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Abstract 
 

The magnetic storage industry has been witnessing a sharp rate of growth of 

areal recording density, which implies a corresponding growth in both track density and 

linear bit density. A higher track density, however, imposes a matching reduction in the 

allowable track misregistration budget. On the other hand, increased spindle rotation 

speeds are resulting in higher sources of vibration in disk drives, primarily air turbulence 

excitation. With such meager allowable TMR budgets and elevated windage excitation 

levels, it is becoming increasingly more difficult for the servo control to maintain the 

required precise positioning of the ever-smaller giant magneto-resistive heads to read 

and write data.  

 

The use of strain sensors for active vibration control in disk drives was proposed 

by several researchers. The basic idea is to strategically attach strain sensors to measure 

localized strains at key locations on drive structures, so that the sensors will effectively 

detect structural vibrations that may result in slider off-track motion. The measured 

strain information can then be used by the controller to suppress slider off-track motion. 

One of the main tasks in implementing such a strategy is determining the optimal 

placement of the strain sensors. In this study, the optimal location and orientation of 

strain sensors on an instrumented suspension was determined based on the degree of 

observability of modes that contribute to slider off-track motion. 
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1. Introduction  

 

The magnetic storage industry has been witnessing a sharp rate of growth of areal 

recording density. This growth of areal density implies a corresponding growth in both 

track density and linear bit cell density. The national storage industry consortium (NSIC) 

recording areal density goal of 100 Gbit/in2, with a corresponding track density of 

175,000 tracks per inch (or 175 kTPI), is no longer a pre-competitive research objective. 

It has recently been relabeled by the NSIC as ‘competitive’ material, and is currently 

making its way into industry roadmaps. It is estimated that track densities greater than 

500 kTPI will be necessary to achieve the NSIC new goal of 1Tbit/in2. This translates 

into a track pitch of less than 50 nm, and consequently a reduced allowable track 

misregistration (TMR) budget of less than 5 nm. In addition, increased spindle rotation 

speeds are resulting in higher sources of vibration in the drive, primarily air turbulence 

excitation. With such meager allowable TMR budgets and elevated windage excitations, 

it is becoming increasingly more difficult for the servo controller to maintain the required 

precise positioning of the ever-smaller giant magneto-resistive (GMR) heads to read and 

write data. 

 

It is expected that for areal densities higher than 100 Gbit/in2 the track density 

will increase at a higher rate than the linear bit density due to limitations in ultra-fast 

channel electronics. This will result in tighter TMR budgets, and will in turn impose a 

heavier burden on the servo control. One of the primary problems of servo control in hard 

disk drives is the presence of flexible structures between the voice coil motor (VCM) and 
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the head: the suspension, the E-block and the E-block pivot bearing. These flexible 

structures exhibit mechanical resonances that limit the closed-loop servo bandwidth.  

 

The use of strain sensors for active vibration servo control in disk drives was 

proposed by several researchers [1, 2, 3] in order to increase the servo bandwidth. The 

basic idea was to strategically attach strain sensors to measure localized strains at key 

locations on drive structures, so that the sensors would effectively detect structural 

vibrations that may result in slider off-track vibration. The measured strain information 

can then be used in feedback control to damp out the resonances of those structure. In [1], 

a strain sensor was attached to the actuator and an external feedback control loop was 

used to actively damp the E-block resonances, especially the, so-called, butterfly mode. 

In [3], strain sensors were attached to the suspension, and the strain measurement was fed 

back in an inner loop to actively damp the suspension resonances. With the active 

feedback damping achieved in [1] and in [3], it was possible to design the servo 

controller to utilize a high open-loop gain to achieve a high closed-loop bandwidth. 

 

In [4], CML proposed using the strain sensor measurement not only for active 

feedback control, but also for active feedforward compensation of suspension vibration. 

In [4], it was proposed that the strain measurements would provide real-time suspension 

vibration information that can be fed forward to compensate for TMR resulting from 

suspension vibration. The work is to be carried out on a piezoelectrically actuated dual-

stage suspension as well as on a dual-stage suspension using a MEMS-type 

microactuator.  
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One of the main tasks in designing an instrumented suspension, for use in either 

of the control schemes described above, is determining the optimal location and 

orientation of the strain sensors in order to capture the dynamics of the desired modes: 

the modes that contribute significantly to the off-track motion of the slider. The subject of 

optimal sensor and actuator placement for flexible structures was treated by several 

researchers, for example [5] and [6]. Hac and Liu [6] proposed the use of some 

quantitative measure of the degree of observability of the modes under consideration in 

optimizing the sensor location. Huang et al [3], applied the concepts presented in [6] and 

used the observability gramian to determine the optimal location and orientation for a 

strain gauge on a suspension. However, the results obtained in [3] are not in agreement 

with expectations based on the modal strain field distributions in the suspension.  

 

Krinke [2] presented an implementation of an instrumented suspension prototype. 

Four strain gauges were used in the prototype, and were arranged in a Wheatstone bridge 

circuit as shown in Fig. 1, in a configuration that would increase the sensitivity of the 

measurement. The configuration capitalized on the fact that certain high strain areas on 

the suspension are in opposite states of loading for the suspension off-track resonance 

modes, and it was designed to optimize the sensitivity of measuring the first torsion 

strains. The four sensor locations were determined by examining the strain distributions 

for the suspension first torsion, second torsion and sway modes, and selecting the regions 

exhibiting the highest levels of strain. The sensor orientations were selected as the 

principal strain angles of the strains generated by first torsion. The strain gauges used 

consisted of many deposited constantan elements that form a serpentine pattern at the 
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prescribed angle, as shown in Fig. 2, so as to increase the sensitivity of the strain 

measurement. The pattern was approximately 700 µm × 400 µm, with an element length 

of nearly 450 µm . 

 

The objective of this study is to determine the optimal placement of strain sensors 

on a commercial suspension. The placement selection procedure is based on the theory 

presented in [6] and utilizes the minimum eigenvalue of the observability gramian as a 

quantitative measure of the degree of observability of the modes under consideration. 

Finite element analysis (FEA) is used to generate frequency response functions (FRFs) of 

the strain components in the plane of the suspension loadbeam at different locations. 

Modal analysis is then used to estimate the modal parameters of these FRFs, and a state 

space model, including the desired modes, is identified. The output matrix of the state 

space model is modified to include a strain projection matrix. A weighting matrix is also 

incorporated into the output matrix of the system to allow for assigning different 

weighting factors to the effect of the modes under consideration on the selection 

procedure. The weighting factors used are based on the modal contributions to slider off-

track motion. The observability gramian is then computed and its eigenvalues are 

calculated at different locations and for different orientations on the loadbeam. The 

location/orientation combination that maximizes the minimum eigenvalue of the 

observability gramian is identified as the optimal combination for sensor placement. 

Since the eigenvalues of the observability gramian are related to the system output energy 

[6], maximizing the minimum eigenvalue ensures maximizing the output energy of the 

least observable state of the system, thus giving the best degree of observability.
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2. Theory 

 

A frequency response function α(s) can be expressed as the rational fraction of 

two polynomials, in the form 
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where s = iω, ω is the frequency of excitation, and n is the number of active modes in the 

frequency range of the FRF. α(s) can be expressed as the modal summation 
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where kω  and kζ  are the natural frequency and modal damping ratio, respectively, of the 

kth natural mode.  

 

The process of matching or curve-fitting a selected model of a structure to its 

frequency response data to determine the modal parameters of the structure is widely 

referred to as modal analysis. Many methods are available for modal analysis. The 

method employed in this study is a variation of the rational fraction polynomials (RFP) 

method [7], which is a multi-degree-of-freedom frequency-domain method.  

 

A state space realization of the transfer function in Eq (2) is  

 BuAxx +=&          (3), 

with the output equation 
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 Cxy =          (4), 

where the matrices A and B are given by 
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and, for a single output system, C is given by 

 [ ]nn qpqpqp L2211=C      (7). 

 

For a multi-output system with m outputs, y is an m×1 column vector, and the 

output matrix C is an m×n matrix of the form 
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The vibration of the instrumented suspension is to be measured in terms of the 

strains generated by the suspension motion. The output of the strain gauge used depends 

upon both the location of the strain gauge and its orientation. Therefore, in the problem at 

hand, the system output of interest in identifying the optimal strain sensor placement is 

the strain ε projected in a given direction, identified by the angle θ from the x-axis. ε can 
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be computed once the plane strain components εx, εy, and γxy are known, according to 

Mohr’s equation 
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where εx is the x-direction normal strain component, εy is the y-direction normal strain 

component, and γxy is the shear strain component. Eq. (9) can be expressed in matrix 

form as  
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The frequency range considered contains four active suspension modes: first 

torsion, sway, second torsion and third torsion. The FRFs of the strain components can 

therefore be expressed by Eq. (1) with n = 4. Thus, the state space formulation of the 

system has the form of Eq. (4) with A and B given by Eqs. (5) and (6), respectively, 

taking n = 4. An intermediate output matrix Cint (with the three strain components as 

outputs) can be written, according to Eq. (8), and setting m = 3, as  
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The system output matrix is then given by 

 intèCCC =          (14). 

 

Structural conditions, such as controllability and observability play a vital role in 

the motion control of flexible structures. These conditions should not be violated by the 

arrangement of actuators and sensors on a structure, otherwise, control performance 

objectives may not be achieved. Of particular interest in this study is the observability 

condition, which is directly governed by the sensor placement. For example, the 

placement of a sensor near a nodal point of a mode will yield erroneous information 

about the contribution of that mode to the system response.  

 

The observability gramian Wo of a system given by Eqs. (3) and (4) is defined by 

 ∫
∞

=
0

τττ dee ATA
o CCW

T

          (15). 

 

If the observability gramian of a system is nonsingular, then the system is 

observable; if the observability gramian is singular, then the system is not observable. 

This binary character of the notion of observability renders it unsuitable for direct 

application to the problem of determining the optimal sensor placement. Hac and Liu [6] 

proposed a methodology for determining the optimal sensor placement in active motion 

control of flexible structures. The proposed approach uses the observability gramian of 

the system and relies on certain quantitative measures of its degree of observability. By 

noting that a system is considered to be completely observable if its observability 
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gramian is nonsingular, regardless of how close to being singular the gramian may come, 

Hac and Liu [6] suggested using the eigenvalues of the observability gramian as a 

measure of the degree of observability of the system.  

 

A system with a nearly singular observability gramian (and equivalently, near-

zero eigenvalues) is still strictly observable, but with a low degree of observability. In 

[6], it was demonstrated that the eigenvalues of the observability gramian are directly 

related to the output energy of the system. The smallest eigenvalue of the gramian 

corresponds to the output energy of the least observable state of the system. The optimal 

sensor placement is the one yielding the greatest minimum eigenvalue of the 

observability gramian, or equivalently, the least observable state with the greatest output 

energy. The proposed optimality criteria for the sensor placement provide a balance 

between the importance of the lower order and the higher order modes. 

 

For flexible structures, a closed form solution for the observability gramian exists, 

and, for a continuous-time systems described by Eqs. (3) and (4), the gramian can be 

computed by solving the Lyapunov equation 

  0CCAWWA T
oo

T =++        (16). 

 

The existence of such a closed form solution renders the method computationally 

inexpensive, requiring only the determination of eigenvalues of the gramian at each step 

of optimization. Furthermore, the eigenvalues can be obtained in closed form when the 

structural damping is small and the natural frequencies are distinct and well spaced.  
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The system output matrix C can be further modified to account for the different 

contributions of the modes under consideration to slider off-track motion. C would then 

be given by 

  wCCCC intè=         (17), 

where Cw is a weighting matrix that assigns a weighting factor to each of the modes.  

 

The value of the amplitude of modal coordinate at its matching resonance is 

called the Q factor, or quality factor, of that mode1. The frequency points at which the 

magnitude of the modal coordinate falls to 0.707 of the quality factor of that mode are 

called the half power points of the mode, and the frequency band between these two 

points is called the bandwidth of the mode. In this study, the entries of Cw are based on 

the contribution of each mode to the slider off-track motion over the bandwidth of the 

mode. 

 

 

3. Finite Element Modeling 

 

This study was based on FEA simulations. The head gimbal assembly (HGA) 

model used for the Magnum 5E suspension consisted of the suspension loadbeam, the 

flexure, and the slider (Fig. 3). The loadbeam, the flexure, and the piezoelements were 

modeled using 5,686 SHELL181 4-node finite strain shell elements, with 6,387 nodes. 

The material propoerties used for the loadbeam and the flexure are those of stainless 

                                                
1 In analogy with some electrical engineering applications.  
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steel. They are listed, along with those used for the piezoelements, in Table 1. The 

flexure attachment to the loadbeam at the laser spot weld locations was modeled using 

BEAM4 3-D elastic beam elements. The flexure was also attached to the loadbeam at 

other locations using LINK8 3-D truss elements. The material used for the beam and link 

elements was assigned zero density and a high stiffness, so as to provide the desired 

attachment without dynamically loading the system. The loadbeam dimple was also 

modeled using LINK8 3-D truss elements. In order to model the point of contact between 

the dimple and the flexure, a node on the flexure coincident with the apex node of the 

dimple LINK8 elements was created, and the two nodes were constrained to have the 

same translational coordinates, but were allowed to rotate relative to each other. 

 

The slider was modeled as a MASS21 structural mass element, which is a single-

node element that can be assigned a mass and rotational mass moments of inertia. The 

mass element was given the following inertial properties, which are typical of a pico 

slider: 

m = 1.71×10-6 kg 

Ixx = 0.141×10-6 kg.mm2 

Iyy = 0.221×10-6 kg.mm2 

Izz = 0. 343×10-6 kg.mm2 

 

The slider mass element was positioned at the location of the center of gravity of 

the slider and was attached to the flexure using BEAM4 3-D elastic beam elements. Air 

bearing dynamics were not considered in the modal and harmonic analyses since the air 
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bearing resonant frequencies are much higher than the frequency range considered. The 

slider was considered to have a fixed flying attitude: fixed flying height (z translational 

DOF), fixed pitch (y rotational DOF), and fixed roll (x rotational DOF).  

 

 

4. Finite Element Analysis and Results 

 

A modal analysis2 was performed to compute the modal parameters of the 

suspension, and the suspension mode shapes were examined. The frequency range 

considered was 0-20 kHz. The natural frequencies and associated mode shapes of the 

suspension in this range are presented in Table 2. 

 

A harmonic analysis3 was then performed to obtain the FRFs of the slider motion 

and the three plane strain components (normal strain components εx, εy, and shear strain 

component γxy) in all elements on the loadbeam to a unit lateral excitation at the baseplate 

area. The 0-20 kHz frequency range contained four active suspension modes: first 

torsion, sway, second torsion and third torsion. These modes are depicted in Fig. 4. 

Figure 5 shows the FRF of the slider off-track response to a unit lateral excitation at the 

baseplate area. The response plotted is the slider motion relative to the baseplate motion. 

Figures 7, 8, and 9 show sample strain FRFs for the strain components εx, εy, and γxy, 

respectively, at five arbitrary elements (marked in Fig. 6). The vertical scale on these 

                                                
2 A modal analysis in ANSYS identifies the natural frequencies and mode shapes of the structure. 
3 A modal analysis in ANSYS determines the response of the structure (as a complex quantity) to 
sinusoidally varying loads applied at selected nodes (in the form of displacements or forces). 



 13

plots is the decibel of the absolute value of each FRF (which is generally a complex 

quantity), with the reference taken as 1 unit. It should be noted that a damping ratio of 

0.0013 was imposed during the harmonic analysis in ANSYS. This value is an estimate 

of the average modal damping ratio based on unpublished experimental results.  

 

An examination of the strain intensity distributions corresponding to the four 

active natural modes indicated that the bend area and the central region between the bend 

area and the baseplate area exhibit the highest level of strain for all four modes. Close-up 

views of the strain intensity distributions around these areas for the four modes are given 

in Fig. 10. Blue and red indicate the lowest and highest levels, respectively, of strain 

intensity in the contour color scale to the right of Fig. 10. It should be noted that the four 

distributions have different scales: a comparison of strain levels across the different 

modes is meaningless.  

 

The modified RFP method used for modal analysis was coded in MATLAB, and 

the modal parameters (natural frequencies, modal damping factors, and modal residues) 

associated with each strain FRF were computed for each element on the suspension 

loadbeam. The computed parameters were then used in building the system matrices as 

given by Eqs. (5), (6), and (13). 
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5. Optimization Results 

 

After constructing the system matrices at each element on the loadbeam, the strain 

was projected at angles in increments of 1° at each of these elements. The observability 

gramian and its eigenvalues were then computed for each element and strain projection 

angle combination according to Eqs. (15) and (16). The element and projection angle 

combination yielding the greatest minimum eigenvalue was identified as the optimal 

sensor placement. The entire procedure was carried out twice using MATLAB. In the 

first run, the output matrix given by Eq. (14) was used, so that the weighting matrix Cw is 

the identity matrix, and all modes are assigned an equal relevance in the selection 

procedure. In the second run, the output matrix given by Eq. (17) was used, where the 

entries of the weighting matrix Cw were calculated based on the contribution of each 

mode to the slider off-track motion over the bandwidth of the mode. 

 

The optimal sensor placement for the first case where Cw = I was at element 559, 

at an angle of 92°, as shown in Fig. 11. However, the results presented in Fig. 11 may not 

be very practical due to the small size of the selected element. On average, the element 

dimensions in the bend area are approximately 100 µm in the x-direction by 75 µm in the 

y-direction, whereas target dimensions for implementing an instrumented suspension at 

CML are 100 µm × 225 µm, or, equivalently, a three-element strip: one element long in 

the x-direction and three elements long in the y-direction. In order to provide more 

applicable results, it was necessary to identify larger regions at which the minimum 

gramian eigenvalues assumed the highest values for certain directions. There were four 
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such regions, as depicted in Fig. 12. Red represents the highest gramian minimum 

eigenvalue level in the color scale in the figure.  

 

The orientation of the strain sensor in each element strip was based on the average 

minimum eigenvalue of the three elements in the strip. The strain projection angle 

yielding the highest average minimum eigenvalue was identified as the optimal sensor 

orientation at the corresponding element strip. Figure 12 indicates the optimal projection 

angle for each of the selected regions, and Table 3 lists the associated average minimum 

eigenvalues. Region R1 represents the best location for a single strain sensor. However, 

the degrees of observability at regions R2, R3, and R4 are only slightly lower than that at 

R1, and strain sensor placement at any of these regions (with the specified orientation) is 

expected to yield comparable results to those obtained using region R1. 

 

The results presented in Fig. 12 are especially useful for implementations of the 

instrumented suspension similar to that presented in [2], in which four strain gauges are 

arranged in a Wheatstone bridge circuit, in a configuration that would increase the 

sensitivity of the measurement. Such a configuration utilizes the fact that two pairs of 

regions are in opposite states of loading for all modes: pair R1-R4 is in tension 

(compression) during the time pair R2-R3 is in compression (tension) for the three 

torsion modes; and pair R1-R3 is in tension (compression) during the time pair R2-R4 is 

in compression (tension) in the sway mode. For the Magnum 5E suspension, sway is the 

major contributor to slider off-track motion, which suggests using a Wheatstone 

configuration that would maximize the measurement sensitivity to the sway mode. Figure 
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13 illustrates the variation of the average minimum eigenvalues as a function of the strain 

projection angle in the four regions of Fig. 12. 

 

The entries of Cw for the second case were determined based on the slider off-

track frequency response presented in Fig. 5. The normalized modal TMR contributions 

used as weighting factors are listed in Table 4. The optimal sensor placement for this case 

was at element 559, at an angle of 92°, as shown in Fig. 11. Note that this result is 

identical to that obtained using Cw = I. The four three-element strips at which the 

minimum gramian eigenvalues assumed the highest values for certain directions are 

identified in Fig. 14. The optimal orientation of the strain sensors for these element strips 

was based on the average minimum eigenvalue of the three elements in the strip. Figure 

14 indicates the optimal projection angle for each of the selected regions, and Table 5 

lists the associated average minimum eigenvalues. Once again, region R1 represents the 

best location for a single strain sensor. Figure 15 illustrates the variation of the average 

minimum eigenvalues as a function of the strain projection angle in the four regions of 

Fig. 14. 
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6. Conclusion 

 

The objective of this study was to determine the optimal placement of strain 

sensors on a commercial suspension. The optimal placement selection procedure was 

based on maximizing the degree of observability of the suspension first torsion, sway, 

second torsion and third torsion modes, which are the modes that contribute to off-track 

motion. The minimum eigenvalue of the observability gramian was used as a quantitative 

measure of the degree of observability of these modes.  

 

The optimal sensor location and orientation on the suspension loadbeam were 

identified for two cases: in the first, equal weighting factors were assigned to all modes; 

in the second, weighting factors based on the modal TMR contributions were assigned to 

the modes. Both cases yielded the same result. In addition, the four locations on the 

suspension loadbeam with the highest degree of observability of the selected modes were 

identified for implementations of the instrumented suspension in which four strain gauges 

are arranged in a Wheatstone bridge circuit, in a configuration that would increase the 

sensitivity of the measurement. The results obtained for the two cases described above 

were nearly identical.  
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MaterialMaterial  Young’s Modulus [GPa]Young’s Modulus [GPa]  Shear MShear Modulus [GPa]odulus [GPa]  Density [kg/mDensity [kg/m33]]  Poisson’s RatioPoisson’s Ratio  

Stainless Steel 180 68.182 8072 0.32 

Piezo-element material 62 23.485 7800 0.32 

LINK8 and BEAM4 material 280 80 0 0.32 

Table 1: Material properties used in the finite element model. 
 

ModeMode  Frequency [Hz]Frequency [Hz]  ModeMode Shape Shape  

1 2732 First bending 

2 5418 Second bending 

3 6737 First torsion 

4 8635 Sway 

5 9329 Flexure torsion 

6 9639 Third bending 

7 10918 Flexure bending 

8 12118 Second torsion 

9 14644 Flexure bending 

10 14952 Fourth bending 

11 15739 Third torsion 

12 18315 Flexure bending 

Table 2: Natural frequencies and associated mode shapes of  
  the Magnum 5E suspension. 

 

RegionRegion  Projection AngleProjection Angle  Average Minimum EigenvalueAverage Minimum Eigenvalue  

R1 91° 22.423×10-9 

R2 89° 22.175×10-9 

R3 86° 19.863×10-9 

R4 94° 19.607×10-9 

Table 3: Optimal strain projection angles and corresponding 
   average minimum eigenvalues for the four regions 
   shown in Fig. 12 (Cw = I). 
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ModeMode  Weighting FactorWeighting Factor  

T1 0.0167 

S 0.9129 

T2 0.0593 

T3 0.0111 

Table 4: Normalized modal TMR contributions used as weighting  
              factors in Cw for the case Cw ≠ I. 

 

RegionRegion  Projection AngleProjection Angle  Average Minimum EigenvalueAverage Minimum Eigenvalue  

R1 91° 27.430×10-13 

R2 89° 27.127×10-13 

R3 88° 24.881×10-13 

R4 92° 24.473×10-13 

Table 5: Optimal strain projection angles and corresponding 
   average minimum eigenvalues for the four regions 
   shown in Fig. 14 (Cw ≠ I). 
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Figure 1: Full Wheatstone bridge strain gauge configuration∗. 
 
 
 

 
 

Figure 2: Strain gauge consisting of serpentine pattern of constantan elements∗.

                                                
∗ Figure courtesy of Todd Krinke, Hutchinson Technology Inc. 
∗ Figure courtesy of Todd Krinke, Hutchinson Technology Inc. 
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Figure 3: FE model of the Magnum 5E suspension. 

 

 
Figure 4: Suspension first torsion (T1), sway (S),  

         second torsion (T2), and third torsion (T3). 
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Figure 5: FRF of slider off-track response to a unit 

           lateral excitation at the baseplate area. 
 

 
Figure 6: Close-up of the central region on the suspension, and positions  

             of five arbitrary elements for strain component FRF samples. 
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Figure 7: FRFs of normal strain component εx response at five arbitrary  

      elements to a unit lateral excitation at the baseplate area. 
 

 
Figure 8: FRFs of normal strain component εy response at five arbitrary  

      elements to a unit lateral excitation at the baseplate area. 
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Figure 9: FRFs of shear strain component γxy response at five arbitrary  

       elements to a unit lateral excitation at the baseplate area. 
 

 
Figure 10: Strain intensity distributions in suspension first torsion (T1),  

   sway (S), second torsion (T2), and third torsion (T3). 
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Figure 11: Optimal sensor placement for Cw = I, and for Cw ≠ I. 

 
 

 
Figure 12: Regions with the highest minimum eigenvalues for Cw = I. 
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(a) Region R1     (b) Region R2 

   
(c) Region R3     (d) Region R4 

Figure 13: Variation of the average minimum eigenvalues as a function  
                of the strain projection angle in the four regions of Fig. 10. 

 

 
Figure 14: Regions with the highest minimum eigenvalues  

             for Cw based on modal contribution to TMR. 
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(a) Region R1     (b) Region R2 

   
(c) Region R3     (d) Region R4 

Figure 15: Variation of the average minimum eigenvalues as a function  
                of the strain projection angle in the four regions of Fig. 12. 

 
 
 
 
 
 
 
 
 
 
 
 

 


