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ABSTRACT 
 
One of the most important concerns in optimization is the calculation time. 
For global optimization, the goal is to find the global minimum point in the 
whole search area, not just the local minima. More sample points are usually 
required to obtain the global minimum, requiring more calculation time. In 
slider Air Bearing Surface (ABS) optimization, the evaluation of the 
objective function for every single sample design takes substantial 
computation time. It is desirable to reduce the number of sample designs 
evaluated without losing the global property of the optimization algorithm. 
There are two main parts in this report. In the first part, we give a detailed 
introduction to a deterministic global optimization technique called 
DIRECT (DIviding RECTangle), which is used to find the minimum of a 
Lipschitz continuous function without knowing the Lipschitz constant. We 
also present the results of extensive numerical experiments performed with 
different test functions and an analysis of the optimization results. In the 
second part, we show the application of the DIRECT algorithm to slider 
ABS optimization. The results of the test case show rapid convergence to the 
optimal design. 
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1.  INTRODUCTION 
 
 

Optimization is the process of minimizing a function subject to conditions 
on the variables. This function is generally called the objective function or 
cost function. The conditions set on the variables are referred to as 
constraints. 

 
We can state the optimization problem as: 
Minimize {f(x) | x∈S}, where f(x) is the objective function, S is a set of 

feasible solutions to the problem known as the search space and x is a single 
point within the set. 

 
In this report, we consider the bounded constrained optimization problem 
 

Minimize {f(x) | x∈[u,v]}, where x,u,v are n-dimensional vectors. 
 
There are many global optimization algorithms, and they can be divided 

into two fundamentally different categories, i.e. deterministic algorithms and 
stochastic algorithms. For the deterministic algorithms, every new search 
point is chosen in a definite way so no random processes are involved. For 
the stochastic algorithms, random elements are introduced to generate the 
new search points.  

 
The optimization algorithms used in our previous studies are the 

Simulated Annealing family, including the Standard Boltzmann Annealing 
(BA), Fast Cauchy Annealing (FA) and the Adaptive Simulated Annealing 
(ASA) [1]. They are all stochastic algorithms. 

 
It is well known that the critical issue in global optimization is the long 

calculation time. Because of the need to find the global minimum of the 
objective function, we must generate and evaluate enough sample points. 
Theoretically, for either a deterministic or stochastic algorithm, if the 
number of the sample points is large enough, i.e., the whole search space has 
been searched exhaustively, the global minimum point will be found. 
Obviously, we cannot afford to sample every point, especially when the 
evaluation of each sample point is quite expensive, as in our slider ABS 
optimization case. Therefore, it is always desirable to use fewer sample 
points while maintaining the global property of the algorithms. 
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The main advantages of the stochastic algorithms are that they are quite 
robust and can be applied to a wider range of objective function types. Also, 
they are usually easily implemented (at least for the Simulated Annealing 
algorithm). But the cost is that they usually require a longer running time. 
The deterministic algorithms can handle definite objective functions very 
well. Because they use a definite searching strategy and their searching 
directions are strongly oriented, it is expected that they will require fewer 
sample points to find the global minimum point.  

 
The DIRECT algorithm is a global deterministic algorithm developed by 

D. R. Jones et al. in 1993.[3] The DIRECT algorithm has a very fast 
convergence rate, thus it can find the global minimum very quickly 
compared with other algorithms.[3][4] Because of the need to reduce the 
calculation time in our slider ABS optimization when manufacturing 
tolerance is considered, we were motivated to examine the DIRECT 
algorithm for this application.   

 
 

 
2.  NUMERICAL METHOD 

 
 

2.1   Introduction to DIRECT 
 
The DIRECT algorithm is an acronym for DIviding RECTangles, a key 

step in the algorithm. It is a global deterministic algorithm based on the 
classical one-dimensional Lipschitzian optimization algorithm known as the 
Shubert algorithm. It is a multi-dimensional Lipschitzian optimization 
method without knowing the Lipschitz constant. DIRECT is designed to 
solve the problems subjected to bounded constraints. 
 
 
2.2   One dimensional Lipschitzian optimization 

 
A function f(x) is said to be a Lipschitz function if 
 
 | f(x) – f(x’) | ≤ K | x – x’ |   for all  x, x’∈∈∈∈[u,v] (2.1) 
 
Where the positive constant K is referred as the Lipschitz constant, x, x’, 

u, v are n-dimensional vectors. 
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For the one dimensional Lipschitz function, we have the following 

inequalities: 
 
 f(x) ≥  f(u) – K( x – u ) (2.2) 
 f(x) ≥  f(v) + K( x – v ) (2.3) 
 
With the two inequalities we can define a piecewise linear function g(x), 

which consists of two lines with slopes –K and +K and lies below f(x).  
 
 g(x) =  f(u) – K( x – u )    for   x≤ X(u,v,f,K) (2.4) 
 g(x) =  f(v) + K( x – v )    for   x≥ X(u,v,f,K) (2.5) 
 
Where   
 X(u,v,f,K) = [ f(u) – f(v) ] / (2K) + ( u +  v ) / 2 (2.6) 
 
At x = X(u,v,f,K), g(x) has a minimum value B(u,v,f,K). 
 
 B(u,v,f,K) = [ f(u) +  f(v) ] / 2 – K ( v  –  u ) / 2 (2.7) 
 
Fig. 1 illustrates this. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Example of f(x) and g(x) 
 
The key idea of the Shubert algorithm is to divide the search area into two 

intervals I1 = [u, X(u,v,f,K)] and I2 = [X(u,v,f,K), v] and then calculate the 

u v 

f(v) 

f(u) 

f(x) 

X(u,v,f,K) 

B(u,v,f,K) 

Slope = +K 

Slope = −K g(x) 
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new values of x and B for each of these two intervals, choosing a new 
interval with the lowest value of B to divide. The process of the Shubert 
algorithm is illustrated in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Process of the Shubert algorithm  
 
From Fig. 2, it is clear that the piece-wise linear function g(x) becomes 

more similar to the exact function f(x) with increasing iterations. 
 
However, there are two limitations associated with the Shubert algorithm: 

First, to extend the Shubert algorithm to n dimensional cases, we would need 
to evaluate 2n points at every iteration. The selection of the new points 

u v 

x1 = X(u,v,f,K) 

u v x1 

x2 = X(u,x1,f,K) 

u v 

x3 = X(x1,v,f,K) 

u v x1 

x4 = X(u,x2,f,K) 

x1 x2 x3 x2 
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involves solving several systems of n linear equations in n+1 unknowns, and 
the number of such systems grows quickly with the number of iterations. [3] 

That will cause high calculation complexity. Second, in order to make use of 
the Shubert algorithm, we must know the Lipschitz constant K, which is, of 
course, normally unknown or extremely hard to find for most realistic 
situations.  

 
 

2.3   One dimensional DIRECT algorithm 
 
The DIRECT algorithm developed by D. R. Jones et al. [3] solved the 

above-mentioned problems associated with the Shubert algorithm. 
 
Again, for a one dimensional Lipschitz problem, if we let [u,v] be an 

interval with the middle point m = ( u + v ) / 2, then for any x∈[u,v] we have 
the following inequalities: 

 
 f(x) ≥  f(m) + K( x – m )   for  x≤ m (2.8) 
 f(x) ≥  f(m)  – K( x –  m )   for  x≥ m (2.9) 
 
With the two inequalities we can also define a piecewise linear function 

h(x), which consists of two lines with slopes +K and –K, and lies below f(x).  
 
 h(x) =  f(m) + K( x – m )   for  x≤ m (2.10) 
 h(x) =  f(m)  – K( x –  m )   for  x≥ m (2.11) 
 
  
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Example of f(x) and h(x) 

u v 

f(v) 

f(u) 

f(x) 

m = (u + v) / 2 

f(m) – K(v – u) / 2 

Slope = −K 

Slope = +K 
h(x) 



 7 

 
This is shown in Fig. 3. The lowest value of h(x) is located at x = u and x 

= v. The lowest value is f(m) – K( v – u ) / 2. 
 

The DIRECT algorithm consists of two main components: the dividing 
strategy, which defines how we partition an interval; and the potentially 
optimal intervals, i.e., how we choose the intervals to be partitioned at each 
iteration step. 

  
2.3.1 Dividing strategy 

 
The DIRECT algorithm divides the interval into three equal subintervals. 

The dividing strategy is shown in Fig. 4.  
 

 

  
Fig. 4 Dividing strategy of DIRECT 

 
2.3.2 Potentially optimal intervals 

 
Assume that the search area [u, v] has been divided into N intervals [ui, vi] 

with centers mi. Then create a graph with (v  –  u) / 2 as the x-axis and f(m) as 
the y-axis, as shown in Fig. 5. The x-axis represents the distance from the 
intervals’ centers to their endpoints, and indicates the amount of unexplored 
territory in the interval. The y-axis represents the values of the function at 
the intervals’ centers, and indicates the “quality” of the sample point, where 
low function value means high quality of the sample point. 

 
Next draw a line with slope K through any data point in Fig. 5. The 

intersection of this line with the y-axis is (0, D( ui, vi)), where D( ui, vi)) is a 
lower bound for the function in the interval [ui, vi]. 

 
 D( ui, vi ) = f(mi) – K( vi – ui ) / 2.  (2.12) 
 
Then the interval with the lowest value of D( ui, vi) is selected as the one 

to be partitioned next. Imagine that we draw a line with slope K below all 

After Division 

Before Division 
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the data points and then move it upward. The first data point that the line 
intersects would be the sample point of the interval that is to be dividied in 
the next step.  

 

 
Fig. 5 Interval selection 

 
However as we mentioned before, in many situations the Lipschitz 

constant K is unknown. So we need to estimate K based on our known data 
points. This would correspond to identifying the set of intervals that could be 
chosen using a line with some positive slope. These intervals are called 
potentially optimal intervals. This is done in DIRECT by finding the 
“convex hull” of the known data points. The algorithm used here to find the 
convex hull is the Graham’s scan [5] (see Appendix A for details).  

 
An example of choosing potentially optimal intervals is shown in Fig. 6. 

For all the data points with the same x-coordinate (i.e., the distance from the 
center to the endpoints), only the point with the lowest function value is 
eligible to be selected. 

 
In the DIRECT algorithm, the formal definition of the potentially optimal 

interval is given as follows: 
 

f(m) 

(v - u) / 2 

Slope = K 

f(mi) 

(vi – ui) / 2 

f(mi) - K(vi – ui) / 2 
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Definition 2.1 Let ε > 0 be a positive constant and fmin be the current 
lowest function value. Interval j is said to be potentially optimal if there 
exists some rate-of-change constant K~  > 0 such that 

 
      f(mj)  – K~ ( vj – uj ) / 2  ≤  f(mi) – K~ ( vi – ui ) / 2     for any i  (2.13) 
      f(mj)  – K~ ( vj – uj ) / 2  ≤  fmin  – ε |fmin|  (2.14) 
   
The inequality (2.13) represents the property of the data points on the 

convex hull. The inequality (2.14) ensures that the lower bound for the 
interval, based on the rate-of-change constant K~ , exceeds the current best 
solution by a small amount. This condition is needed to prevent the 
algorithm from becoming too local in its orientation, wasting valuable 
function evaluation time in search of an extremely small improvement. In 
this report, ε  is set to 10-2, which means that the lower bound for the interval 
should exceed the current best solution by more than 1%.  Also note that K~  
is a rate-of-change constant, not a Lipschitz constant K in the normal sense. 

 

 
Fig. 6 Selection of potentially optimal intervals 

 
 

2.4   Multi-dimensional DIRECT algorithm 
 
The multi-dimensional DIRECT algorithm is an extension of the one-

dimensional case. Without loss of generality, in the DIRECT algorithm we 

f(m) 

(v - u) / 2 

  Potentially Optimal 
  Non-Optimal 

Convex Hull 
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always assume that every variable has a lower bound of 0 and an upper 
bound of 1, since we can always normalize the variables to this interval. 
Thus, the search space is an n-dimensional unit hyper-cube. The main 
difference between the multi-dimensional DIRECT algorithm and the one-
dimensional case is the partitioning of the search space. 
 
2.4.1 Dividing strategy 

 
We now explain the dividing strategy of the multi-dimensional DIRECT 

algorithm for the hyper-cubes and for the hyper-rectangles: 
 
A. Partition of a hyper-cube 

Assume m is the center point a hyper-cube. We will sample the points 
m ± δ ei , where δ  equals 1/3 of the side length of the cube and ei is 
the i-th Euclidean base-vector. We define si = min { f ( m – δ ei ), f ( 
m+δ ei ) }, which means that the partition will be in the order given by 
si, starting with the lowest si. Therefore, the hyper-cube is first 
partitioned along the direction with the lowest si, and then the 
remaining field is partitioned along the direction of the second lowest 
si, and so on until the hyper-cube is partitioned in all directions. 
 

B. Partition of a hyper-rectangle 
Hyper-rectangles are only partitioned along their longest sides. This 
partition strategy ensures that we obtain a reduction in the maximal 
side length of a hyper-rectangle. 

 
2.4.2 Potentially optimal hyper-rectangles 

 
The definition of potentially optimal hyper-rectangles is very similar to 

Definition 2.1. Let mi denote the center point of the i-th hyper-rectangle, and 
di the distance from the center point to the vertices. Then we define the 
potentially optimal hyper-rectangle as: 

 
Definition 2.2 Let ε > 0 be a positive constant and fmin be the current 

lowest function value. A hyper-rectangle j is said to be potentially optimal if 
there exists some rate-of-change constant K~  > 0 such that 

 
      f(mj)  – K~ dj  ≤  f(mi) – K~ di     for any i  (2.15) 

    f(mj)  – K~ dj  ≤  fmin  – ε |fmin|   (2.16) 
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2.4.3 2-D and 3-D examples 
 
Now let’s use the first few iterations for a 2-D and a 3-D examples to 

demonstrate the process of the DIRECT algorithm. 
 
For the 2-D case, the function used here is: 
 
F(x1, x2)=(x1 – 0.4)2 + (x2 – 0.2)2   where x1, x2∈[0,1] 
 
Figs. 7a ~ 7f show the first 5 iterations for this 2-D case. 
 

   
                 Fig. 7a Initial state                                 Fig. 7b Iteration 1 

 

   
                 Fig. 7c Iteration 2                                 Fig. 7d Iteration 3 
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                Fig. 7e Iteration 4                                 Fig. 7f Iteration 5 
 
In these pictures, the x-axis stands for variable x1 and the y-axis stands for 

variable x2. The unit square is the search space. The shadowed areas are the 
boxes (can be squares or rectangles) just partitioned. The boxes chosen are 
the potentially optimal ones. The dots represent the center points of the 
boxes. The circular dot shows the sample point with the lowest function 
value. The numbers under those dots are the function values at those center 
points. 

 
From Fig. 7b we see that 
 
s1 = min {0.144, 0.278}    = 0.144 
s2 = min {0.0111, 0.411}  = 0.0111 
 
So the x2 direction (y) gets partitioned first, and then the x1 direction (x) 

gets partitioned. 
 
From Fig. 7c we see that the rectangles are only partitioned along their 

longest side. 
 
For the 3-D case, consider the function: 
 
F(x1, x2, x3)=(x1 – 0.2)2 + (x2 – 0.3)2 + (x3 – 0.4)2    where x1, x2, x3∈[0,1] 
 
Figs. 8a ~ 8f show the first 5 iterations for this 3-D case. 
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 Fig. 8a Initial state 
 

    
 Fig. 8b Iteration 1 
 

    
 Fig. 8c Iteration 2 
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 Fig. 8d Iteration 3 
 

   
 Fig. 8e Iteration 4 
 

   
 Fig. 8f Iteration 5 
 



 15 

In these figures, the x-axis stands for variable x1, the y-axis stands for 
variable x2 and the z-axis stands for variable x3,. The unit cube is the search 
space.  

 
The graphs on the left in Figs. 8a ~ 8f show the frames of all the boxes. 

The box with the thick lines is the one where the sample point with the 
lowest function value is located. This sample point is represented by a 
circular dot.  

 
The graphs on the right in Figs. 8a ~ 8f show the partition status 

corresponding to each of the figures on the left. The shadowed boxes are the 
cubes or cuboids that were just partitioned. The boxes chosen are the 
potentially optimal ones. The dark-shadowed box represents the box that 
contains the sample point with the lowest function value. All the boxes and 
the sample points are projected to the XY, YZ and ZX planes.  

 
 
 

3.  NUMERICAL EXPERIMENTS WITH THE DIRECT ALGORITHM 
 
 

3.1 General testing function cases 
 
The testing functions used here include 2-D, 3-D, 5-D and 10-D functions. 

These functions have only one global minimum point, and the minimum 
values of these functions are zero. These functions are defined as follows: 

 
2-D:    F(x1, x2) = (x1 – 0.4)2 + (x2 – 0.2)2.     
 
3-D:    F(x1, x2, x3) = (x1 – 0.2)2 + (x2 – 0.3)2 + (x3 – 0.4)2.     
 
5-D:    F(x1, x2, x3, x4, x5) = (x1 – 0.1)2 + (x2 – 0.3)2 + (x3 – 0.5)2 +  

                  (x4 – 0.7)2 + (x5 – 0.9)2.     
 
10-D:  F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 – 0.1)2 + (x2 – 0.2)2 + 

(x3 – 0.3)2 + (x4 – 0.4)2 + 
(x5 – 0.5)2 + (x6 – 0.6)2 + 
(x7 – 0.7)2 + (x8 – 0.8)2 +  
(x9 – 0.9)2 + (x10 – 1.0)2.  

For all these cases,  xi∈[0,1],  i = 1,…10. 
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The results for 2-D case are shown in Figs. 9 ~ 13. 

        
     Fig. 9 Results for the 2-D case         Fig. 10 Local zoom-in near minimum 
 

              
    Fig. 11 Contour lines of the 2-D               Fig. 12 Combination of contour 
               testing function                                         lines and results 

 
Figure 9 shows the results of the optimization after only 10 iterations (113 

function evaluations). The dots represent the sample points in the center of 
the boxes. Figure 10 shows the local zoom-in of Fig. 9. The global minimum 
point found by DIRECT at this stage is (0.4012346, 0.1995885), which is 
denoted by the circular dot in Fig. 10, and the value at the minimum point is 
1.693509E-06. The exact minimum point for this 2-D function is (0.4, 0.2) 
and the minimum value is 0. So the optimization results are very close to the 
exact solution. 
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Figure 11 shows the contour lines of the 2-D function, and the dot 
represents the exact minimum point. We have overlaid the optimization 
results and the contour lines in Fig. 12. It is seen that the sample points 
generated by the DIRECT algorithm become more and more clustered 
around the exact solution. Figure 13 shows the DIRECT algorithm’s 
convergence property for this case with a very fast convergence rate. 

 
Fig. 13 Convergence property for the 2-D case 

 
Figures 14 and 15 show the results for the 3-D case. 
 
The left picture in Fig. 14 shows the results of optimization after 14 

iterations (223 function evaluations). All the sample points and frames of all 
the boxes are projected to the XY, YZ and ZX planes. The right picture of 
Fig. 14 shows the local zoom-in of the left one. The shadowed box contains 
the sample point with the lowest function value. The three dashed lines point 
to the projection of the point with the lowest function value on the XY, YZ 
and ZX planes respectively. The global minimum point found by DIRECT at 
this stage is (0.1995885, 0.2983539, 0.4012346), and the value at the 
minimum point is 4.403123E-06. The exact minimum point for this 3-D 
function is (0.2, 0.3, 0.4) and the minimum value is 0. So again the 
optimization results are very close to the exact solution. 

 
The convergence curve shown in Fig. 15 confirms that the DIRECT 

algorithm has a very fast convergence rate. 
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Fig. 14 Results of 3-D case 

 

 
Fig. 15 Convergence property for 3-D case 

 
Figures 16 and 17 show the results for the 5-D case. Figure 16 shows the 

variations of the five variables of the sample point with the lowest function 
value during the 21 iterations (535 function evaluations). The global 
minimum point found by DIRECT at the final stage is (0.1049383, 
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0.3024961, 0.5, 0.6975309, 0.8991770), and the value at the minimum point 
is 3.725719E-05. The exact minimum point for this 3-D function is (0.1, 0.3, 
0.5, 0.7, 0.9) and the minimum value is 0. Figure 17 shows the convergence 
property of DIRECT for this 5-D case. 

 
Fig. 16 Variations of variables for 5-D case 

 

 
Fig. 17 Convergence property for 5-D case 
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Similarly, we show the results for the 10-D case in Figs. 18 and 19.  
 

 
Fig. 18 Variations of variables for 10-D case 

 

 
Fig. 19 Convergence property for 10-D case 

 
Figure 18 shows the variations of the ten variables for the sample point 

with the lowest function value during the 45 iterations (4157 function 
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evaluations). The global minimum point found by DIRECT at the final stage 
is (0.1008230, 0.1995885, 0.2997257, 0.3998628, 0.5, 0.6001372, 
0.7002743, 0.8004115, 0.8991770, 0.9993141), and the value at the 
minimum point is 2.35s096E-06. The exact minimum point for this 3-D 
function is (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) and the minimum 
value is 0. Figure 19 shows the convergence property of DIRECT for this 
10-D case. 

 
 

3.2 Special testing function cases 
 
We investigated two special cases here. The first one is a 2-D constant 

function F(x1, x2) = 100, where x1, x2∈[0,1]. Figure 20 shows the results 
after 30 iterations (81 function evaluations). 

 

 
Fig. 20 Results for 2-D constant functions 

 
The uniform distribution of sample points in Fig. 20 reflects the global 

search property of the DIRECT algorithm. 
 
The second case is one with multiple global minima. The function we 

considered here is the Branin function, defined as: 
 
F(x1, x2) = [1 – 2x2 + (1/20) sin(4π x2) – x1]2 + [x2 – (1/2) sin(2π x1)]2 
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Where x1, x2∈[-10,10]. This function has five global minima. If we 
normalize the range of variables x1 and x2 into [0,1], then the five global 
minima are (0.55, 0.5), (0.50743, 0.52010), (0.52013, 0.51437), 
(0.57987, 0.48563) and (0.59257, 0.47990).  

 

  
   Fig. 21 Contour lines of Branin function      Fig. 22 Optimization results 

 
 

 
    Fig. 23 Combination of contour lines      Fig. 24 Local zoom-in around the 
                and optimization results                           global minima points 
 

Figure 21 shows the contour lines of the Branin function. The five 
circular dots represent the five global minima. Figure 22 shows the 
optimization results after 32 iterations (1029 function evaluations). We 
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combine Fig. 21 and 22 in Fig. 23. Figure 24 shows the local zoom-in 
of Fig. 23. From Fig. 24 we see that the sample points cluster around 
all five global minimal points. So the DIRECT algorithm is capable of 
finding multiple global minima. 

 
 

3.3 Tough testing function cases 
 
The so-called “tough” functions are the ones whose global minima are 

difficult for the optimization technique to find. This is mostly caused by 
either multiple local minima or a wide “flat” area around the global 
minimum point. These features will make the optimization difficult since it’s 
easy to be trapped at a local minimum, or, conversely, because it’s hard to 
reach the global minimum point.  

 
We investigated two functions here. The first function is the Rosenbrock 

function, a standard test function in optimization theory. The Rosenbrock 
function is defined as: F(x1, x2) = 100 (x1 – x2

2)2 + (1 – x1)2,  where x1, x2∈[-
2.048, 2.048].  

 
If we normalize the range of variables x1 and x2 into [0,1], then its 

global minimum point is (0.74414, 0.74414) and the global minimum is 
0. It’s hard to find the global minimum point of this function because the 
global minimum point is located at a long narrow flat valley.  

 

       
    Fig. 25 Contour lines of function             Fig. 26 Optimization results 
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    Fig. 27 Combination of contour lines      Fig. 28 Local zoom-in around the 
                and optimization results                           global minimum point 

 

 
Fig. 29 Convergence property for Rosenbrock function case 

 
Figure 25 shows the contour lines of the Rosenbrock function. The square 

dot represents the global minimum point.  Figure 26 shows the results of 
optimization after 83 iterations (1701 function evaluations). The global 
minimum point found by DIRECT at the final stage is (0.7441710, 
0.7441701), and the value at the minimum point is 1.472094E-06.  
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We combined Fig. 25 and Fig. 26 in Fig. 27. Figure 27 clearly shows that 
the sample points are clustered in the valley.  Figure 28 shows the local 
zoom-in of Fig. 27 around the global minimum point. The minimum point 
found by DIRECT (circular dot) almost coincides with the exact global 
minimum point (square dot). The convergence property of DIRECT for this 
function is shown in Fig. 29. 

 
The second function we considered here is an extremely “nasty” function 

called the Shubert function. This function not only has 9 global minima, but 
it also has a total number of 400 local minimum points! The Shubert 
function is defined as follows: 
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where x1, x2∈[-10, 10]. If we normalize the range of variables x1 and x2 

into [0,1], then its 9 global minimum points are: 
 
(0.1612712,   0.1612712), 
(0.1612712,   0.4754305), 
(0.1612712,   0.7895897), 
(0.4754305,   0.1612712), 
(0.4754305,   0.4754305), 
(0.4754305,   0.7895897), 
(0.7895897,   0.1612712), 
(0.7895897,   0.4754305), 
(0.7895897,   0.7895897). 
 
The global minimum is -24.062499. The 3-D surface and 2-D 

contour of the Shubert function are shown in Figs. 30 and 31, 
respectively. The nine solid dots in Fig. 31 denote the nine global 
minimum points. 

 
Fig. 32 shows the optimization results after 327 iterations (2505 function 

evaluations). The global minimum value found by DIRECT at the final stage 
is -24.06146. The centers of the nine circles in Fig. 32 represent the 
positions of the nine global minimum points. The tiny dots represent the 
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sample points. Clearly, the sample points cluster around all nine global 
minimum points. That means that the DIRECT algorithm found all the 
global minima of the Shubert function. 

 

 
Fig. 30 3-D surface of the Shubert function 

 
 

 
Fig. 31 Contour lines of the Shubert function 
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Fig. 32 Optimization results for Shubert function  

 
 

3.4 Summary of the numerical experiments 
 
We performed extensive numerical experiments with general, special, and 

“tough” test functions. The DIRECT algorithm found the global minimum 
points for all the test functions, and it is capable of finding multiple global 
minima, even for the extremely tough functions like the Shubert function.  

 
As proved by D. R. Jones et. al.[3], the DIRECT algorithm is guaranteed to 

converge to the globally optimal function value if the objective function is 
continuous or at least continuous in the neighborhood of a global optimum. 
This property results from the fact that, as the number of iterations goes to 
infinity, the points sampled by DIRECT form a dense subset of the unit 
hypercube. For more details please refer to Ref. 3. 

 
The numerical experiments also show that the DIRECT algorithm has a 

very fast convergence rate. In other words, to obtain the same low objective 
function value, DIRECT uses far fewer sample points than would be 
requested by other algorithms. The fast convergence rate of DIRECT is the 
primary motivation for us to try to apply it to our slider ABS optimization. 
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4.  IMPLEMENTATION OF DIRECT INTO ABS OPTIMIZATION 
 
 
4.1  Structure of the optimization program 
 

To implement the optimization, two closely integrated parts are needed. 
One is the optimization algorithm, and the other is the solver. The 
optimization algorithm is used to generate different sample designs, which 
are then sent to the solver for calculation of the parameters. The algorithm 
generates new sample points based on the results of the function evaluations. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33 Structure of the optimization program 
 

The optimization algorithm used here is the DIRECT algorithm. The 
solvers are the CML slider ABS design programs, which were developed by 
the Computer Mechanics Laboratory at the University of California at 
Berkeley, including the CML rectangular mesh solver Quick419 and the 
CML triangular mesh solver Quick5. 
 
 
4.2 Flow chart of the optimization program 
 

The flow chart of the optimization program is shown in Fig. 34, where N 
represents the number of the designs, Nmax the maximum number of designs 
prescribed, I the number of iterations and Imax the prescribed maximum 
number of iterations.  

Optimization 
Algorithm 

Solver 

DIRECT 
Algorithm 

CML ABS 
Design Code 
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Fig. 34 Flow chart of the CML optimization program using DIRECT 
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5.  AIR BEARING DESIGN OPTIMIZATION PROBLEM   
 
 

We define the optimization problem to be: given a prototype slider ABS 
design, optimize it to get uniform flying heights near the target flying height 
and at a flat roll profile, and if possible, increase its air bearing stiffness. 

 
Here the NSIC 7nm flying height slider is used as the prototype slider. 

The rail shape and the 3-dimensional rail geometry are shown in Figs. 35 
and 36, respectively. 

 
 

 
 

Fig. 35 Rail shape of the initial ABS design 
 
 

 
 

Fig. 36 3-D rail shape of the initial ABS design 
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The slider is a Pico slider (1.25×1.0mm), which flies over a disk rotating 
at 7200 RPM. Its flying heights are all around 7nm from OD to ID. We wish 
to lower its flying height to the target flying height, i.e. 5nm, and at the same 
time to maintain a flat roll profile at the three different radial positions OD, 
MD and ID. The objective function or cost function is defined as: 

 
1× (FH Max Difference) + 
9 × (FH) + 
1 × (Roll) + 
1 × (Roll Cutoff) + 
1 × (Pitch Cutoff) + 
1 × (Vertical Sensitivity) + 
1 × (Pitch Sensitivity) + 
1 × (Roll Sensitivity) + 
1 × (Negative Force). 
 

 
Fig. 37 Constraints defined on the initial design 
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The goal of the optimization is to minimize this multi-objective function 
under the given constraints. Note that since we are primarily concerned with 
the flying heights, we put a heavier weight (9) on that term. All the objective 
terms are normalized and their definitions can be found in the “CML 
optimization program version 2.0 user’s manual”[2]. The constraints are 
shown in Fig. 37, and can also be found in the user’s manual. 

 
 
 

6.  SIMULATION RESULTS 
 
 

Using the initial design, constraints, and objective function, we carried out 
the optimization using the DIRECT algorithm. Figure 38 shows the variation 
of the objective function values during the optimization process. 

 

 
Fig. 38 Variation of the objective function value 
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In the above figure, Costini is the initial objective function value, and 
Costopt is the objective function value for the final optimized design. The 
Percentimp signifies the percentage of improvement for the cost function 
value which is defined as: 

 

%100×
−

=
ini

optini
imp Cost

CostCost
Percent

 
 
 Ngen, and Nopt represent the number of the designs generated and 

optimized respectively. 
 
The small squares represent the sample designs generated during the 

process. The dark circles represent the optimized designs. The optimized 
designs are the ones with the best-so-far objective function values. The 
lower the objective function value, the better the design. 
 

 
Fig. 39 Optimization results  
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The comparison between the initial and optimized designs is shown in 
Fig. 39, in which the light lines show the rail shape of the initial design and 
the dark lines show the rail shape of the optimized design.  
 

Figure 40 shows the variation of the objective function terms for all of the 
best-so-far designs generated during the optimization process.  

 

 
Fig. 40 Variation of the objective function terms 

 
From Fig.40 we see that the DIRECT algorithm provides impressive 

minimization in the Flying Height term, i.e. the 2nd objective function term, 
which was weighted more heavily. There was also improvement in the roll 
term as well as some improvement of the Vertical Sensitivity and the Pitch 
Sensitivity terms. However, the Roll Sensitivity did not improve. Some 
objective terms such as the Pitch cutoff term and Negative Force term 
remained zero for all of the optimized designs. The combinatorial effects are 
the minimization of the total value of the objective function. By minimizing 
the multi-objective cost function we obtained the final optimized designs. 

 
The variations of the slider performance parameters for all the best-so-far 

designs are shown in Fig. 41. 
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Fig. 41 Variations of the slider performance parameters 

 
It is clear that the optimized ABS design has fairly constant flying heights 

around the target flying height of 5nm. Also, it maintains a reasonably flat 
roll profile. 

 
In addition to using the DIRECT algorithm, we also used the Adaptive 

Simulated Annealing (ASA) algorithm to carry out the optimization for the 
same problem. Figure 42 shows the convergence comparison between ASA 
and DIRECT. It shows that the DIRECT algorithm clearly has a much 
higher convergence rate than the ASA algorithm. In this case, it only takes 
about 100 sampling designs for DIRECT to converge to the optimal design, 
while it takes more than 600 sampling designs for ASA!  

 
Also note that the objective function value of the final optimized design 

obtained by using DIRECT is 4.46. For ASA the final optimized design’s 
objective function value is 4.74. Since a smaller objective function value 
means a better design, the DIRECT algorithm obtained a better optimized 
design than ASA algorithm. 

 
Obviously the DIRECT algorithm outperforms the ASA algorithm in this 

case. Here we presented only the convergence comparison results for the 
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ASA and DIRECT. More details about the comparisons between these two 
algorithms will be given in another CML technical report. 

 

 
Fig. 42 Convergence comparison between ASA and DIRECT 

 
 
 
7.  CONCLUSION 
 
 

The DIRECT algorithm is a deterministic global optimization technique 
which is used to find the minimum of a Lipschitz continuous function 
without knowing the Lipschitz constant.  

 
We did extensive numerical experiments for the DIRECT algorithm with 

general, special, and “tough” test functions. The DIRECT algorithm found 
the global minimum points for all the testing functions, and it is also capable 
of finding multiple global minima, even for some extremely tough functions.  

 

4.46 4.74 
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D. R. Jones et. al.[3] proved that the DIRECT algorithm is guaranteed to 
converge to the globally optimal function value if the objective function is 
continuous or at least continuous in the neighborhood of a global optimum. 
Our numerical experiments also verify that conclusion, and show that the 
DIRECT algorithm has a very fast convergence rate. 

 
Slider ABS designs that satisfy very strict multi-objective goals are of 

great importance for magnetic hard disk drives. Finding such optimal 
designs is a strongly non-linear problem. Use of the DIRECT optimization 
technique, which is a global deterministic optimization method, provides the 
optimized designs automatically for a given initial design and constraints. 
When different weights are put on different objective function terms, the 
objective function steers the designs to its goals.  

 
The DIRECT algorithm was shown to produce an optimized ABS design 

with greatly improved performance, i.e., uniform flying heights around the 
target flying height, flat rolls and improved stiffness. This illustrates that the 
DIRECT algorithm is quite suitable for the optimization of ABS designs. 

 
The convergence comparison between the DIRECT algorithm and the 

ASA algorithm, which is a global stochastic optimization technique used 
previously for the slider ABS optimization, shows that the DIRECT 
algorithm clearly has a much higher convergence rate than does the ASA 
algorithm. In other words, DIRECT obtains the global optimal design in 
many fewer sample designs than does ASA. In the case examined about 100 
sampling designs were needed for DIRECT to converge to the optimal 
design, while it takes more than 600 sampling designs for ASA.  

 
Also note that the objective function value of the final optimized design 

obtained by using DIRECT is smaller than the one obtained by using ASA. 
Since smaller objective function value means a better design, the optimized 
design obtained by using the DIRECT algorithm has the better overall 
performance. 

 
In summary, the DIRECT algorithm clearly outperforms the ASA 

algorithm in our test case. More details about the comparison between these 
two algorithms will be given in another CML technical report. 
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Appendix A 
 
Graham’s scan [5]  

 
Graham’s scan is an algorithm which can find the convex hull of a set of 

m arbitrary points in O(mlog2m) times. If the points are already sorted by 
their abscissas, it will only require O(m) times.  

 
The basic procedure for a Graham’s scan in our case is:  
1. Sort all the data points according to their abscissas. 
2. Find a starting point, which is the sample point with the lowest function 

value. 
3. Start with that point, pick up three continuously neighboring points, 

judge if they form a “left-turn” or “right-turn”, and then decide what 
action to take. This is shown in Fig. A1. 

 

      
Right turn:  (1 2 3)  (0 1 3)  and  point 2 eliminated 

 

      
Left turn: (1 2 3)  (2 3 4)  

 
Fig. A1 Illustration of “Right turn” and “Left turn” 

 
4. Repeat this whole process until the algorithm finishes scanning all the 

data points. 
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The following pictures demonstrate the basic processes to obtain the 
convex hull for a given set of data points. 

 

 
Fig. A2 Initial set of data points 

 
Fig. A3 Results after sorting 

 
Fig. A4 Results of Graham’s scan 

Convex Hull 


