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ABSTRACT

Hard disk drives continue to increase in area density. This requires diders
with lower and lower flying height (FH). Also the uniformity of its FHs and
the flatness of its roll profile with radius become more critica as the FH gets
lower. By using modern optimization techniques, it is possible to find the
optimal dider air bearing surfaces (ABS) design according to our multi
design goals. The smulated annealing technique is a powerful tool for
addressing this strongly nonlinear problem, and it has aso been widely used
In many other areas. Severa variations of this optimization technique have
been developed and they formed the Smulated Annealing family. Among
these agorithms are the Standard Boltzmann Annealing (BA), Fast Cauchy
Anneding (FA) and the Adaptive Simulated Anneding(ASA). In this
report, we describe the Simulated Annealing optimization technique and we
aso compare the performance of BA, FA and ASA by optimizing a dider
ABS design.



1. INTRODUCTION

Since the first commercial hard disk drive, which was the IBM product
RAMAC (Random Access Method of Accounting and Control) with an areal
density of 2000 hits/in.? or 100 bits/in. (BPI) and 20 tracks/in. (TPI) was
ddlivered in 1957, the aredl dendty increased at an average annua growth
rate of about 39% from 1957 to 1991. The rate increased to 65% from 1991
to 1997 due to the use of many new technologies such as magnetoresistive
(MR) read heads, smaller diameter disks and smoother disk surfaces which
dlow lower flying heights. Fig. 1 shows the area density growth for the
hard disk. Recently, IBM has achieved an areal density of 35.3Gb/in.” in a
|aboratory demonstration, and it's believed that areal densities of 100Ghy/in.
will be demonstrated by the end of year 2001. Recently the hard disk
industry has begun discussion of HDD areal density of 1Th/in.>.
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Fig.1 Hard magnetic disk areal density growth 1

The increase of the areal dendity is of great economic and technical
interest, and it has a huge impact on the price of the hard disk drive. Along
with the increase of the ared dendty, the price per megabyte has been
lowered from more than $100 per megabyte in 1980 to the present cost of



about 2 cents per megabyte. The following figure shows the price history
over the past 20 years, showing a precipitous drop in the last few years.
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Fig.2 Price history of hard disk products

To obtain higher ared density, the head-to-media spacing or flying height
must be lowered. Fig.3 shows the relationship between the head-to-media
gpacing and the areal dengity.
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Fig.3 Head-to-media spacing vs. areal density for IBM hard drives ™

In order to obtain the areal density of 100 Gb/in.?, the flying height of the
dider will need to be below 10 nanometers. At these very low flying heights,



the performance of the dider becomes quite crucial and requires tighter
control of flying height uniformity, roll profile flatness etc.

To meet the increasingly rigorous multi-objective dider performance
criteria, modern optimization technique can be used to solve this strongly
nonlinear problem. The advantages of using numerical optimization are:

- Reduction of design time.

- Optimization provides a systematized logical design procedure.

- Many design variables and congtraints, which are not easy to visualize,
can be handled by the optimization program.

- Generadly we can dways get some design improvement by using
optimization.

- The optimization process is not biased by intuition or experience in
engineering. Therefore it has a higher probability of obtaining
improved nontraditional designs.

- Optimization requires aminima amount of human-machine interaction.

In summary, high efficiency, smplicity and automaticity are the reasons
to use optimization techniques when designing dider air bearing for HDD.

2. NUMERICAL METHOD
2.1 Introduction to the optimization method

Optimization is the process of trying to minimize a function subject to
conditions on the variables. This function is generally caled the objective
function or cost function. The conditions set on the variables are referred to
as constraints.

We can state the optimization problem as:

Minimize {f(x) | ¥ S}, where f(x) is the objective function, S is a set of
feasible solutions to the problem known as the search space and x isa single
point within the set.

If there are no congtraints set on the variables, the problem is referred to
as an unconstrained problem. Otherwise it is called a constrained problem.
The condraints reduce the size the set S by limiting the number of feasible



solutions. For the unconstrained and constrained problem, the mathematical
description is basically the same. The only difference is the size of the set S.
The constrained problem has a smaller set S, but the congtraints also make
the problem much more complicated.

If the objective function f(x) and the constraints in a problem are both
linear combinations of the independent variables, the problem is referred to
as a linear programming problem. For this kind of problem, the solution can
easly be found by the Simplex method or the interior point method. If the
objective function is quadratic in nature, while its constraints take the linear
form, we can decompose the problem and then find its solution by the
Simplex method. If the objective function f(x) has a definite form, we can
adways find its olution in a predictable way. Unfortunately, many problems
of interest are nonlinear problems. Air bearing design optimization problems
have many objective functions with no distinct forms and the constraints can
take many possible forms as well.

For nonlinear problems, the most difficult issue is multiple optima. The
objective function may have many minima and the one found might not be
the absolute minimum point. Instead, we only have the assurance that it is a
local optimum, i.e. a feasble point x* that is an optima solution to the
problem whose feasible region is the intersection of the origina region and
some neighborhood of x*. It is important to avoid just finding the local
optimum. That's why we adopt a global optimization technique. Global
optimization is the search for the absolute minimum point of the objective
function over the given search space.

There are many global optimization agorithms, and they can be divided
into two fundamentaly different categories, i.e. deterministic algorithms and
stochastic agorithms. For the deterministic algorithms, every new search
point is chosen in a definite way and no random components are involved.
For the stochastic agorithms, random elements are introduced to generate
the new search points. Deterministic agorithms can handle definite
objective functions very well. The stochastic algorithms can be applied to a
wider range of objective function types, but usually with longer run times.

2.2 Family of ssimulated annealing algorithm

The smulated annedling agorithm is a global optimization technique that
IS based on the concept of the physica annealing process where the



temperature of a system is gradualy lowered in order to obtain its lowest
energy sate.

Simulated annedling, which is a stochastic technique, was developed to
handle nonlinear problems that are extremely difficult to minimize. It is
known to be a powerful and useful tool for a wide variety of minimization
problems of large nonlinear systems. It has also been widely applied in many
areas, such as circuit design, chemistry, economics, biology, image
processing, statistics etc. Research on the smulated annealing technique has
also become very active in recent years.

One of the most important elements of al smulated annealing algorithms
is the Metropalis rule, which was developed by Metropolis et a. in 1953.
We now briefly describe this important rule.

Recall that optimization is a process for minimizing an objective function
or cost function E(x). Here E is a function of the vector x where its
components X, are derived from a certain set in a search space. The
superscript | represents different states or designs generated during the
process. The Metropolis rule incorporates the following three stages:

1) Given a dsarting design X with cost function E(x), a smal
perturbation to X is made to obtain a new design x' according to a
probability function gr(x).

2) Computation of the cost function difference between the two designs
by DE= E(X) - E(X).

3) Decide whether or not to accept the new design. There are two cases:
a If DE £ 0, the new design is always accepted.
b. If DE > 0, the new design is accepted with the probability
DE
h(DE)=e T,
where T is the cost function temperature.

The procedure is repeated while the temperature T is gradually lowered. If
the annealing procedure is carried out adequately, the system is expected to
converge to the global minimum state. By accepting states with relatively
higher cost function values according to some probability, which is caled



the “hill-climbing” technique shown in the following figure, the Metropolis
rule can help the process avoid getting trapped in aloca minimum point.
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Fig.4 “Hill-climbing” technique in Metropolisrule

Severd smulated annealing algorithms have developed, such as the
Standard Boltzmann Anneadling (BA), Fast Cauchy Anneding (FA) and
Adaptive Smulated Annedling (ASA). The basic idea of dl these agorithms
Is the same. The main differences are the selection of probability functions
gr(x) and h(DE), and the different cooling schedules resulting from those
two probability functions. There are three components in al these smulated
annealing agorithms:

gr(X): The probability dengity function in the state space of D
parameters x={x,, n=1,D}, where the subscript T represents the
temperature.

h(DE): The probability function for acceptance of new cost
functions given the most recent prior vaue.

T(k): The annealing “temperature’ for step k, which is aso referred
to as the cooling schedule. It includes the parameter temperature
and the cost temperature, which will affect the perturbation of the
previous state and the acceptance probability of the new state



respectively. These two temperatures comply with the same cooling
schedule. The cooling schedule is actualy aresult of the probability
functions gr(x) and h(DE).

2.2.1 Standard Boltzmann Annealing (BA)

The BA was first introduced as a stochastic method for implementing
large dimension path integrals for statistical physics. ® The method was
developed for handling generd minimization problems. The kernd of the
algorithm is based on the probability density derived from Gaussian
Markovian systems. The Boltzmann distribution is given by

D -x?

g, (x)= (2pT) 2 €7

- ~

| [ ll] . The range [a, b] is the constraint set on certain

whee X°

points. hy represents the previous point and h is the new point. So x can be
viewed as the normalized deviation of h from the previous point hy. T isthe
parameter temperature, which is the measure of the perturbation of the
Boltzmann distribution g in the D-dimensiona space h .

The 3D and 2D views of the Boltzmann distribution are shown in Fig.5
and Fig.6 respectively. These two figures show the change of the distribution
asthe temperature is lowered from 1 to 0.1.

The acceptance probability of the BA is:

1

DE
l1+eT

h(DE) =

where DE signifies the “energy” difference between the present and previous
values of the energies (considered here as cost functions), i.e., DE= Ey.; -
E.. T isthe cost temperature. The lower the cost temperature, the lower the
acceptance probability.



B, prooabilty distribution

Fig.5 3-D view of the BA probability function gr(x)

B probabilty distribution

Fig.6 2-D view of the BA probability function g(x)



Given g:(x), it has been proved " that a globa minimum of E(x) will be
obtained if T is selected to be not faster than

T =10
In(k) -

The strict proof will not be introduced here. Instead, we only present a
heuristic demondtration here to show that T, will suffice to give a global
minimum of E(x). In order to statistically assure that any point in xspace
can be sampled “Infinitely Often in anneding Time” (10T), it suffices to
prove that the products of probabilities of not generating a state x 10T for all
annedling-times successive to time kg yield zero,

X
O@@-g)=0 ,
k=K,
which is equivalent to:

ag.=¥

k=kq
If we put the expression of T, into gr(x), then we obtain

g S
a gk 3 a e—lnk

k=ko k=ko k=ko

2.2.2 Fast Cauchy Annealing (FA)

The methodology of BA can be extended for use with any function g that
%
stisies O 1= 9) =0 conjunction with a proper cooling schedule
k=Ko
T(K).

It may be desirable for the function g to enable a faster convergence rate.
The use of a Cauchy distribution is a good example of how this may be
achieved. The Cauchy distribution is defined by the following equation:

10



T
gT (X) = D+1

b
The 3-D and 2-D views of the Cauchy digtribution are shown in Fig.6 and

Fig.7 respectively. These two figures show the change of the distribution as
the temperature is lowered from 1 to 0.1.

The smulated annealing procedure using the Cauchy distribution
converges to a globa minimum with temperature declining not faster than

T =2

Then
500 8
k=ko ‘ X0 &, K

¥

Thus the FA method datistically has an annealing schedule exponentially
faster than the method of BA.

2.2.3 Adaptive Smulated Annealing (ASA)

Many physical problems have a D-dimensiona parameter space. Different
parameters have different finite ranges, given by physical considerations,
and different anneding-time-dependent sengtivities, measured by the
curvature of the cost function a loca minima. BA and FA have ¢
digtributions that sample infinite ranges, and there is no provison for
consdering differences in each parameter-dimension, e.g., different
sengdtivities might require different cooling rates. Adaptive Simulated
Annedling (ASA) was developed to meet the following godls:
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FA probability distribution

Fig.6 3-D view of the FA probability function gr(x)

Fa probabiity dislibutian

Fig.7 2-D view of the FA probability function gr(X)



- Obtain a solution from a bounded parameter space instead of an
unbounded space.

- Use afaster cooling schedule so asto get faster convergence.

- Condder the sendtivities of for each parameter-dimension, i.e,
different constraint points should have different cooling rates.

Each of the parametersa’' at annedling time k is bounded within the range

a,l [Ai’Bi] :

The parameters are generated a each new step by a random variable X
1 [-1,1] asfollows:

a, =, tx(B-A) .
Define the generating function as

1

2 B
(=06 X)=0Q— 1
2 2+ T)In(+ 1)

The 3D and 2D views of this distribution are shown in Fig.8 and Fig.9
respectively. These two figures show the change of the distribution as the
temperature is lowered from 1 to 0.1.

Then the cumulative probability distribution is
X¥rRA L 2 Do'D i [y
G (0 =0Q Q O g(x)dxdx---dx” ° QG (X) |
i=1

i=1

where
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ASA prabability distribution

Fig.8 3-D view of the ASA probability function g;(x)
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Fig.9 2-D view of the ASA probability function gr(x)
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i In(1+M)
GiT(Xi):1+Sgn(X) T

2 2 1
In(1+—
( T_)

_ X is generated from the uniform distribution U[0,1] through a parameter
ul U[01]:

. . 1 loui-
X =sgn( - T g
For the cooling schedule

1
D

T (k) =Te ™

agloba minimum can be obtained, i.e.,

k; =€"
T, =T,€e
G =me®

where k; and Ty ae the find time sep and the find parameter
temperature.

The acceptance probability function is defined as:

15



- DE

h(DE)=e T

For a multi-dimensional search the cost function vaue generdly has
different sengtivities with respect to different parameters. So a any
annealing time, it is sensble to attempt to “stretch out” the ranges over
which the relatively insendtive parameters are being searched, as compared
to the ranges of the more sendtive parameters. In the agorithm, that is
equivalent to resetting the annealing time k for the different parameters.

This mechanism is referred as “Re-anneding” or “Adaptation” and it is
the reason why the algorithm is cdled Adaptive Smulated Annedling. The
adaptation is accomplished by calculating the energy senstivities with
respect to the different parameters at the most current minimum value of the
cost function:

—(B - A)JE
SI_(Bi A)ﬂai .

The annedling time k is rescaled for each parameter a' by making use of
the maximum sengtivity Sy.=max(s;, S, ...S) -

N i__: s
gTik Smax ﬂ_
G

Tio IS Set to unity at the beginning of the search, which is ample to span
each parameter dimension.

224 Summary
The following table gives a comparison among these three simulated

annedling agorithms:
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BA FA ASA
2 1
Generating -b -x* T _ 1
Probability | (2pT) 2 2" o | =X +T) In(l+ =)
() b +12)72 T
Acceptance 1 1 e
Probability T DE DE eT
h(DE) 1+eT 1+eT
Cooling T 1
Schedule ; T T. @ oK°
T(K) |n(k) k Oi
Adaptive
Re-annealing No No ves

Among these three algorithms, ASA has the fastest cooling rate since the
temperature is decreased exponentidly. That means it has the fastest
convergence rate. Also, ASA features an adaptive re-annealing mechanism.
This unique feature enables the ASA to set different cooling rates for
parameters with different senstivities. These properties make ASA the most
efficient and robust algorithm among the three.

3. IMPLEMENTATION OF THE ALGORITHMS
3.1 Structure of the optimization program

To implement the optimization, two closaly integrated parts are needed.
Oneisthe optimization agorithm, and the other is the solver.

The optimization algorithm is used to generate different sample designs,
which are then sent to the solver for calculation of the parameters. From the
results the dgorithm evaluates the quality of the current design and
generates anew design based on the result.

17
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Fig.10 Structure of the optimization program

Here we use the three smulated annedling agorithms, including the
Standard Boltzmann Anneding (BA), Fast Cauchy Annedling (FA) and the
Adaptive Smulated Annedling (ASA). The solver is the CML dider ABS
design programs, which were developed by the Computer Mechanics
Laboratory of University of Cdifornia at Berkeley, including the CML
rectangular mesh solver Quick419 and the CML triangular mesh solver

Quick5.

3.2 Flow chart of the optimization program

The flow chart of the optimization program is shown below, where N
represents the number of the designs, N s the maximum number of designs
prescribed, T the annedling temperature and T, the prescribed minimum

annealing temperature.
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Fig.11 Flow chart of the CML optimization program
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4. AIR BEARING DESIGN OPTIMIZATION PROBLEM

The optimization problem defined here is. given a prototype dider ABS
design, optimize it to get uniform flying heights near the target flying height
and at flat roll profile. Also increase its air bearing stiffness if possible.

Here the NSIC 7nm flying height dider is used as the prototype dlider.
The rail shape and the 3-dimensiond raill geometry are shown in Fig. 12 and
Fig. 13, respectively.

=
=
=

B 03 04 : i
Lengthirmm}

Fig.12 Rail shape of the initid ABS design

Fig.13 3-D rail shape of theinitial ABS design
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The dider is a Pico dider (1.25" 1.0mm), which flies over a disk rotating
at 7200 RPM. Its flying heights are al around 7nm from OD to ID. Now we
want to lower its flying heights to the target flying height, i.e. 5nm and at the
same time maintain a flat roll profile a the three different radia positions
OD, MD and ID. The objective function or cost function is defined as:

1" (FH Max Differenceterm) + 9~ (FH term) + 1~ (Roll term) + 1~
(Roll Cutoff term) + 1~ (Pitch Cutoff term) + 1~ (Vertical Sensitivity term)
+ 17 (Pitch Sengitivity term) + 1~ (Roll Sensitivity term) + 1~ (Negative
Force term)

So the god of the optimization is to minimize this multi-objective
function under the given congraints. Note that since we are primarily
concerned with the flying heights, we put a heavier weight (9) on that term.
All the objective terms are normalized and their definitions can be found in
the “CML optimization program version 2.0 user’'s manual”. The congtraints
we defined here are shown in the following figure. The definition of these
constraints can also be found in the user’s manual.
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Fig.14 Constraints defined on the initia design
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5. SSIMULATION RESULTS

With the same initia design, constraints and objective function, we
carried out the optimization using the BA, FA and ASA respectively.

The following three figures show the variation of the objective function
values during the optimization process for BA, FA and ASA respectively.
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In al of the above figures, Cost,; means the initial objective function
value, and Cost,,; means the objective function vaue for the final optimized
design. The Percent,,, Signifies the percentage of improvement for the cost
function value which is defined as.

Co¢t;,, - Cost,
Cost

Percent, = P 100%

ini

Ngen, Nign, Nace, Nopt in these figures represent the number of the designs
generated, ignored, accepted and optimized, respectively.

The dark circles represent the optimized designs generated during the
process. The optimized designs are the ones with the best-so-far objective
function values. We know that the lower the objective function vaue, the

better the design.

The objective function values for the three fina optimized designs by
using BA, FA and ASA, respectively, are 5.301, 4574 and 4.387. That
means ASA obtained the best optimized design in this case. Also, ASA had
the fastest convergence rate. This can be verified by the following fgure,
which shows the cost temperature variation during the optimization process.
ASA had the fastest cooling rate while BA had the dowest one.
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Fig.18 Cost temperature variations for BA, FA and ASA

The so-caled “freezing” phenomenon for FA can be observed in Fig. 16.
After certain stages, in this case, after generating about 200 designs, the
fluctuation of the cost function value becomes much smaller. This indicates
the parameter temperature is so low that the newly generated designs are
very small perturbations from the previoudy accepted design. Thus the new
designs have been “frozen” there. This is due to the fast cooling rate of FA.
(This phenomenon is not observed for BA at this stage, since its cooling rate
Is quite dow) The question arises. T ASA has an even faster cooling rate
than FA, why was there no freezing phenomenon for ASA? The answer is
that ASA has an adaptive re-annedling process. Different parameters will
have different cooling rates according to their different sengtivities. For
those parameters with lower sengitivities, their temperatures get raised to let
them vary more fredly in the following stages. So this mechanism actualy
lets ASA avoid the “freezing” phenomenon while maintaining its fast

cooling rate. Therefore ASA is more efficient and more robust than BA or
FA.

The comparison between the initial and optimized designs produced by
BA, FA and ASA are shown in the following three figures, in which the
green lines (light-colored) show the rail shape of the initial design and the
blue lines (deep-colored) show the rail shape of the optimized design.
Similar results are obtained by al these agorithms,
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We aso show the variation of the objective function terms for the three

optimized designs by using BA, FA and ASA in the following figures.
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Fig.23 Variation of the objective function terms by using FA
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Fig.24 Variation of the objective function terms by using ASA

All three dgorithms provide impressve minimization in the Hying
Height term, i.e. the 2 objective function term, which was weighted more
heavily. There was adso improvement for the roll term as well as some
Improvement on the Vertical Sengtivity term and the Pitch Sengtivity term.
But the Roll Sengitivity was not improved. Some objective terms such as the
Pitch cutoff term and Negative Force term remained zero for dl of the
optimized designs. The combinatorial effects are the minimization of the
total value of the objective function. By minimizing the multi-objective cost
function we obtained the fina optimized designs.

The comparison of the performance parameters of most concern, i.e. the
flying heights and the ralls, are given in the following two figures.

It is clear that all of the optimized ABS designs have quite constant flying
heights around the target flying height, which is 5nm. Also they adl maintain
a reasonably flat roll profile. The optimized design obtained by using ASA
has the most uniform flying height profile and the best overall performance.
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Flying height comparison among the initial design and the
optimized designs obtained by using BA, FA and ASA
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OOptimized design by FA 5.01 4.88 5.04
Ooptimized design by ASA 5.05 4.93 5.05

Fig.25 Flying height distribution from OD to ID for different designs

Roll comparison among the initial design and the optimized
designs obtained by using BA, FA and ASA
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Fig.26 Roll distribution from OD to ID for different designs

28



6. CONCLUSION

Sider ABS designs that satisfy very strict multi-objective goals are of
great importance for the performance of magnetic hard disk drives. Thisisa
strongly non-linear problem.

Use the smulated annedling optimization technique, which is a global
stochastic optimization method, provide the optimized designs automatically
for agiveninitia design and constraints.

By putting different weights on different objective function terms, the
objective function steers the designs to its goals.

Three main members of the smulated anneding family, namey the
Standard Boltzmann Annedling (BA), the Fast Cauchy Annealing (FA) and
the Adaptive Smulated Annedling (ASA), were shown to produce similar
optimized ABS designs with greatly improved performance, i.e. uniform
flying heights around the target flying height, flat rolls and improved
giffness. This illuminates that the smulated annedling agorithm is quite
suitable for the optimization of the ABS designs.

The ASA was found to be the most efficient and robust scheme due to its
fastest cooling schedule and its unique adaptive re-annealing mechanism.
These features gave it the fastest convergence rate and let it effectively avoid
the “freezing” phenomenon, which is generdlly a Sdeeffect of the fast
cooling rate. FA aso had a faster convergence rate than BA.

Among the optimized designs obtained by usng BA, FA and ASA, the
one obtained by ASA had the most uniform flying height profiles and the
smallest objective function value, which means its desgn had the best
overall performance.
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Appendix A

Sampling from a prescribed distribution !*°!

During the process of optimization, the generation of new design
requires the generation of representative values of variables that are
distributed in a prescribed manner. This is done through random numbers
and is a key dep in the implementation of smulated anneding
agorithms.

Here we assume u is a random number which is uniformly distributed
between O and 1, i.e. ul U[0,1].

The digtribution of the variable x can be described by a normalized
probability density function g(x) such that the probability of a value of x
lying between x and x+dx is given by g(x)dx.

If xI [a, b], then the total probability is
o
Qg(x)dx =1
Now let’s define the cumulative distribution function G(x) as
G(x) = Qg(x)dx

Then we may invert the cumulative distribution function G(x) and get
X = X(G)

Next we can generate a random number u and set it equa to G. Then
the representative value of x is given by

X=x(u)



This method is therefore referred as the inver se-cumulative method.
The operation of this method is shown graphically in Fig. AL

1.0 ¢

0.0 k&

Fig. A1 Relationship between the typica normalized probability density
function g(x) and the cumulative distribution function G(x)

First let's consder a trivid example in which the x is uniformly
distributed between aand b. For this case g(x) is a constant and we have

9(x) = U(b-a) .

So, from the above we get

G() = Qo(dx="">

Inverting G(x), we have



x=a+G" (b- a)
Then let G be equal to arandom number ul U[0,1] to get
x=a+u (b- a)

For the case of the Adaptive Smulated Annedling agorithm (ASA),
the probability density function is defined as

2 1

L2
gT(X):Ong(XI): _ 1
= 2(x[+T)In(L+ )

where T stands for the annealing temperature and D the dimension of
parameter space. We can easily verify that

11 a B2
3000 gr(x)dxdx?---dx® =1
00000 |

Its cumulative probability function is

X X X L 2
G- (0 =36 ¢ O o (x)abkee —-ch © QG (x)

i=1

where

X

I+ 2
Gl (x) = £+ SX) Tl
2 2 In+2)



Then as before, we can generate a set of random numbers u from the
uniform distribution Ul U[0,1] . After inveting the cumulative
distribution function and letting

L 00) =u'
we get
i |2u‘-1|
T.)

X' =sgnu' - HT[(L+ -1

So far we have discussed the inversecumulative method and its
applications. However, this method can be used only when it is possible
to invert the cumulative distribution function G(x) to obtain an explicit
function for x. But sometimes it's impossible to obtain the inverse
cumulative digtribution function, if for example, the probability density
functionis

2

- X

e_

g (X) = L
Jep o
then

X 1 1 ,aex0
G(x) = dx==+—eafc—-=+
(X) Qg(X) X > zer g-\/ég :

This expression can’t be inverted to give x in terms of G and thus the
Inverse-cumulative method fails.

The generd dternative is to apply the acceptance-r e ection method.
In order to make direct use of the random number u, the probability
function is normalized by dividing it by its maximum value g, to give




9(x)

g(x) =
Jinex
A value of x is then chosen a random on the basis of X being
uniformly distributed between its limits, i.e.

x=a+u (b- a)

The function §(x) is then caculated for this value of x and a second
random number is generated. The value of x is then either accepted or
rejected according to whether g(x) is greater or less than this second
random number. This procedure is repeated until a value of X is accepted.
Since the random number u is uniformly distributed between 0 and 1, the
probability of a particular value of x being accepted is clearly
proportional to §(x) and the accepted values conform to this distribution.

For the Boltzmann Anneding (BA) and Fast Anneding (FA) of the
smulated anneding dgorithm family, when the inverse-cumulative
method fails because we can't invert their cumulative distribution
functions, we can use the acceptance-rejection method.

For the Boltzmann Annealing, the probability dengity function is

-D -x?

g (X) = (2pT)Z e

6, (x) = I — g7

gT max

Then the first random number u,d U[0,1] can be generated. If we
denote hy as the previous point and h as the new point, and define the
range of this point as[a, b], then
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h=a+u,/(b-a .

From this value of h we can obtain x since x is defined as

oh'ho‘ _
xo—2i [-11]

Then the value of §,(x) follows from x. Next the second random
number wl U[0,1] is generated and compared with the value of g, (x). If

g, (x) is greater than W, , the x value gets accepted. Otherwise the x vaue

Is rgjected and the above procedure is repeated until a value of X is
accepted.

For Fast Annealing, the probability density function is

6 () =—
(e +T2)7

By following the above procedure we again get the vaue of x
according to this prescribed probability density distribution.



