS
designs are almost the same.

x10° Comparison bewteen the initial and the optimized designs X 10° Comparison bewteen the initial and the optimized designs

09k 09 & '
08l ) L 08t j *
071 071
0.6 06
05 050
0.4 0.4
03 03
02 ) ‘ 02 )
00 0.‘2 0.‘4 0.‘6 0.‘8 1‘ 1‘2 00 0‘2 0.4 06 0.8 1 1.2
x10° x10°
Fig. 43 Results of DIRECT Fig. 44 Results of DIRECT-I
] )5103 Comparison bewteen the initial and the optimized designs ; X 10° ‘Comparison bewteen the initial and the optimized designs
08t § | 09F ! i |
0.8 - 08 -
0.6 06
051 05f
0.2 i 0.2
0 L L L : L L 0 L L . L L
0 0.2 0.4 0.6 0.8 1 lfo,a 0 0.2 0.4 0.6 0.8 1 l‘fog
Fig. 45 Results of DIRECT-II Fig. 46 Results of DIRECT-III

Figures 47 ~ 50 show the variations of the slider performance parameters
for all the best-so-far designs using the standard DIRECT algorithm and its
three variations respectively. All four optimized ABS designs show very
uniform flying heights around the target Snm FH, and a reasonably flat roll
profile.
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7. CONCLUSION

The DIRECT algorithm is a deterministic global optimization technique
used to find the minimum of a Lipschitz continuous function without
knowing the Lipschitz constant.

We carried out extensive numerical experiments using the DIRECT
algorithm and its three locally biased variations, i.e., DIRECT-I (having
fewer groups), DIRECT-II (having double partitions for the box containing
the point with the lowest function value), and DIRECT-III (which combines
these two measures).

For testing functions with only one global and local minimum point, all
the locally biased variations have faster convergence rates than does the
standard DIRECT algorithm. DIRECT-I and DIRECT-II have similar
convergence rates, whereas DIRECT-III has a faster convergence rate. For
higher dimension problems, DIRECT-III is superior to the other three and
can find the global minimum point far more quickly.

For testing functions with one global minimum point and multiple local
minimum points, it’s hard to tell which algorithm is best. Though they might
show different convergence properties at some stages, they all show a
similar convergence trend in the long run.

For testing functions with multiple global and local minimum points, the
locally biased variations have a similar or higher convergence rate than does

the standard DIRECT algorithm. However, the standard DIRECT will find
all the global minimum points earlier.

The slider ABS optimization problem is a strongly nonlinear problem.
The results of the test case show very similar performance for DIRECT and
its three variations.

In summary, the three locally biased variations of the DIRECT algorithm
generally have higher convergence rates than does the standard DIRECT
algorithm. The variations perform especially well in some situations and
they may dramatically reduce the time needed to find the global minimum
points.
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