CML 2001 Report:

Multi-Objective Genetic Algorithm and Its Application in
Optimizing Parameters of Fixed-Structure Controller for HDDs

Bo Zhu and Masayoshi Tomizuka
Computer Mechanics Laboratory/ Mechanical Systems Control Laboratory
Department of Mechanical Engineering
University of California at Berkeley

Ho Lee and Lin Guo
Advanced Technology Group
Maxtor Corporation

September 2001

Abstract

This report presents a non-gradient based optimization method, named multiobjective genetic
algorithm (MOGA), for the parameter optimization of fixed-structure controllers in hard disk drives
(HDDs). The structure of track following controller is fixed to address costs and implementation
issues in commercial HDDs. On the down side, the rank constraint destroys the convexity of
search space. In addition to multiple design objectives and constraints, it makes the tuning of
controller parameters a difficult non-convex multiobjective optimization problem (NCMOP), for
which gradient based methods are likely to be trapped in the local optima. Genetic algorithms
(GAs) are stochastic rule based global search method, simulating the nature evolution process.
GAs carry out the parallel search by maintaining a population of candidate solutions and updating
them through genetic operators. MOGA is a GA embedded with the concept of Pareto optimality
and capable of solving large-scale NCMOP efficiently and reliably. A design example of tuning a
track following controller is used to demonstrate the effectiveness of the proposed method.

Contents
1 Introduction

2 Problem Formulation

2.1 Classical Control e e e
2.2 Mixed Ha/Ho Control oo
2.3 Overview of Optimization Techniques

3 General Genetic Algorithms

3.1 Coding: From Binary to Real 0 o
3.2 Initial population
3.3 Cost Function and Constraint Handling
3.4 Fitness e
3.5 Genetic Operators: Selection, Crossover, and Mutation
3.6 An Example of Optimization by GA
4 Multi-Objective Genetic Algorithms
4.1 Multi-Objective Optimization (MOO),
4.2 Pareto Optimality and Pareto Ranking
4.3 Rank-based Fitness Assignment 0oL
4.4 Intra-Rank Fitness Sharing 0
4.5 Elitism and random migrants L oL

5 Design Example
5.1 Summaryo e e e e e

15
15
16
19
19
20

22

1 Introduction

Given cost-limited hardware and computing resources, designing a positioning system for mass-
produced hard disk drives (HDDs) is a challenging work. The controller needs to achieve accept-
able performance in the presence of external disturbances and measurement noises. Furthermore,
the plant parameters vary from drive to drive due to manufacturing tolerances and also change
with time and temperature. The controller therefore needs to provide sufficient robustness against
these variations. On the other hand, the usage of economical digital signal processor in servo
system requires a low order design of controller. This is a typical optimization problem with mul-
tiple non-commensurable objectives and constraints. Recently, linear matrix inequalities(LMIs)
and bilinear matrix inequality (BMIs) have received a great deal of attention in parameterizing
multi-objective optimization problems (MOPs) [1] [2], although general design method guarantee-
ing the global optimization has not been obtained. LMIs or BMIs provide a unifying framework to
setup multiple quadratic performance inequalities, which are then efficiently solved by convex opti-
mization approaches, e.g. semi-definite programming (SDP). It has been shown that a number of
multi-objective problems, including the popular Hs, control synthesis problem and mixed Hy/Hoo
optimal control problem, can be parameterized as LMIs or BMIs [3]. However, for the practical
control of systems like HDD, it is rather difficult to fit the problem into a solvable convex form
because of numerous design specifications and constraints. Furthermore, an optimal solution from
the free-order synthesis is a high order controller, which is not implementable in HDD even with
order reduction techniques. In fact, it is more efficient to start with a controller structure that has
good nominal properties, and optimize the parameters within that structure. Fixing the structure
of controller minimizes the coding difficulties involved in design iterations and enhances the con-
trollability of overall firmware. On the other hand, since it also inevitably loses the convexity of the
search space, gradient-based methods [4] will have no guarantee of global convergence for such a
nonconvex multiobjective optimization problem (NCMOP) and require lots of auxiliary conditions
for parameterizing NCMOP, if possible.

This report proposes a non-gradient based solution to the design problem above by using a
multi-objective genetic algorithm (MOGA), which is the combinations of genetic algorithms (GAs)
and Pareto optimization. GAs are non-gradient based optimization methods that imitate the
stochastic mechanisms of natural selection and genetic variation. Pareto optimality, which defines
the optima based on vectorial performance, avoids the hassle of using weights before optimization
and provides decision maker with multiple “trade-off” optimal solutions which reveal the character-
istics of solution surface before a final solution is chosen. Finally, the effectiveness of the proposed
method is shown by an example of tuning a track following controller for HDD.

This report is organized as following. Section 2 shows two ways of setting up optimization

problem for the fixed-structure track following controller, along with a brief review of different
optimization methods. Section 3 discusses a general GA in details and Section 3 extends it to
MOGA. Section 4 shows a design example of tuning a track following controller. A summary is

given in 5.1.

2 Problem Formulation

This report focuses on the tuning of fixed-structure track following controller. Figure 1 shows
a discrete time model of HDD servo system in the track following mode. P (zfl) is the ZOH
equivalence of continuous time plant dynamics, including power amplifier (PA), voice coil motor
(VCM), and head-disk assembly (HDA). For convenience, disturbances and noises are lumped
into three sources depending on their injecting points in the loop: torque disturbance d;, position
disturbance d,, and measurement noise ny,. C(z71, K) represents the fixed-structure low-order
digital controller with m tunable parameters K= {ki,....,kn} € Qg C R™ where Q is the non-

convex search space with boundaries defined by designer. The following notation and terminology

are used
S (2_17K) (= 1+p(2_1)10(2_1 K sensitivity function;
1 P(z_l)C(z_l,K) e . .
T (z ,K) = PG 0GR complementary sensitivity function.

There are two frameworks that can be used to set up the optimization problem. No matter which
framework readers choose to use, there are one fundamental issue they have to address: how should

the global optimum be achieved efficiently and reliably with so many objectives and constraints.

2.1 Classical Control

The classical frequency domain loop-shaping techniques have been successfully used by servo engi-
neers for decades, to the analysis and design of HDD servo systems. Setting up the optimization
problem in this framework makes it ready for engineers to adopt proposed method into their prac-
tical applications. In track following mode, the major design objective is to minimize the true
tracking error PE}, which is, however, immeasurable. The position error signal (PES) being mea-
sured is the true position error PFE; contaminated by the measurement noise n,,. Fortunately,
N is shown to be white [5] thus minimizing the energy of PES is equivalent to minimizing the
energy of PF;. Typical time domain specifications on the PES are |PES(t)] < 12% trackwidth
and 30(PES) < 5% trackwidth. The design also needs to satisfy some minimum relative stability
margins. In this report, all constraints are related to the frequency domain requirements, such as
the minimum phase margin PM,rn which is a direct safeguard against time delay uncertainty, the
minimum gain margin GMy;ry which is a direct safeguard against steady-state gain uncertainty,

the minimum crossover frequency weprrn, and the maximum peak of sensitivity function Seoprax.

Torque Position
Disturbance Disturbance

d, d,
Ref=0 »+<f:> C(z1K) »é—» P(zY) PEt
PES " Measurement

noise n

Figure 1: A typical blockdiagram of track following control

This is a constrained NCMOP. A design example is given in Section 5

2.2 Mixed H,/H,, Control

Designing controller for track following is multi-objective output-feedback control problem involving
noise rejection (Hs) and loop-shaping (Hy). Since all disturbance, including d;, nonrepeatable part
of dp, and n,, can be modeled as white noises [6], the time domain regulation design (minimizing
PES) can be formulated as Hy control problem. Furthermore, Skogestad et al. [7] show the gain
margin and phase margin are closely related to the peak values of |S(jw)| and |T'(jw)|. Thus we
can use ||S||,, and ||T||,, instead of PM and GM as stability constraints. So all performance
requirements in frequency domain can be formulated as Hs loop shaping problem. If we drop off
the non-convex rank constraint due to fixing the structure (and thus order) of controller, the overall
problem becomes a full-order Hy/H, control synthesis problem and can be parameterized in the
form of LMIs [8] which are solvable by widely available convex solvers like SDP. When the rank
constraint is applied, it is a fixed-order (or more generally, reduced-order) control synthesis problem
that is nonconvex and hard to solve. On one side, one can apply linearization or approximation
algorithms to make it solvable by convex solvers [9] [10], but still there is no guarantee of finding a
globally optimal solution. Also, the exactness of the LMI formulation is at the cost of introducing a
large number of auxiliary variables which produces an order of magnitude increase in search space.
This can be a problem for NCMOPs with a large number of tunable variables. On the other side,
as suggested in this report, one can directly apply non-gradient based optimization methods, e.g.,

[11] shows a genetic method to solve LMIs.

2.3 Overview of Optimization Techniques

Among numerous search and optimization techniques that are potentially capable of solving non-

convex problems, gradient-based, enumerative, and stochastic techniques are mostly used.
Gradient-based techniques use information about the slope of target function to dictate a di-

rection of search where the optimum is thought to be lie. They can be classified into two groups:

indirect and direct [12]. Indirect methods search local extreme by solving a set of usually nonlinear

equations which result from setting the gradient of the objective functions equal to zero. On the
other hand, direct methods seek local optima by jumping on the hyper-surface of target function
and moving in a direction related to the local gradient. Both classes are local methods for they
seek the optima only in a neighborhood of the current point. General speaking, gradient-based
methods are more efficient than other methods in a local convex range. However, they require the
continuity and derivative existence of target function and thus can not provide sufficient robustness
to find the global optimum for non-convex optimization problems.

The idea behind enumerative schemes is pretty simple; within a finite search space, or a dis-
cretized infinite search space, the search algorithm evaluates objective function values at every
point in the space, one at a time. This scheme can arrive at reasonably good solutions for search
spaces of small sizes. But when confronted with search spaces of enormous size and wide variation
from point to point in their precinct, such schemes must ultimately be discounted in the robustness
race for one simple reason: lack of efficiency. Even the highly touted enumerative scheme dynamic
programming may become exhausted on problems of moderate size and complexity, suffering from
“the curse of dimensionality” [13].

Stochastic optimization algorithms have been recognized to be able to overcome the shortcom-
ings of gradient-based and enumerative schemes. The common feature of these methods is that
they only need evaluations of the objective function, not requiring its gradient or Hessian. So
they are most suitable for problems that are very nonlinear or have a number of discontinuities.
Random walks is the simplest version of stochastic optimization algorithms. Although it is capable
of searching for the global optima, it is still lack of efficiency and expected to do no better than
enumerative schemes. Some more advanced random methods like Genetic algorithms (GAs) and
simulated annealing carry out initial search randomly, but the information gained from the search

is utilized in guiding the next search.

3 General Genetic Algorithms

GAs are biologically inspired global searching methods, described in one sentence as “an individual
with greater vitality has a better chance to survive in this highly competitive world.” Since the
initial idea is brought out by Holland [14] in 1975, GAs have attracted a great interests and quickly
become a flagship among machine learning and function optimization. It is beyond the scope of
this paper to review the vast literature associated with GAs, instead, this section addresses the
basic ideas of GAs. The interested reader might consult Goldberg [12] and Michalewicz [15].

GAs overcome the aforementioned limitations of conventional searching algorithms through

following aspects [15] [16].

e (GAs use probabilistic transition rules to guide their search, but not deterministic rules.

1 New Generation 2 Calculate Fitness
Ki={kt.. k3; Km={k,m... k™ > maxFit(K') = minJK’) i=1,...,m

m individuals (candidate solutions) Jisthe performance cost function

7 Decoding 3 Coding eg., Binary coding

[0100010101]] —> K Ki —> [0100010101]

6 Mutation [0100010101] 4 Selection

Flip state with a i m parents by roulette wheel

low probability [0100011101] with slots sized according to fitness

S Crossover Parent 1[0100010111] _ Child 1 [0100100010]

Parent 2 [0111000010] ~ Child 2 [0111000111]
A crossover position is selected uniformly at random

Figure 2: The flowchart of a simple genetic algorithm for parameter optimization. It is easier to
exemplify the genetic operators by using the binary coding.

e (GGAs use objective function information, but not derivative or other auxiliary data.

e GAs maintain a population of potential solutions to search in a parallel manner, while all
other methods process a single point of the search space. This is referred to as “Implicit

Parallelism”.

The basic building blocks of GAs are shown in Figure 2. GAs start with a population of
randomly generated solutions. Each solution in this very first generation will be evaluated through
cost functions that are defined according to design objectives. During the evaluation, we define a
fitness function and evaluate the fitness for each candidate solution. The fitness is assigned in a
way that maximizing the fitness is equivalent to minimizing the cost function. Then the population
is processed and evaluated through various operators to generate a new population. The basic
operators of GAs are selection, crossover, and mutation, as shown in step 4, 5, and 6 of Figure 2
respectively. This process is repeated until a global optimal point is reached. The following sections

examine this process in details.

3.1 Coding: From Binary to Real

GAs work with a coding of parameters, but not parameters themselves. The main purpose of
coding is to make it possible to imitate the natural evolution process in parameters space. The
traditional way to illustrate GAs is to use binary coding (BC) . As shown in Figure 2-(3), each

parameter is encoded into a string of bits. The individual bit is called a gene. The content of each

gene is called an allele. The whole string of such genes for all parameters in a written sequence is
called a chromosome. The choice of chromosome length depends on the accuracy requirements of
the targeting optimization problem. GAs maintain a population of chromosomes or individuals in
every generation, quite often these individuals are also called candidate solutions. The number of
chromosomes in a population is called the population size, denoted as 7. These chromosomes
will evolve from generation to generation through some genetic operators.

However, There are some drawbacks when applying BC to multidimensional, high-precision
numerical problems. For example, for 80 variables with domains in the range [-100 100] where
a precision of six digits after the decimal point is required, the minimum length of the binary
chromosome is 27 x 80 = 2160. For such a problem GAs perform poorly because the BC generates
a search space of about 22160,

Instead of using BC, this report uses real-coded (RC) encoding scheme, i.e. each candidate solu-
tion is represented as a float-point vector K7= [k, ..., kl,]. At (t)th generation, MOGA maintains a
population of individuals, K(t) = [K!(), ..., KI(t), ..., K" (t)] ,with a fixed population size 70y
This real-coded (RC) representation has many advantages over the classical binary-coded (BC)

representation which uses a bit string to code candidate solutions [15].

e The RC is faster, more consistent from run to run and provides a higher precision than
BC,The precision of RC depends on the underlying machine, hence is generally much better
than that of the BC. Although we can always enhance the precision of the RC by introducing

more bits, this considerably slows down the algorithm.

e The RC is capable of representing quite large domains. On the other hand, the BC must
sacrifice precision with an increase in domain size for a given fixed binary length. Thus the

RC avoids Hamming Cliffs effect from which the BC suffers.

e The RC is conceptually closest to the problem space, so virtually no decoding is required.

The RC also allows for an easier implementation of genetic operators.

3.2 Inmitial population

A simple GA is an iterative procedure starting with a randomly generated population of candidate
solutions. Since one has little geometric knowledge of the search space of target problem before
solving it, the uniform distribution is arguably the best initialization scheme, keeping in mind that
the population size npep is the only factor in this method to balance the trade-off between initial
diversity and computational complexity. If 1,0, is too small, the chance that the chromosomes in
the population cover the entire search space is low. This makes it difficult to obtain the global
optimum solution and leads to a local optimum as a result of premature convergence. On the

other hand, a population size that is too large decreases the rate of convergence. In the worst case

scenario, it may lead to divergence. Hence the population size needs to be selected based on the
size of search space. An example at the end of this section will clearly illustrate this relationship.

Individuals in the first generation are evaluated and assigned fitness values based on their
relative performance. Through applying genetic operators, the initial population will evolve into a

new population which contains a group of better solutions.

3.3 Cost Function and Constraint Handling

Cost functions are directly related to our design objectives and constraints. If we are to solve
a minimizing problem, the objective function itself can be used as cost function because GAs are
aiming at minimizing cost functions. On the other hand, to define the cost function for maximization
problems, one usually just takes the reciprocal or flips the sign of objective functions. Since GA is
a population-based probabilistic optimization method and does not require the convexity of search
space, the cost function J(K) can be freely chosen for the convenience of designer. Although the
optimization problem of fixed-structure controller can be formulated as solving LMIs, limiting the
objective functions in quadratic form does not fully explore the potential of GAs. Some practical
design problem is very difficult or even impossible to be parametrized in standard frameworks.
Constraints can often be seen as hard objectives, which need to be satisfied before the optimiza-
tion of the remaining objectives takes place[17]. Constraints are usually expressed in the following

type of inequality

fK)<g (1)

where f(K) is a real-valued function of variable set K, and g is a constant value. The inequality
may also be strict (< instead of <). Equality constraints of the type f(x) = g can be formulated as
particular case of inequality constraints. The simplest approach to handing constraints has been to
assign infeasible individuals an arbitrarily high cost (or low fitness). Certain types of constraints,
such as bounds on the search space, can be handled by mapping the search space so as to minimize
the number of infeasible solutions it contains and designing the genetic operators carefully in order
to minimize the production of infeasible offspring from feasible parents [18]. In the case where
no feasible individuals are known or cannot easily be found, but evaluation of individuals are
relatively easy, a penalty function is used to impose penalty onto infeasible individuals depending
on the extent to which they violate the constraints. Then cost function for the constraint (1) is

simply

J(K) = Q[f(K) — g (2)

where the penalty function

b f(K)=1/(1+ I(K))

0 > J(K)

Figure 3: An example of fitness assignment for a minimizing problem with positive semidefinite
objective function.
For example, the cost function Jg_ (K) = Q[Se(K) — 6] is to enforce the constraint of making the

peak value of sensitivity function less than 6dB.

3.4 Fitness

After the function evaluation, a real positive number called fitness is assigned to each candidate

solution in the way that maximizing the fitness is equivalent to minimizing the cost function, i.e.,
max|f(K)] <= min[J(K)] <= achieve objective and/or satisfy constraint. (4)

The fitness serves as the surviving probability of each individual during genetic operations as
described in the next section. An individual with a bigger fitness value implies higher quality with
respect to design objectives, and a better chance to survive in genetic operations. The programmer
is allowed to use any fitness function that adheres to the relationship in (4). This advantage over
other optimization methods makes GAs more attractive when dealing with practical engineering
optimization problems. (5) and Figure 3 show an example of defining fitness for a minimizing
problem with positive semidefinite objective function. f(K) gets the biggest value of 1 (for a
possibility may not be greater than 1) when minimum J(K) = 0, and converges to zero as J(K)

increases.

RIS ®)

3.5 Genetic Operators: Selection, Crossover, and Mutation

The new generation is generated from the current one by examining the fitness of all candidate
solutions and applying the genetic operators, which are selection, crossover, and mutation. Through
the genetic operations, the survival of the fittest means transferring the highly fit chromosomes to
the next generation of chromosomes and combining different chromosomes to explore new search

points.

Selection The roulette-wheel-like selection is more likely to pick up candidates with higher fitness
values into a mating pool. Each candidate solution corresponds to a slice in the weighted roulette
wheel (Figure 2-(4)). The relative size of the slice equals to the fitness percentage of corresponding
solution in the total fitness. The total fitness is obtained by summing the fitness over all individuals
in the current generation. Every spin of the weighted roulette wheel yields one reproduction
candidate for parent pool. Since the time to stop is a uniform random variable, the possibility of
any individual being picked up is proportional to its fitness. This spinning process needs to be

repeated until enough parents are generated.

Crossover The selected solutions in parent pool are then processed by applying crossover which
pairs up the parents and exchanges portion of their segments pairwisely. The step 5 of Figure 2
shows a single point crossover for BC chromosomes. A crossover point is selected randomly as an
integer between 1 and the chromosome length. Here this crossover point is 7. Then children Child
1 and Child 2 are generated by exchanging the segments after 7 between Parent 1 and Parent 2.
Besides the crossover point, another parameter called crossover probability P,., is to control
the number of crossovers by acting as a decision variable before performing the crossover. A real
number is uniformly generated in the range [0 1]. If this number is less than P,, a crossover is

performed, otherwise, Child 1 and Child 2 are simply direct copies of Parent 1 and Parent 2.

Mutation Nature uses large population sizes to keep her diversity. However, it is expensive to
keep a very large population in GAs. Instead, Mutation performs a slight perturbation to the
resulting solutions with a very low probability. As illustrated in the step 6 of Figure 2, the 7th
gene is bit This is an effective way to preserve the diversity with a limited population size.

In this report, a special dynamic mutation operator is used aiming at both improving single-
element tuning and reducing the disadvantage of random mutation in the RC implementation.
We call it a non-uniform mutation [15]. If K7 (t)= [k (t), ., kf (t).., k()] is a chromosome in (¢)th
generation and the element kf is selected for applying non-uniform mutation, the result is a vector

K3'(t) = [Ki(t), ., kI (t).., kI, (t)], where

(2

. kf +®(t,UB — kf) if a random digit is 0
" | Kl —®(t,k] — LB) if a random digit is 1

and LB and UB are lower and upper domain bounds of the variable kf . The function ®(¢,z) is
chosen such that it returns a value in the range [0, z] and the probability of ®(t, z) being close to 0
increases as t increases. This property causes this operator to search the space uniformly initially
and very locally at later stages; thus increasing the probability of generating the new point closer to

the original one rather than a random choice. According to this requirement, the following function

10

is used in this report:

_t \b
@(t,z)zz-(l—r(l "gen)>

where r € [0,1] is a random number, ngep is the maximal generation number, and b is a system
parameter determining the degree of dependency on iteration number. As shown in Figure 4 and
Figure 5, the bigger b is, the faster the probability density of ®(¢,z) become concentrated on zero

with the increase of ¢.

=2 and nqhﬂltl

[——
s

I

08-S !
| 1
05| |

Frobabilty Darsity

=
=103 0 a0 eraraion, t

Figure 4: The probability density of ¢(x,z) with respect to evolving generation t when b=2.

bes andn_ =40

0l -

i)
I
—
A
T g™
—
it
—_—
—

0B -

a4

Protabibby Density

o2

1]
FLz=10) T Germraban, 1

Figure 5: The probability density of ¢(x, z) with respect to evolving generation t when b=5.

11

Table 1: The computational cost and solution quality v.s. the number of generations and population
size

Ngen) 10 15 30 50 100
Tpop 600 300 200 100 60 30
CPU time (s) | 50.86 | 25.16 | 18.46 | 12.53 | 10.77 10
max(T;_opt) 0.15 | 0.0015 | 0.001 | 0.016 | 0.00027 | 0.00047

25

201 1

151 1

IX)

10+ b

Figure 6: The illustration of the non-convex optimization example in (6) when n=1.
3.6 An Example of Optimization by GA

The following example (6) shows the effectiveness of GA in solving non-convex optimization prob-
lems. The global minimum of this example, J(x;) = 0, is apparently achieved at origin z; = 0, as
shown in Figure 6 (n = 1). The gradient-based methods are likely to be trapped in numerous local
minima at x; = 2kn,k=0,1,... .

n
minlJ(l = min) (I3

x; € [—40,40]; n =8

+4

sin(5)]) (6)

In De Jong’s [19] study of genetic algorithms in function optimization, a series of parametric
studies across a five function suite of problems suggested that good GA performance requires the
choice of a moderate population size ny,0p, a high crossover probability P, and a low mutation
probability P, which is inversely proportional to the population size npgp.

To deliver the best performance of GA with a given computational power, the right choice of

the number of generations and the population size is crucial. Figure 7 illustrates the interaction of

12

Fitness Convergence with Generations

0.8 1
#Gen=5 #Gen=10
0.6| #Pop=600 #Pop=300
Max
0.4 —— Awerage . 0.5
Min .
0.2 — A
0’/// 0 ; ‘ ‘ ‘
0.2 0.4 0.6 0.8 1 0 02 04 06 08
1 1
#Gen=15 #Gen=30
#Pop=200 #Pop=100
7
g 0.5 0.5
=
C
0 —, ‘ ‘ ‘ ‘ (o) = ‘ ‘ ‘ ‘
0 02 04 06 08 1 0 02 04 06 08
1 1 L
#Gen=50 #Gen=100 -

#Pop=60

0.5

0.4 0.6 0.8 1

0.5

ol

#Pop=30 ’

0

0.2 0.4

0.6

0.8

Generations (n#Gen)

Figure 7: The right choice of the populaton size in one generation and the number of generations
is very important in GAs. All trials have a total of 3000 samples.

13

min[Z in:1 |xi/2|+4*|sin(xi/2)|]; xiD[-40,40]
80

CPU Time (Second)

Dimension of Search Space, n

Figure 8: Upong applying GA to solve the given example, the relationship between the time to
convergence (|%;_opt| < 107) and the deminsion of search space is almost linear.

these two quantities on the fitness convergence and Table 1 shows their impact on the computational
cost and solution quality. For a fair comparison, all six cases have the same total number of 3000
samples and the time to convergence for all cases is defined as when variables of the best solution
converge to a hyper-ball centered at origin with a radius of 1073. We can see from Figure 7 that
if the population size is too small, it may leads to the premature convergence problem because
of the lack of diversity. Graphically it appears as a plateau in the average fitness curve before it
converges to 1. A fitness of 1 generally corresponds to the global optimality (Figure 7-F). Other
graphical evidences of the lack of diversity include the existing of very rough curves, and that the
average fitness curve is much closer to the maximum fitness curve than to the minimum fitness
curve. As the increasing of population size, however, the convergence speed is lowering and the
computational cost is increasing. As shown in Table 1 and Figure 7-A, using too large population
size not only wastes computational resource but also lowers the quality of solution. All simulation
are performed on a AMD 1GHz PC with 256 MB memory.

Figure 8 shows the relationship between the computational cost (the time for all Pareto solu-
tions converge to a small hyper-ball around the origin) and the dimension of search space. Unlike
the enumerative or LMI+approximation+SDP methods, the CPU time representing the overall
computational complexity does not increase exponentially, but almost linearly relative to the in-
creasing number of tunable variables. This is truly attractive for a NCMOP with large number of
tunable parameters.

We would like to point out that there is no hard and bound restrictions on what operator and

14

v

Designer Single Cost) - i

. . — Unique Decision !

| |WeightingswW,| | %=2W;J optimum Making i

Multiple
COSt oo
functionsJ, | | | Pareto-based 5
Multi-objective Pareto Decision

No weightings Optimizer optima Making ;

| before optimization ? |

Figure 9: Different methods of dealing with multiobjective optimization problems. The upper part
is the conventional weighting method and the lower part is the Pareto-based approach.
strategies a programmer has to use, so one has the freedom to choose the operation and strategies

in any combination according to the characteristics of target problem.

4 Multi-Objective Genetic Algorithms

This section proposes a Multi-Objective Genetic Algorithm (MOGA), which extends the general
GAs to handle multi-objective optimization problems, especially ones with non-commensurable
objectives. Several multiobjective genetic algorithms (MOGAs), which are GAs combined with the
concept of Pareto optimality, have been proposed [12] [20]. A good review of MOGAs is in [21].
Many researchers [22] [23] [11] have successfully applied MOGA to solve MOPs.

4.1 Multi-Objective Optimization (MOO)

Practical control design problems are often characterized by serval non-commensurable and often
competing measures of performance, or so-called objectives. If any of objectives are competing,
there is no unique solution. One way of dealing with multiple objectives is to combine them into
a single objective by using weights (the upper part of Figure 9). In most cases, however, the best
combination of weights is not known in advance due to the lack of knowledge of target problem.
The whole iterative process involves many try-and-errors. One has to play with weights and repeat
optimization for many times before getting insight into the interaction among objectives. This
situation will get worse with increasing number of competing objectives.

Furthermore, the solution trade-off boundary may be nonconcurrent so that certain solutions
This can be illustrated geometrically by the following example with two

are not accessible [24].

objectives. In the objective function space a line, L, wJ(K) = b is drawn. The minimization of b in

15

Trade-off solutions

JZ(K) A

3,(K)

Figure 10: The convex trade-off boundary is accessible by varying weights.

J(K)t Trade-off solutions

3,(K)

Figure 11: Some trade-off solutions on the nonconvex boundary are not accessible by varying w.

domain A can be interpreted as finding the value of b for which L just touches the boundary of A as
it proceeds outwards from the origin. Selection of weights w = [w1,wa], therefore, defines the slope
of L, which in turn leads to the solution point where L touches the boundary of A. For a A with
convex lower boundary as shown in Figure 10, all optimal solutions are reachable by varying w.
However, accessibility cannot be guaranteed for A with a nonconvex lower boundary. For example,

in Figure 11, all solutions between the point « and 3 are not accessible.

4.2 Pareto Optimality and Pareto Ranking

Pareto optimality, developed by Vilfredo Pareto (1848-1923, an Italian sociologist), is the most
widely accepted criterion of economic efficiency. A state of a given system is Pareto optimal, and
thus efficient, if and only if there is no feasible alternative state of that system in which at least one
is better off and no one is worse off. And, for purposes of this criterion, a person is ‘better off” with
some alternative A rather than B if and only if this person prefers A to B [25]. The concept of
Pareto optimality requires no weights before optimization and makes it possible to provide multiple

optimal solutions to decision maker.

16

Definition 1 (Dominating Solution) The vector J(K)={J;(K"), ..., J,(K')} is said to dom-
inate vector J(K?) = {J1(K?),...,Jn(K?)} if and only if J(K') is partially less than J(K?),
denoted as J(K') <, J(K?), more precisely

(Vi) Ji(K) < Ji(KC2) A (3i) (K1) < Ji(K?). (7)

Definition 2 (Pareto Optimality) A solution K' is Pareto optimal if and only if there is no
K? € Qg such that J(K?) <, J(K'). Pareto optimal solutions K,, are also called non-dominated

set or non-inferior set, which are a set of K7 such that

(J(KT) % p (D) A I(ET) £ I(ET)), (8)
K' € K, K/ €K,,Vi#j.

In the other words, the Pareto set is optimal in the sense that no improvement can be achieved
in any objective without degradation in others. An illustration example is shown in Figure 13,
the solutions are evaluated based on three performance indexes respectively. For each index, the
smaller the value, the better the solution. It is easy to see that solution A and B are better than all
other solutions in all aspects. However, A performs better than B in terms of J; and Jo but worse
than B in term of J3. According to the definition of Pareto optimality, we say A and B are the
equally best solutions and in the same Pareto set. Similarly, C and D are equally good solutions in
the second best set. Both dominate solution E but are dominated by A and B. The overall Pareto
ranking with respect to J = {Ji, Ja, J3} can be expressed as

J{A,B} <, J{C, D} <, J{FE} 9)

The flow chart of the MOGA used in this report is shown in Figure 12. The details are described
below. A summary of this MOGA is given at the end of this section.

All K7 in the Pareto optimal set have the similar vectorial performance and thus are so-called
“the equally best solutions” among the current generation K = [K!, ..., K™e¢]. Therefore they are
assigned the same rank of 1. The final solution of a MOP depends only on the vectorial performance
and on the preferences of the decision maker, and not on any subsequent optimization [26]. Based

on (7) and (8), a Pareto ranking scheme similar to [27] is proposed for MOGA as following,

1. Sort K = [K!,...,K7, ..., K"™] from the least to the largest according to ||J(K7)||; =
S Ji(K7). The sorted vector is denoted as K. Let RNK=1.

2. Use the first entry of K,, K1, as criterion. Take out any K? from K, and put it into a
dominated vector @4 if J(KL) <, J(KL), j =2, ..., length(K,).

3. Move out K] from K, and put it into a Pareto optimal set K,.

17

y

Randomly generate the first generation K(1)

L2

K ©=[KD),... KI(),... .K™(0)]

v

Calculate the cost vector J(Ki(t))

v

Pareto Ranking of K (t) according to J(Ki(t))

v

A

Rank-based fitness assignment and sharing f(Ki(t))

v

Elites
(Rank 1)

&%

A 4

Tournament Selection

v

Crossover / Mutation

I (95-€%

K (t+1)=[KYt+), ..., Ki(t+1),... KM(t+1)]

Random
Immigrants

5%

A

Figure 12: The flow chart of MOGA with elitism and random imigrants.

— Better Vadue

A
ENR-— : .
D @‘\ ———————— ". _____________ _.
: .:_____———-iﬁi-:\ __________ B
B[} T
AR I
| | I R
Jl Jz J3 MU'tiple
Indexes
Figure 13:

18

4. Let the remaining candidate solutions in Ky to form a new Kg, then repeat 2 to 4 until all

dominated solutions are removed.
5. Assign all entries in K, with the same rank, RN K. Empty K.
6. Replace K with @4, i.e. K; = ®y.
7. RNK = RNK + 1 and repeat 2 to 7 until the entire population is ranked.

4.3 Rank-based Fitness Assignment

Every candidate solution K is assigned a fitness value f(K) which is the measurement of solution
quality. For a candidate solution in MOGA, the smaller the rank number, the better the vectorial
performance. By selection, the MOGA is biased to the solution with higher fitness value. Therefore
the fitness assignment is such a mapping that maximizing the fitness f(K) is equivalent to mini-
mizing the cost vector J(K), i.e. maximizing the vectorial perform of K. In this paper, a simple

exponential mapping is used

(10)

4.4 Intra-Rank Fitness Sharing

Although all “equally good” solutions are assigned the same fitness, their actual choice to be selected
as parents may differ due to the random nature of selection. This imbalance can be accumulated
with the evolutions such that the population drifting towards an arbitrary region of the trade-
off surface, a phenomenon known as genetic drift [28]. Various population diversity mechanisms
have been proposed that make a GA to maintain a diverse population of individuals through its
search. These mechanism allow GAs to identify multiple optima in a multimodal objective domain.
Intra-Rank Fitness sharing is one of such mechanisms to counteract the effect of the genetic drift
by re-distributing the fitness among the candidate solutions with the same rank [26]. The sharing
function penalizes the fitness of individuals in popular neighborhoods and is in favor of more remote

individuals. In this report, the sharing function is defined as

. D(K7) ;o
FK) = = > (K) (11)
>, D) 2
where D(KY(t)) is the mutual similarity distance which is the summation of similarity distance
between K7(t) and any solution K*(t), i # j, with the same rank in the current generation. f(K7)
is the original fitness value for K7 and f(K7) is the fitness after sharing. The similarity distance

can be defined either in the objective space (phenotype) [29] or in the solution space (genotype)

[30]. A genotype similarity distance is usually objective independent metric, such as the Hamming

19

distance between two candidate solutions. It is used if there is little knowledge about the objective
space. A phenotype metric is a more meaningful distance measurement quantifying the similarity

of two solutions in the objective space.

4.5 Elitism and random migrants

To increase the converging rate of MOGA, the elite (individuals with the Rank 1) of current
generation, which is e% of total population, are directly copied into the new generation. (95 —
e)% individuals are generated from selection/crossover/mutation process. As a complementary
mechanism of mutation, the remaining 5% are generated randomly to preserve the population
diversity.

The MOGA used in this paper is summarized as follows.

1. Determine the search space of K, Qg C R™, which is the range of K that stabilizes the
nominal plant Py(z~1) by Jury Criterion [31].

2. The MOGA randomly and uniformly generates the first generation with np.p individuals
(candidate solutions), [K1(1),..., K7(1),..., K" (1)] € Q. Each individual is represented
by RC.

3. For each individual K (t) in the current (¢)th generation, calculate the cost function vector
J(EI(t) = {J1(EI(t)), -wos JU(EI(E)), ooy Ju (KT (1)) }.
4. Pareto ranking of [K(t),..., KI(t),..., K™°?(t)] according to J(K(t)).

5. Assign fitness to K (t) based on its ranking , /(K7 (t)) =

P (1) = 52y 32, /(KT (1).

—mnk&(j Ok and apply fitness sharing,

6. Directly migrate the elite, individuals with rank 1, to the (¢ + 1)th generation. This makes
up e% of total population np.p, where €% is up to 40%.

7. Apply the tournament selection [12] to generate mpop - (95 — €)% parents from the (t)th
generation. A linear crossover is used to produce npgp - (95 — €)% new individuals from these

parents. Apply mutation to these new individuals.

8. Randomly generate 5% of total ny,e, individuals in the search space Qp for the (¢t 4 1)th

generation.

9. Set [K'(t+1),...,K%(t +1),..., K™ (t + 1)] as the current generation. Should this new
generation achieve the optimization goal, stop the MOGA; otherwise go to step 3.

20

Table 2: MOGA configerations
Pr(crossover) =1 e% < 30%

Pr(mutation) = 0.02

Tpop = 200

Ngen = 60

Table 3: Design objectives before and after MOGA optimization

Before Optimization | After Optimization

Simultaion | Experiment | Simulation | Experiment
mean(opgs) | 5.240 5.219 5.032 5.011
var(opgs) 2.253 2.311 2.095 2.154
GM 6.1dB 6.3dB 6.1dB 6.2dB
PM 42.1° 40.4° 41.0° 39.7°

Wo 540H z 544 H z 002Hz | 55THz

Soo 5.7dB 5.5dB 5.4dB 5.2dB

Pareto Optima

Figure 14: The Pareto optimal solutions by MOGA

21

5 Design Example

The disk drives used in our experiments have a recording density of 19,300 TPI and a sampling
rate of 10,800Hz. The track-following controller for these drives is an extended PID controller in

the following form
C(z) =ko-F(z "1 k1, ko, k) (12)

where kg is the proportional gain, F(-) is a function of 2!, and constant parameters ki, ks, and
kr. A digital notch filter is added to attenuate the adverse effect due to the suspension resonance
at 2700Hz. The integrator gain, K7, is predetermined and hence not a target of optimization. So
the tunable parameter set is K = [ko, k1, ko). The original controller used by these drives was
ko, k1, ko] = [0.243,0.850,0.261], which was hand-tuned by experienced engineers in the previous
design cycle. PES of those drives were collected to build the statistical disturbance model. The
search space Qg = [(0.01 : 0.98), (—0.8 : 0.99), (—0.8 : 0.99)] is the range of K that stabilizes the
nominal plant. The gradient method used in [4] had always failed to converge in this range. To
make our method more practical for most servo engineers in HDD industry, we follow the classical
control framework. Since we are designing the controller for the mass produced HDDs with plant
variations and disturbance uncertainties, o pgg is not a constant but rather a random variable. It is

more appropriate to assess the average performance mean(opgg) and the performance robustness

var(opgs). The major objectives of HDD track following control therefore are

J(K) = wvar(ocpgs) (13)

Jo(K) = mean(opps)

In order to get a precise and efficient prediction of mean(opgg) and var(opgg) for a given con-
troller, a statistical model is built based on the PESs measured from a large population of drives
[32]. This model not only covers the characteristics of a large population of drives but also requires
little computational efforts in calculating mean(opgg) and var(opgs).

Design constraints are PMyrny = 36°, GMpyrn = 5.5dB, wopyrny = 500H 2z, and Seoprax =
6dB. By following aforementioned guideline for handling constraints, the corresponding cost func-

tions are defined as

S
=

(K) = Q[PMuin —PM(K)]
(K) = QIGMuin — GM(K)]
(K) = Qlwomrn —wo(K)]
(K) = Q[Sw(K) = Seonrax]

K

S

o
=

and the phase margin PM(K) , the gain margin GM (K), the crossover frequency w,(K), and

the peak of sensitivity function S (K)=||S(K, jw)||,, are functions of the tunable parameter set

oo

22

K € Q. J3(K) ~ Js(K) will be zero if the candidate solution K satisfies all constraints. Thus,
the original constrained MOP is converted to a unconstrained MOP whose target is to minimize
the cost vector J(K) = {J1(K), ..., Ji(K), ..., Jo(K)} over K. J(K) is therefore called the vectorial
performance index.

The parameter for MOGA is listed in Table 2. It took the MOGA 10.5 minutes in a PIII 550
computer to give a Pareto optimal set (Rank 1) with 9 solutions in the 60¢th generation, as shown
in Figure 14. One solution, K = [0.261,0.864,0.335], which has the minimal var(cpgg) among
the Pareto optimal set, was picked up and loaded into those drives. The performance comparison
between this optimized controller and the original one is shown in Table 3. The 4% improvement of
mean(oppg) and 7% of var(opgg) in experiments may be considered moderate because the original
controller had been well optimized. It also can be seen that mean(opgg) and var(opgg) predicted
by the model match up reasonably well with the experimental results. The disturbance model was
then updated based on new PES measurements, and ready for the next run of optimization. This

iterative optimization process can be repeated until satisfactory results are obtained.

5.1 Summary

In this report, a NCMOP of tuning the fixed-structure track following controller for HDDs has been
solved by using the MOGA. A disturbance model was used to effectively predict the time-domain
performance of candidate solutions for a large population of drives. The controller parameters were
then tuned by MOGA, directly towards the minimization of mean(opgg) and var(opgg) under
various frequency-domain constraints. As shown by simulations and experiments, the proposed
method was capable of optimizing the controller in a large range in which gradient-based methods
generally failed.

Our proposed method has the following advantages over existing tuning methods: First, com-
pared to gradient based methods, the GA greatly increases the possibility of finding the global
optima for nonconvex problems in large. Second, the GA offers almost linear computational com-
plexity relative to the number of tunable variables. This is a very attractive feature for NCMOPs
with a large number of variables, e.g., the track following controllers for dual-stage actuators usually
have over twelve tunable variables for which the LMI+4approximation+SDP method is practically
unsolvable. Third, the MOGA gives designer multiple Pareto solutions without the trial and error
for picking weights. Fourth, users can use any optimization setup as long as the cost functions are
evaulatable in closed form.

However, like any optimization algorithm, there is “no free lunch” [33]. In the other word,
no optimization algorithm is universally better than other algorithms. The major drawback to
our approach is that the MOGA suffers from poor numerical trackability. Because the MOGA is

stochastic rule based, it converges in some stochastic sense. Our experience shows that the Pareto

23

sets are different from run to run, although they are all close to the global optima in the objective

space. Our solution is to use a two-phase optimization method: use the results of MOGA as starting

points and locally apply gradient based method.

References

[1]

[10]

S. Boyd, V. Balakrishnan, E. Feron, and L. E. Ghaoui, “History of linear matrix inequalities
in control theory,” Proceedings of the 1994 American Control Conference, vol. 1, pp. 31-34,
July 1994.

M. G. Safonov, K. C. Goh, and J. H. Ly, “Control system synthesis via bilinear matrix in-
equalities,” Proceedings of the 1994 American Control Conference, pp. 45-49, June 1994.

K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, “Mixed ho and h. performance objec-
tives,” Proceedings of the 1990 American Control Conference, pp. 2502-7, May 1990.

H. S. Lee, “Controller optimization for minimum position error signals of hard disk drives,”

Proceedings of the 2000 American Control Conference, pp. 3081-3085, June 2000.

R. Ehrlich and D. Curran, “Major HDD TMR, sources and projected scaling with TP1,” IEEFE
Transactions on Magnetics, vol. 35, pp. 885—91, March 1999.

D. Abramovitvh, T. Hurst, and D. Henze, “Decomposition of baseline noise sources in hard
disk position error signals in disk drives,” Proceedings of the American Control Conference,

vol. 5, pp. 29012905, 1997.

S. Skogestad, Multivariable Feedback Control. Chichester, West Sussex, England: John Wiley
and Sons Ltd., 1996.

C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI op-
timization,” IEEE Transactions on Automatic Control, vol. 42, pp. 896-911, 1997.

L. E. Ghaoui, F. Qustry, and M. Aitrami, “A cone complementarity linearization algorithm
for static output-feedback and related problem,” IEEE Transactions on Automatic Control,

vol. 42, pp. 1171-1176, 1997.

H. A. Hindi, B. Hassibi, and S. P. Boyd, “Multiobjective hg/hso-optimal control via finite di-
mensional g-parametrization and linear matrix inequalities,” Proceedings of the 1998 American

Contol Conference, pp. 3244—49, June 1998.

24

[11]

[14]

[15]

[16]

[17]

[20]

[21]

T. Kawabe and T. Tagami, “A real coded genetic algorithm for matrix inequality design
approach of robust PID controller with two degree of freedom,” Proceedings of the 12th IEEE
International Symposium on Intelligent Control, pp. 119-124, July 1997.

D. E. Goldberg, Genetic Algorithms in Search Optimization, and Machine Learning. Reading,
MA: Addison Wesley.

R. Bellman, Adaptive Control Process: A Guided Tour. Princeton, NJ: Princeton University
Press, 1961.

J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the Association
for Computing Machinery, vol. 3, pp. 297-314, 1962.

Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Second Fxtended
Edition. New York: Springer-Verlag Berlin Heidelberg, 1992.

H. B. Kamepalli, “The optimal basics for GAs,” IEEE Potentials, pp. 25-27, April, 2001.

C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handing
with evolutionary algorithms - part i: A unified formulation,” IFEE Transactions on System,

Man, and Cybernetics- Part A: Systems And Humans, vol. 28, January 1998.

Z. Michalewicz and C. Z. Janikow, “Handling constraints in genetic algorithms,” in Proceeding
of 4th International Conference in Genetic Algorithms (R. K. Belew and L. B. Booker, eds.),
(San Mateo, CA), pp. 151-157, Morgan Kaufmann, 1991.

K. D. Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis,
University of Michigan, 1975.

J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,”

Proceeding of 1st International Conference on Genetic Algorithms, pp. 93100, 1985.

H. Tamaki, H. Kita, and S. Kobayashi, “Multi-objective optimization by genetic algorithm:
A review,” Proceedings of 1996 IEEFE International Conference on Fvolutionary Computation,

pp. 517-522, May 1996.

B. Chen, Y. Cheng, and C. H. Lee, “A genetic approach to mixed hs/he optimal PID control,”
IEEE Control Systems, pp. 51-60, Octobor 1995.

A. J. Chipperfield, N. V. Dakev, P. J. Fleming, and J. F. Whidborne, “Multiobjective ro-
bust control using evolutionary algorithms,” IEEE Proc. of the International Conference on

Industrial Tech., pp. 269-273, 1996.

25

[24]

[25]

28]

[29]

[30]

Optimization Toolbox (Version 2) User’s Guide. The MathWorks Inc., 2000.

A. Buchanan, FEthics, Efficiency, and the Market. Totowa, NJ: Rowman and Allanheld Texts
in Philosophy, 1985.

C. M. Fonseca and P. J. Fleming, “Multiobjective genetic algorithm made easy: Selection,
sharing and mating restriction,” Genetic Algorithm in Engineering Systems: Innovations and

Applications, pp. 45-52, September 1995. Conference Publication No 414.

T. K. Liu, T. Ishihara, and H. Inooka, “Multiobjective control systems design by genetic
algorithms,” Proceedings of the 34th SICE Annual Conference, pp. 1521-26, July 1995.

D. E. Goldberg and P. Segrest, “Finite markov chain analysis of genetic algorithm,” Proceedings
of the 2nd International Conference on Genetic Algorithms, pp. 1-8, 1987.

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic algorithm for multiob-
jective optimization,” Proceeding of the First ICEC, pp. 82-87, 1994.

N. Srinivas and K. Deb, “Multiobjective optimization using non-dominated sorting in genetic

algorithms,” Evolutionary Computation, vol. 2(3), pp. 221248, 1994.

G. F. Franklin, J. Powell, and M. L. Workman, Digital Control of Dynamic Systems. Addison-
Wesley, 2nd ed., 1990.

B. Zhu, L. Guo, and M. Tomizuka, “A statistical PES model for direct controller optimization
towards minimum PES in hard disk drives..” Maxtor Techanical Report, July 2000.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 1, pp. 67-82, 1997.

26

