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Abstract

The magnetic storage industry has been witnessing a sharp rate of growth of
areal recording density, which implies a corresponding growth in both track density and
linear bit density. A higher track density, however, imposes a matching reduction in the
allowable track misregistration budget. On the other hand, increased spindle rotation
speeds are resulting in higher sources of vibration in disk drives, primarily air turbulence
excitation. With such meager allowable TMR budgets and elevated windage excitation
levels, it is becoming increasingly more difficult for the servo control to maintain the
required precise positioning of the ever-smaller giant magneto-resistive heads to read
and write data.

The use of strain sensors for active vibration control in disk drives was proposed
by several researchers. The basic idea isto strategically attach strain sensors to measure
localized strains at key locations on drive structures, so that the sensors will effectively
detect structural vibrations that may result in dlider off-track motion. The measured
strain information can then be used by the controller to suppress slider off-track motion.
One of the main tasks in implementing such a strategy is determining the optimal
placement of the strain sensors. In this study, the optimal location and orientation of
strain sensors on an instrumented suspension was determined based on the degree of
observability of modes that contribute to slider off-track motion.
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1. Introduction

The magnetic storage industry has been witnessing a sharp rate of growth of areal
recording density. This growth of areal density implies a corresponding growth in both
track density and linear bit cell density. The nationa storage industry consortium (NSIC)
recording areal density goal of 100 Ghit/in®, with a corresponding track density of
175,000 tracks per inch (or 175 kTPI), is no longer a pre-competitive research objective.
It has recently been relabeled by the NSIC as ‘competitive’ material, and is currently
making its way into industry roadmaps. It is estimated that track densities greater than
500 kTP! will be necessary to achieve the NSIC new goa of 1Thit/in?. This trandates
into a track pitch of less than 50 nm, and consequently a reduced allowable track
misregistration (TMR) budget of less than 5 nm. In addition, increased spindle rotation
Speeds are resulting in higher sources of vibration in the drive, primarily air turbulence
excitation. With such meager alowable TMR budgets and elevated windage excitations,
it is becoming increasingly more difficult for the servo controller to maintain the required
precise positioning of the ever-smaller giant magneto-resistive (GMR) heads to read and

write data.

It is expected that for areal densities higher than 100 Ghit/in? the track density
will increase at a higher rate than the linear bit density due to limitations in ultra-fast
channel electronics. This will result in tighter TMR budgets, and will in turn impose a
heavier burden on the servo control. One of the primary problems of servo control in hard

disk drivesis the presence of flexible structures between the voice coil motor (VCM) and



the head: the suspension, the E-block and the E-block pivot bearing. These flexible

structures exhibit mechanical resonances that limit the closed-1oop servo bandwidth.

The use of strain sensors for active vibration servo control in disk drives was
proposed by several researchers [1, 2, 3] in order to increase the servo bandwidth. The
basic idea was to strategically attach strain sensors to measure localized strains at key
locations on drive structures, so that the sensors would effectively detect structural
vibrations that may result in dider off-track vibration. The measured strain information
can then be used in feedback control to damp out the resonances of those structure. In [1],
a strain sensor was attached to the actuator and an external feedback control loop was
used to actively damp the E-block resonances, especially the, so-called, butterfly mode.
In [3], strain sensors were attached to the suspension, and the strain measurement was fed
back in an inner loop to actively damp the suspension resonances. With the active
feedback damping achieved in [1] and in [3], it was possible to design the servo

controller to utilize a high open-loop gain to achieve a high closed-loop bandwidth.

In [4], CML proposed using the strain sensor measurement not only for active
feedback control, but also for active feedforward compensation of suspension vibration.
In [4], it was proposed that the strain measurements would provide real-time suspension
vibration information that can be fed forward to compensate for TMR resulting from
suspension vibration. The work is to be carried out on a piezoelectrically actuated dual-
stage suspenson as well as on a duad-stage suspension usng a MEMS-type

microactuator.



One of the main tasks in designing an instrumented suspension, for use in either
of the control schemes described above, is determining the optima location and
orientation of the strain sensors in order to capture the dynamics of the desired modes:
the modes that contribute significantly to the off-track motion of the sider. The subject of
optimal sensor and actuator placement for flexible structures was treated by severa
researchers, for example [5] and [6]. Hac and Liu [6] proposed the use of some
guantitative measure of the degree of observability of the modes under consideration in
optimizing the sensor location. Huang et a [3], applied the concepts presented in [6] and
used the observability gramian to determine the optimal location and orientation for a
strain gauge on a suspension. However, the results obtained in [3] are not in agreement

with expectations based on the modal strain field distributions in the suspension.

Krinke [2] presented an implementation of an instrumented suspension prototype.
Four strain gauges were used in the prototype, and were arranged in a Wheatstone bridge
circuit as shown in Fig. 1, in a configuration that would increase the sensitivity of the
measurement. The configuration capitalized on the fact that certain high strain areas on
the suspension are in opposite states of loading for the suspension off-track resonance
modes, and it was designed to optimize the sensitivity of measuring the first torsion
strains. The four sensor locations were determined by examining the strain distributions
for the suspension first torsion, second torsion and sway modes, and selecting the regions
exhibiting the highest levels of strain. The sensor orientations were selected as the
principal strain angles of the strains generated by first torsion. The strain gauges used

consisted of many deposited constantan elements that form a serpentine pattern at the



prescribed angle, as shown in Fig. 2, so as to increase the senditivity of the strain
measurement. The pattern was approximately 700 mm = 400 nmm, with an element length

of nearly 450 nm .

The objective of this study is to determine the optimal placement of strain sensors
on a commercia suspension. The placement selection procedure is based on the theory
presented in [6] and utilizes the minimum eigenvalue of the observability gramian as a
guantitative measure of the degree of observability of the modes under consideration.
Finite element analysis (FEA) is used to generate frequency response functions (FRFs) of
the strain components in the plane of the suspension loadbeam at different locations.
Modal anaysis is then used to estimate the modal parameters of these FRFs, and a state
space model, including the desired modes, is identified. The output matrix of the state
space mode is modified to include a strain projection matrix. A weighting matrix is aso
incorporated into the output matrix of the system to alow for assigning different
weighting factors to the effect of the modes under consideration on the selection
procedure. The weighting factors used are based on the modal contributions to dider off-
track motion. The observability gramian is then computed and its eigenvalues are
caculated at different locations and for different orientations on the loadbeam. The
location/orientation combination that maximizes the minimum eigenvalue of the
observability gramian is identified as the optimal combination for sensor placement.
Since the eigenvalues of the observability gramian are related to the system output energy
[6], maximizing the minimum eigenvalue ensures maximizing the output energy of the

least observable state of the system, thus giving the best degree of observability.



2. Theory

A frequency response function a(s) can be expressed as the rationa fraction of

two polynomids, in the form

2n-2
[o}

a b,s"
a(s)=>— (2),

where s = iw, w is the frequency of excitation, and n is the number of active modes in the

frequency range of the FRF. a(s) can be expressed as the modal summation

J pkaS+Qka2
a(s)=a - P
1 S° +22 W, S+W;

),

where w, and z, arethe natural frequency and modal damping ratio, respectively, of the

k" natural mode.

The process of matching or curve-fitting a selected model of a structure to its
frequency response data to determine the modal parameters of the structure is widely
referred to as moda analysis. Many methods are available for modal analysis. The
method employed in this study is a variation of the rationa fraction polynomials (RFP)

method [7], which is a multi-degree-of-freedom frequency-domain method.

A state space redlization of the transfer function in Eq (2) is
X =Ax+Bu 3,

with the output equation



y =Cx (4,

where the matrices A and B are given by

é 0 W, 0 0 0 0
EW, -2W, 0 0 0 0
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and, for asingle output system, C is given by
c=[p, & P, @ - P, G (7).

For a multi-output system with m outputs, y is an mx1 column vector, and the

output matrix C isan mxn matrix of the form
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The vibration of the instrumented suspension is to be measured in terms of the
strains generated by the suspension motion. The output of the strain gauge used depends
upon both the location of the strain gauge and its orientation. Therefore, in the problem at
hand, the system output of interest in identifying the optimal strain sensor placement is

the strain e projected in a given direction, identified by the angle g from the x-axis. e can



be computed once the plane strain components e,, g,, and g, are known, according to
Mohr’s equation

e_ex+ey+ex-ey cos2q +exysin2q (9)
2 2 2 ’

where e, is the x-direction normal strain component, g, is the y-direction normal strain

component, and g is the shear strain component. Eqg. (9) can be expressed in matrix

form as
e=C,a (10),
where
C, = €l+cosy 1- cosy snZQu (12),
g 2 2 2 H
and
e, U
. _€é
a= éey@ (12).
My

The frequency range considered contains four active suspension modes:. first
torsion, sway, second torsion and third torsion. The FRFs of the strain components can
therefore be expressed by Eq. (1) with n = 4. Thus, the state space formulation of the
system has the form of Eg. (4) with A and B given by Egs. (5) and (6), respectively,
taking n = 4. An intermediate output matrix Ci,; (with the three strain components as
outputs) can be written, according to Eg. (8), and settingm = 3, as

épy o p; 9 py g P QU

e u
Cw=ePl & P/ @& P a7 P, Ay (13).
& a4’ p) & py @ p) 9l



The system output matrix is then given by

Cc=C.,C,, (14).

Structural conditions, such as controllability and observability play a vital role in
the motion control of flexible structures. These conditions should not be violated by the
arrangement of actuators and sensors on a structure, otherwise, control performance
objectives may not be achieved. Of particular interest in this study is the observability
condition, which is directly governed by the sensor placement. For example, the
placement of a sensor near a noda point of a mode will yield erroneous information

about the contribution of that mode to the system response.

The observability gramian W,, of a system given by Egs. (3) and (4) is defined by

¥
W, = gt CTCeM dt (15).
0

If the observability gramian of a system is nonsingular, then the system is
observable; if the observability gramian is singular, then the system is not observable.
This binary character of the notion of observability renders it unsuitable for direct
application to the problem of determining the optimal sensor placement. Hac and Liu [6]
proposed a methodology for determining the optimal sensor placement in active motion
control of flexible structures. The proposed approach uses the observability gramian of
the system and relies on certain quantitative measures of its degree of observability. By

noting that a system is considered to be completely observable if its observability



gramian is nonsingular, regardless of how close to being singular the gramian may come,
Hac and Liu [6] suggested using the eigenvalues of the observability gramian as a

measure of the degree of observability of the system.

A system with a nearly singular observability gramian (and equivalently, near-
zero eigenvalues) is ill strictly observable, but with a low degree of observability. In
[6], it was demonstrated that the eigenvalues of the observability gramian are directly
related to the output energy of the system. The smallest eigenvalue of the gramian
corresponds to the output energy of the least observable state of the system. The optimal
sensor placement is the one yielding the greatest minimum eigenvalue of the
observability gramian, or equivaently, the least observable state with the greatest output
energy. The proposed optimality criteria for the sensor placement provide a balance

between the importance of the lower order and the higher order modes.

For flexible structures, a closed form solution for the observability gramian exists,
and, for a continuous-time systems described by Egs. (3) and (4), the gramian can be

computed by solving the Lyapunov equation

ATW_ +WA+C'C=0 (16).

The existence of such a closed form solution renders the method computationally
inexpensive, requiring only the determination of elgenvalues of the gramian at each step
of optimization. Furthermore, the eigenvalues can be obtained in closed form when the

structural damping is small and the natural frequencies are distinct and well spaced.



The system output matrix C can be further modified to account for the different
contributions of the modes under consideration to dider off-track motion. C would then
be given by

c=cC.C,C, 17),

where C,, is aweighting matrix that assigns a weighting factor to each of the modes.

The value of the amplitude of modal coordinate at its matching resonance is
called the Q factor, or quality factor, of that mode®. The frequency points at which the
magnitude of the modal coordinate falls to 0.707 of the quality factor of that mode are
called the half power points of the mode, and the frequency band between these two
points is called the bandwidth of the mode. In this study, the entries of C,, are based on
the contribution of each mode to the dider off-track motion over the bandwidth of the

mode.

3. Finite Element Modeling

This study was based on FEA simulations. The head gimba assembly (HGA)
model used for the Magnum 5E suspension consisted of the suspension loadbeam, the
flexure, and the dider (Fig. 3). The loadbeam, the flexure, and the piezoelements were
modeled using 5,686 SHELL 181 4-node finite strain shell elements, with 6,387 nodes.

The material propoerties used for the loadbeam and the flexure are those of stainless

! In analogy with some electrical engineering applications.
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stedl. They are listed, along with those used for the piezoelements, in Table 1. The
flexure attachment to the loadbeam at the laser spot weld locations was modeled using
BEAM4 3-D dastic beam elements. The flexure was also attached to the loadbeam at
other locations using LINK8 3-D truss elements. The materia used for the beam and link
elements was assigned zero density and a high stiffness, so as to provide the desired
attachment without dynamically loading the system. The loadbeam dimple was aso
modeled using LINK8 3-D truss elements. In order to model the point of contact between
the dimple and the flexure, a node on the flexure coincident with the apex node of the
dimple LINK8 elements was created, and the two nodes were constrained to have the

same trandational coordinates, but were allowed to rotate relative to each other.

The dider was modeled as a MASS21 structural mass element, which is a single-
node element that can be assigned a mass and rotational mass moments of inertia. The
mass element was given the following inertial properties, which are typica of a pico
dider:

m = 1.71x10° kg

Lo = 0.141x10°° kg.mm?

lyy = 0.221x10°® kg.mm?

|, = 0. 343x10°® kg.mm?
The dlider mass element was positioned at the location of the center of gravity of

the dider and was attached to the flexure using BEAM4 3-D elastic beam elements. Air

bearing dynamics were not considered in the modal and harmonic analyses since the air

11



bearing resonant frequencies are much higher than the frequency range considered. The
dider was considered to have a fixed flying attitude: fixed flying height (z trandational

DOF), fixed pitch (y rotational DOF), and fixed roll (x rotational DOF).

4. Finite Element Analysis and Results

A modd andyss® was performed to compute the modal parameters of the
suspension, and the suspenson mode shapes were examined. The frequency range
considered was 0-20 kHz. The natural frequencies and associated mode shapes of the

suspension in this range are presented in Table 2.

A harmonic analysis® was then performed to obtain the FRFs of the slider motion
and the three plane strain components (normal strain components e, g,, and shear strain
component g.y) in al elements on the loadbeam to a unit lateral excitation at the baseplate
area. The 0-20 kHz frequency range contained four active suspension modes: first
torsion, sway, second torsion and third torsion. These modes are depicted in Fig. 4.
Figure 5 shows the FRF of the dider off-track response to a unit lateral excitation at the
baseplate area. The response plotted is the slider motion relative to the baseplate motion.
Figures 7, 8, and 9 show sample strain FRFs for the strain components e, &, and gy,

respectively, at five arbitrary elements (marked in Fig. 6). The vertical scale on these

2 A modal analysisin ANSY S identifies the natural frequencies and mode shapes of the structure.
3 A modal analysisin ANSY S determines the response of the structure (as a complex quantity) to
sinusoidally varying loads applied at selected nodes (in the form of displacements or forces).
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plots is the decibel of the absolute value of each FRF (which is generally a complex
quantity), with the reference taken as 1 unit. It should be noted that a damping ratio of
0.0013 was imposed during the harmonic analysis in ANSYS. This value is an estimate

of the average modal damping ratio based on unpublished experimental results.

An examination of the strain intensity distributions corresponding to the four
active natural modes indicated that the bend area and the central region between the bend
area and the baseplate area exhibit the highest level of strain for al four modes. Close-up
views of the strain intensity distributions around these areas for the four modes are given
in Fig. 10. Blue and red indicate the lowest and highest levels, respectively, of strain
intensity in the contour color scale to the right of Fig. 10. It should be noted that the four
distributions have different scales. a comparison of strain levels across the different

modes is meaningless.

The modified RFP method used for modal analysis was coded in MATLAB, and
the modal parameters (natural frequencies, modal damping factors, and moda residues)
associated with each strain FRF were computed for each element on the suspension
loadbeam. The computed parameters were then used in building the system matrices as

given by Egs. (5), (6), and (13).
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5. Optimization Results

After constructing the system matrices at each element on the loadbeam, the strain
was projected at angles in increments of 1° at each of these elements. The observability
gramian and its eigenvalues were then computed for each element and strain projection
angle combination according to Egs. (15) and (16). The element and projection angle
combination yielding the greatest minimum eigenvalue was identified as the optimal
sensor placement. The entire procedure was carried out twice using MATLAB. In the
first run, the output matrix given by Eq. (14) was used, so that the weighting matrix C, is
the identity matrix, and al modes are assigned an equa relevance in the selection
procedure. In the second run, the output matrix given by Eq. (17) was used, where the
entries of the weighting matrix C,, were calculated based on the contribution of each

mode to the dider off-track motion over the bandwidth of the mode.

The optimal sensor placement for the first case where C,, = | was a element 559,
at an angle of 92°, as shown in Fig. 11. However, the results presented in Fig. 11 may not
be very practical due to the small size of the selected element. On average, the element
dimensions in the bend area are approximately 100 nm in the x-direction by 75 nm in the
y-direction, whereas target dimensions for implementing an instrumented suspension at
CML are 100 mm ~ 225 nm, or, equivaently, a three-element strip: one element long in
the x-direction and three elements long in the y-direction. In order to provide more
applicable results, it was necessary to identify larger regions at which the minimum

gramian eigenvalues assumed the highest values for certain directions. There were four

14



such regions, as depicted in Fig. 12. Red represents the highest gramian minimum

eigenvalue level in the color scalein the figure.

The orientation of the strain sensor in each element strip was based on the average
minimum eigenvalue of the three elements in the strip. The strain projection angle
yielding the highest average minimum eigenvalue was identified as the optima sensor
orientation at the corresponding element strip. Figure 12 indicates the optimal projection
angle for each of the selected regions, and Table 3 lists the associated average minimum
eigenvalues. Region R1 represents the best location for a single strain sensor. However,
the degrees of observability at regions R2, R3, and R4 are only dlightly lower than that at
R1, and strain sensor placement at any of these regions (with the specified orientation) is

expected to yield comparable results to those obtained using region R1.

The results presented in Fig. 12 are especially useful for implementations of the
instrumented suspension similar to that presented in [2], in which four strain gauges are
arranged in a Wheatstone bridge circuit, in a configuration that would increase the
sengitivity of the measurement. Such a configuration utilizes the fact that two pairs of
regions are in opposite states of loading for all modes: pair R1-R4 is in tension
(compression) during the time pair R2-R3 is in compression (tension) for the three
torsion modes; and pair R1-R3 isin tension (compression) during the time pair R2-R4 is
in compression (tension) in the sway mode. For the Magnum 5E suspension, sway is the
major contributor to dider off-track motion, which suggests using a Wheatstone

configuration that would maximize the measurement sensitivity to the sway mode. Figure

15



13 illustrates the variation of the average minimum eigenvalues as a function of the strain

projection angle in the four regions of Fig. 12.

The entries of C,, for the second case were determined based on the dider off-
track frequency response presented in Fig. 5. The normalized modal TMR contributions
used as weighting factors are listed in Table 4. The optimal sensor placement for this case
was at element 559, at an angle of 92°, as shown in Fig. 11. Note that this result is
identical to that obtained using C,, = |. The four three-element strips at which the
minimum gramian eigenvalues assumed the highest values for certain directions are
identified in Fig. 14. The optimal orientation of the strain sensors for these element strips
was based on the average minimum eigenvalue of the three elements in the strip. Figure
14 indicates the optimal projection angle for each of the selected regions, and Table 5
lists the associated average minimum eigenvalues. Once again, region R1 represents the
best location for a single strain sensor. Figure 15 illustrates the variation of the average
minimum eigenvalues as a function of the strain projection angle in the four regions of

Fig. 14.
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6. Conclusion

The objective of this study was to determine the optima placement of strain
sensors on a commercial suspension. The optimal placement selection procedure was
based on maximizing the degree of observability of the suspension first torsion, sway,
second torsion and third torsion modes, which are the modes that contribute to off-track
motion. The minimum eigenvalue of the observability gramian was used as a quantitative

measure of the degree of observability of these modes.

The optimal sensor location and orientation on the suspension loadbeam were
identified for two cases: in the first, equal weighting factors were assigned to al modes,
in the second, weighting factors based on the modal TMR contributions were assigned to
the modes. Both cases yielded the same result. In addition, the four locations on the
suspension loadbeam with the highest degree of observability of the selected modes were
identified for implementations of the instrumented suspension in which four strain gauges
are arranged in a Wheatstone bridge circuit, in a configuration that would increase the
sengitivity of the measurement. The results obtained for the two cases described above

were nearly identical.
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Material

Young’s Modulus [GPa] ~ Shear Modulus [GPa] Density [kg/m®] Poisson’s Ratio

Stainless Steel
Piezo-element material
LINK8 and BEAM4 material

68.182
23.485
80

8072
7800
0

0.32
0.32
0.32

Table 1: Material properties used in the finite element model.

Mode Frequency [Hz] Mode Shape

1 2732 First bending

2 5418 Second bending
3 6737 First torsion

4 8635 Sway

5 9329 Flexure torsion
6 9639 Third bending

7 10918 Flexure bending
8 12118 Second torsion
9 14644 Flexure bending
10 14952 Fourth bending
11 15739 Third torsion
12 18315 Flexure bending

Table 2: Natural frequencies and associated mode shapes of

the Magnum 5E suspension.

Region Projection Angle

Average Minimum Eigenvalue

R1 91°
R2 89°
R3 86°
R4 94°

22.423%10°
22.175%10°
19.863x%10-°
19.607x10-°

Table 3: Optimal strain projection angles and corresponding
average minimum eigenvalues for the four regions

showninFig. 12 (Cy, =1).
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Mode Weighting Factor

T1 0.0167
S 0.9129
12 0.0593
T3 0.0111

Table 4: Normalized modal TMR contributions used as weighting
factorsin Cy, for thecase Cy, * I.

Region Projection Angle Average Minimum Eigenvalue
R1 91° 27.430%1013
R2 89° 27.127x1013
R3 88° 24.881x1013
R4 92° 24.473%1013

Table 5: Optimal strain projection angles and corresponding
average minimum eigenvalues for the four regions
showninFig. 14 (Cy* 1).
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Figure 1: Full Wheatstone bridge strain gauge configuration .

Figure 2: Strain gauge consisting of serpentine pattern of constantan elements .

" Figure courtesy of Todd Krinke, Hutchinson Technology Inc.
" Figure courtesy of Todd Krinke, Hutchinson Technology Inc.
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Figure 3: FE moddl of the Magnum 5E suspension.

Tl 6737 Hz

5 B635 Hz

T2 12118 H=z

T3 15739 H=z

Figure 4: Suspension first torsion (T1), sway (S),

second torsion (T2), and third torsion (T3).
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of five arbitrary elements for strain component FRF samples.
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Figure 6: Close-up of the central region on the suspension, and positions
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Figure 7: FRFs of normal strain component e, response at five arbitrary
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elements to a unit lateral excitation at the baseplate area.
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Figure 8: FRFs of normal strain component g, response at five arbitrary
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elements to a unit lateral excitation at the baseplate area.

25



P
T

i i i i i i i
P PUICES, PG (4 ) TIREL S DL R Lt ISt § ICE S per s EICRC e ERETR, TaFLT oo

b e e e e e e e e e e

DRI Y
TN

=10g -

ney [Hz

Frequs

— E3W1 |

Figure 9: FRFs of shear strain component g, response at five arbitrary
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elements to a unit lateral excitation at the baseplate area.

0o |

Figure 10: Strain intensity distributions in suspension first torsion (T1),
sway (S), second torsion (T2), and third torsion (T3).
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Figure 12: Regions with the highest minimum eigenvaluesfor C,, = 1.
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Figure 13: Variation of the average minimum eigenvalues as a function
of the strain projection angle in the four regions of Fig. 10.
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Figure 14: Regions with the highest minimum eigenvalues
for C,, based on modal contribution to TMR.
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Figure 15: Variation of the average minimum eigenvalues as a function
of the strain projection angle in the four regions of Fig. 12.
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