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ABSTRACT 
 
Hard disk drives continue to increase in areal density. This requires sliders 
with lower and lower flying height (FH). Also the uniformity of its FHs and 
the flatness of its roll profile with radius become more critical as the FH gets 
lower. By using modern optimization techniques, it is possible to find the 
optimal slider air bearing surfaces (ABS) design according to our multi 
design goals. The simulated annealing technique is a powerful tool for 
addressing this strongly nonlinear problem, and it has also been widely used 
in many other areas. Several variations of this optimization technique have 
been developed and they formed the Simulated Annealing family. Among 
these algorithms are the Standard Boltzmann Annealing (BA), Fast Cauchy 
Annealing (FA) and the Adaptive Simulated Annealing(ASA).  In this 
report, we describe the Simulated Annealing optimization technique and we 
also compare the performance of BA, FA and ASA by optimizing a slider 
ABS design. 
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1. INTRODUCTION 
 

Since the first commercial hard disk drive, which was the IBM product 
RAMAC (Random Access Method of Accounting and Control) with an areal 
density of 2000 bits/in.2 or 100 bits/in. (BPI) and 20 tracks/in. (TPI) was 
delivered in 1957, the areal density increased at an average annual growth 
rate of about 39% from 1957 to 1991. The rate increased to 65% from 1991 
to 1997 due to the use of many new technologies such as magnetoresistive 
(MR) read heads, smaller diameter disks and smoother disk surfaces which 
allow lower flying heights. Fig. 1 shows the areal density growth for the 
hard disk. Recently, IBM has achieved an areal density of 35.3Gb/in.2 in a 
laboratory demonstration, and it’s believed that areal densities of 100Gb/in.2 

will be demonstrated by the end of year 2001. Recently the hard disk 
industry has begun discussion of HDD areal density of 1Tb/in.2. 
 

 
Fig.1 Hard magnetic disk areal density growth [4] 

 
The increase of the areal density is of great economic and technical 

interest, and it has a huge impact on the price of the hard disk drive. Along 
with the increase of the areal density, the price per megabyte has been 
lowered from more than $100 per megabyte in 1980 to the present cost of 
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about 2 cents per megabyte. The following figure shows the price history 
over the past 20 years, showing a precipitous drop in the last few years. 

 
Fig.2 Price history of hard disk products [5] 

 
To obtain higher areal density, the head-to-media spacing or flying height 

must be lowered. Fig.3 shows the relationship between the head-to-media 
spacing and the areal density. 

 

 
Fig.3 Head-to-media spacing vs. areal density for IBM hard drives [5] 

 
In order to obtain the areal density of 100 Gb/in.2, the flying height of the 

slider will need to be below 10 nanometers. At these very low flying heights, 
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the performance of the slider becomes quite crucial and requires tighter 
control of flying height uniformity, roll profile flatness etc. 

 
To meet the increasingly rigorous multi-objective slider performance 

criteria, modern optimization technique can be used to solve this strongly 
nonlinear problem. The advantages of using numerical optimization are: 

 
• Reduction of design time. 
• Optimization provides a systematized logical design procedure. 
• Many design variables and constraints, which are not easy to visualize, 

can be handled by the optimization program. 
• Generally we can always get some design improvement by using 

optimization. 
• The optimization process is not biased by intuition or experience in 

engineering. Therefore it has a higher probability of obtaining 
improved nontraditional designs. 

• Optimization requires a minimal amount of human-machine interaction.   
 
In summary, high efficiency, simplicity and automaticity are the reasons 

to use optimization techniques when designing slider air bearing for HDD.   
 
 
2. NUMERICAL METHOD 

 
2.1   Introduction to the optimization method 

 
Optimization is the process of trying to minimize a function subject to 

conditions on the variables. This function is generally called the objective 
function or cost function. The conditions set on the variables are referred to 
as constraints. 

 
We can state the optimization problem as: 
Minimize {f(x) | x∈S}, where f(x) is the objective function, S is a set of 

feasible solutions to the problem known as the search space and x is a single 
point within the set. 

 
If there are no constraints set on the variables, the problem is referred to 

as an unconstrained problem. Otherwise it is called a constrained problem. 
The constraints reduce the size the set S by limiting the number of feasible 



 5

solutions. For the unconstrained and constrained problem, the mathematical 
description is basically the same. The only difference is the size of the set S. 
The constrained problem has a smaller set S, but the constraints also make 
the problem much more complicated. 

 
If the objective function f(x) and the constraints in a problem are both 

linear combinations of the independent variables, the problem is referred to 
as a linear programming problem. For this kind of problem, the solution can 
easily be found by the Simplex method or the interior point method. If the 
objective function is quadratic in nature, while its constraints take the linear 
form, we can decompose the problem and then find its solution by the 
Simplex method. If the objective function f(x) has a definite form, we can 
always find its solution in a predictable way. Unfortunately, many problems 
of interest are nonlinear problems. Air bearing design optimization problems 
have many objective functions with no distinct forms and the constraints can 
take many possible forms as well.  

 
For nonlinear problems, the most difficult issue is multiple optima. The 

objective function may have many minima and the one found might not be 
the absolute minimum point. Instead, we only have the assurance that it is a 
local optimum, i.e. a feasible point x* that is an optimal solution to the 
problem whose feasible region is the intersection of the original region and 
some neighborhood of x*. It is important to avoid just finding the local 
optimum. That’s why we adopt a global optimization technique. Global 
optimization is the search for the absolute minimum point of the objective 
function over the given search space. 

 
There are many global optimization algorithms, and they can be divided 

into two fundamentally different categories, i.e. deterministic algorithms and 
stochastic  algorithms. For the deterministic algorithms, every new search 
point is chosen in a definite way and no random components are involved. 
For the stochastic algorithms, random elements are introduced to generate 
the new search points. Deterministic algorithms can handle definite 
objective functions very well. The stochastic algorithms can be applied to a 
wider range of objective function types, but usually with longer run times.  
 
2.2  Family of simulated annealing algorithm 

 
The simulated annealing algorithm is a global optimization technique that 

is based on the concept of the physical annealing process where the 
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temperature of a system is gradually lowered in order to obtain its lowest 
energy state. 

 
Simulated annealing, which is a stochastic technique, was developed to 

handle nonlinear problems that are extremely difficult to minimize. It is 
known to be a powerful and useful tool for a wide variety of minimization 
problems of large nonlinear systems. It has also been widely applied in many 
areas, such as circuit design, chemistry, economics, biology, image 
processing, statistics etc. Research on the simulated annealing technique has 
also become very active in recent years.  

 
One of the most important elements of all simulated annealing algorithms 

is the Metropolis rule, which was developed by Metropolis et al. in 1953. 
We now briefly describe this important rule. 

 
 Recall that optimization is a process for minimizing an objective function 

or cost function E(xi). Here E is a function of the vector x where its 
components xn are derived from a certain set in a search space. The 
superscript i represents different states or designs generated during the 
process. The Metropolis rule incorporates the following three stages: 

 
1) Given a starting design xi with cost function E(xi), a small 

perturbation to xi is made to obtain a new design xj according to a 
probability function gT(xi). 
 

2) Computation of the cost function difference between the two designs 
by ∆E= E(xj) − E(xi). 
 

3) Decide whether or not to accept the new design. There are two cases: 
a. If ∆E ≤  0, the new design is always accepted. 
b. If ∆E > 0, the new design is accepted with the probability 

T

E

eEh
∆

−
=∆ )( , 

  where T is the cost function temperature. 
 

The procedure is repeated while the temperature T is gradually lowered. If 
the annealing procedure is carried out adequately, the system is expected to 
converge to the global minimum state. By accepting states with relatively 
higher cost function values according to some probability, which is called 
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the “hill-climbing” technique shown in the following figure, the Metropolis 
rule can help the process avoid getting trapped in a local minimum point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 “Hill-climbing” technique in Metropolis rule 
 

Several simulated annealing algorithms have developed, such as the 
Standard Boltzmann Annealing (BA), Fast Cauchy Annealing (FA) and 
Adaptive Simulated Annealing (ASA). The basic idea of all these algorithms 
is the same. The main differences are the selection of probability functions 
gT(x) and h(∆E), and the different cooling schedules resulting from those 
two probability functions. There are three components in all these simulated 
annealing algorithms: 

 
• gT(x): The probability density function in the state space of D 

parameters x={xn, n=1,D}, where the subscript T represents the 
temperature.  

 
• h(∆E): The probability function for acceptance of new cost 

functions given the most recent prior value. 
 

• T(k): The annealing “temperature” for step k, which is also referred 
to as the cooling schedule. It includes the parameter temperature 
and the cost temperature, which will affect the perturbation of the 
previous state and the acceptance probability of the new state 
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respectively. These two temperatures comply with the same cooling 
schedule. The cooling schedule is actually a result of the probability 
functions gT(x) and h(∆E). 

 
 

2.2.1 Standard Boltzmann Annealing (BA) 
 
The BA was first introduced as a stochastic method for implementing 

large dimension path integrals for statistical physics. [6] The method was 
developed for handling general minimization problems. The kernel of the 
algorithm is based on the probability density derived from Gaussian 
Markovian systems. The Boltzmann distribution is given by 

 

T
xD

T eTxg 22

2

)2()(
−−

= π , 
 

where  [ ]1,10 −∈
−
−

≡
ab

x
ηη

. The range [a, b] is the constraint set on certain 

points. η0 represents the previous point and η is the new point. So x can be 
viewed as the normalized deviation of η from the previous point η0 . T is the 
parameter temperature, which is the measure of the perturbation of the 
Boltzmann distribution g in the D-dimensional space η .  

 
The 3-D and 2-D views of the Boltzmann distribution are shown in Fig.5 

and Fig.6 respectively. These two figures show the change of the distribution 
as the temperature is lowered from 1 to 0.1. 

 
The acceptance probability of the BA is: 
 

T

E

e

Eh
∆

+
=∆

1

1
)(

   , 

 
where ∆E signifies the “energy” difference between the present and previous 
values of the energies (considered here as cost functions), i.e.,  ∆E= Ek+1 − 
Ek. T is the cost temperature. The lower the cost temperature, the lower the 
acceptance probability. 
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Fig.5 3-D view of the BA probability function gT(x) 

 
 

 
Fig.6 2-D view of the BA probability function gT(x) 
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Given gT(x), it has been proved [7] that a global minimum of E(x) will be 
obtained if T is selected to be not faster than 

 

)ln(
0

k
T

Tk =
  . 

 
The strict proof will not be introduced here. Instead, we only present a 

heuristic demonstration here to show that Tk will suffice to give a global 
minimum of E(x). In order to statistically assure that any point in x-space 
can be sampled “Infinitely Often in annealing Time” (IOT), it suffices to 
prove that the products of probabilities of not generating a state x IOT for all 
annealing-times successive to time k0 yield zero, 
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If we put the expression of Tk into gT(x), then we obtain 
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2.2.2 Fast Cauchy Annealing (FA) 

 
 
The methodology of BA can be extended for use with any function g that 

satisfies ∏
∞

=

=−
0

0)1(
kk

kg  in conjunction with a proper cooling schedule 

T(k). 
 
It may be desirable for the function g to enable a faster convergence rate. 

The use of a Cauchy distribution is a good example of how this may be 
achieved. The Cauchy distribution is defined by the following equation: 
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The 3-D and 2-D views of the Cauchy distribution are shown in Fig.6 and 

Fig.7 respectively. These two figures show the change of the distribution as 
the temperature is lowered from 1 to 0.1. 

 
The simulated annealing procedure using the Cauchy distribution 

converges to a global minimum with temperature declining not faster than 
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Thus the FA method statistically has an annealing schedule exponentially 

faster than the method of BA. 
 

 

2.2.3 Adaptive Simulated Annealing (ASA) 
 
 
Many physical problems have a D-dimensional parameter space. Different 

parameters have different finite ranges, given by physical considerations, 
and different annealing-time-dependent sensitivities, measured by the 
curvature of the cost function at local minima. BA and FA have g 
distributions that sample infinite ranges, and there is no provision for 
considering differences in each parameter-dimension, e.g., different 
sensitivities might require different cooling rates. Adaptive Simulated 
Annealing (ASA) was developed to meet the following goals: 
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Fig.6 3-D view of the FA probability function gT(x) 

 
 

 
Fig.7 2-D view of the FA probability function gT(x) 
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• Obtain a solution from a bounded parameter space instead of an 
unbounded space. 

• Use a faster cooling schedule so as to get faster convergence. 
• Consider the sensitivities of for each parameter-dimension, i.e., 

different constraint points should have different cooling rates.  
 
Each of the parameters α i at annealing time k is bounded within the range 
 

[ ]ii
i
k BA ,∈α   . 

 
The parameters are generated at each new step by a random variable xi 

∈[-1,1] as follows: 
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Define the generating function as 
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The 3-D and 2-D views of this distribution are shown in Fig.8 and Fig.9 

respectively. These two figures show the change of the distribution as the 
temperature is lowered from 1 to 0.1. 

 
Then the cumulative probability distribution is 
 

∏∫ ∫ ∫ ∏
=

− − −
=

≡=
D

i

ii
T

x Dix x D

i

i
TT xGdxdxdxxgxG

D

1
1

21

1 1
1

)()()(
1 2

LL   , 

 
where 
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Fig.8 3-D view of the ASA probability function gT(x) 

 
 

 
Fig.9 2-D view of the ASA probability function gT(x) 
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xi is generated from the uniform distribution U[0,1] through a parameter 

ui ∈U[0,1]: 
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For the cooling schedule 
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a global minimum can be obtained, i.e., 
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The parameter ci is controlled by the following relations: 
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where kfi and Tfi are the final time step and the final parameter 

temperature. 
 
The acceptance probability function is defined as: 
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For a multi-dimensional search the cost function value generally has 
different sensitivities with respect to different parameters. So at any 
annealing time, it is sensible to attempt to “stretch out” the ranges over 
which the relatively insensitive parameters are being searched, as compared 
to the ranges of the more sensitive parameters. In the algorithm, that is 
equivalent to resetting the annealing time k for the different parameters. 

 
This mechanism is referred as “Re-annealing” or “Adaptation” and it is 

the reason why the algorithm is called Adaptive Simulated Annealing. The 
adaptation is accomplished by calculating the energy sensitivities with 
respect to the different parameters at the most current minimum value of the 
cost function: 
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The annealing time ki is rescaled for each parameter α i by making use of 

the maximum sensitivity smax=max(s1, s2, …sD) : 
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Ti0 is set to unity at the beginning of the search, which is ample to span 

each parameter dimension. 
 
 

2.2.4 Summary 
 

The following table gives a comparison among these three simulated 
annealing algorithms: 
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 Among these three algorithms, ASA has the fastest cooling rate since the 

temperature is decreased exponentially. That means it has the fastest 
convergence rate. Also, ASA features an adaptive re-annealing mechanism. 
This unique feature enables the ASA to set different cooling rates for 
parameters with different sensitivities. These properties make ASA the most 
efficient and robust algorithm among the three. 

 
 
  

3.  IMPLEMENTATION OF THE ALGORITHMS 
 
3.1  Structure of the optimization program 
 

To implement the optimization, two closely integrated parts are needed. 
One is the optimization algorithm, and the other is the solver. 
 

The optimization algorithm is used to generate different sample designs, 
which are then sent to the solver for calculation of the parameters. From the 
results the algorithm evaluates the quality of the current design and 
generates a new design based on the result. 
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Fig.10 Structure of the optimization program 
 
 

Here we use the three simulated annealing algorithms, including the 
Standard Boltzmann Annealing (BA), Fast Cauchy Annealing (FA) and the 
Adaptive Simulated Annealing (ASA). The solver is the CML slider ABS 
design programs, which were developed by the Computer Mechanics 
Laboratory of University of California at Berkeley, including the CML 
rectangular mesh solver Quick419 and the CML triangular mesh solver 
Quick5. 
 
 
3.2  Flow chart of the optimization program 
 
 

The flow chart of the optimization program is shown below, where N 
represents the number of the designs, Nmax the maximum number of designs 
prescribed, T the annealing temperature and Tmin the prescribed minimum 
annealing temperature.  

Optimization 
Algorithm 

Solver 

Simulated 
Annealing 

CML Steady 
Solvers 
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Fig.11 Flow chart of the CML optimization program 
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4.  AIR BEARING DESIGN OPTIMIZATION PROBLEM   
 

 
The optimization problem defined here is: given a prototype slider ABS 

design, optimize it to get uniform flying heights near the target flying height 
and at flat roll profile. Also increase its air bearing stiffness if possible. 

 
Here the NSIC 7nm flying height slider is used as the prototype slider. 

The rail shape and the 3-dimensional rail geometry are shown in Fig. 12 and 
Fig. 13, respectively. 

 
 

    
 

Fig.12 Rail shape of the initial ABS design 
 
 

 
 

Fig.13 3-D rail shape of the initial ABS design 
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The slider is a Pico slider (1.25×1.0mm), which flies over a disk rotating 
at 7200 RPM. Its flying heights are all around 7nm from OD to ID. Now we 
want to lower its flying heights to the target flying height, i.e. 5nm and at the 
same time maintain a flat roll profile at the three different radial positions 
OD, MD and ID. The objective function or cost function is defined as: 

 
1× (FH Max Difference term) + 9 × (FH term) + 1 × (Roll term) + 1 × 

(Roll Cutoff term) + 1 × (Pitch Cutoff term) + 1 × (Vertical Sensitivity term) 
+ 1 × (Pitch Sensitivity term) + 1 × (Roll Sensitivity term) + 1 × (Negative 
Force term) 

 
So the goal of the optimization is to minimize this multi-objective 

function under the given constraints. Note that since we are primarily 
concerned with the flying heights, we put a heavier weight (9) on that term. 
All the objective terms are normalized and their definitions can be found in 
the “CML optimization program version 2.0 user’s manual”. The constraints 
we defined here are shown in the following figure. The definition of these 
constraints can also be found in the user’s manual.  

 
Fig.14 Constraints defined on the initial design 

Original 
constraints 

Symmetric 
constraints  

Relative 
Constraints

Relative 
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5.  SIMULATION RESULTS 
 

With the same initial design, constraints and objective function, we 
carried out the optimization using the BA, FA and ASA respectively. 

 
The following three figures show the variation of the objective function 

values during the optimization process for BA, FA and ASA respectively. 
 

 
Fig. 15 Variation of the objective function value for BA 

 

 
Fig. 16 Variation of the objective function value for FA 
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Fig. 17 Variation of the objective function value for ASA 

 
In all of the above figures, Costini means the initial objective function 

value, and Costopt means the objective function value for the final optimized 
design. The Percentimp signifies the percentage of improvement for the cost 
function value which is defined as: 

 

%100×
−

=
ini

optini
imp Cost

CostCost
Percent

 
 
 Ngen, Nign, Nacc, Nopt in these figures represent the number of the designs 

generated, ignored, accepted and optimized, respectively. 
 
The dark circles represent the optimized designs generated during the 

process. The optimized designs are the ones with the best-so-far objective 
function values. We know that the lower the objective function value, the 
better the design. 

 
The objective function values for the three final optimized designs by 

using BA, FA and ASA, respectively, are 5.301, 4.574 and 4.387. That 
means ASA obtained the best optimized design in this case. Also, ASA had 
the fastest convergence rate. This can be verified by the following figure, 
which shows the cost temperature variation during the optimization process. 
ASA had the fastest cooling rate while BA had the slowest one. 
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Fig.18 Cost temperature variations for BA, FA and ASA 

 
The so-called “freezing” phenomenon for FA can be observed in Fig. 16. 

After certain stages, in this case, after generating about 200 designs, the 
fluctuation of the cost function value becomes much smaller. This indicates 
the parameter temperature is so low that the newly generated designs are 
very small perturbations from the previously accepted design. Thus the new 
designs have been “frozen” there. This is due to the fast cooling rate of FA. 
(This phenomenon is not observed for BA at this stage, since its cooling rate 
is quite slow) The question arises: if ASA has an even faster cooling rate 
than FA, why was there no freezing phenomenon for ASA? The answer is 
that ASA has an adaptive re-annealing process. Different parameters will 
have different cooling rates according to their different sensitivities. For 
those parameters with lower sensitivities, their temperatures get raised to let 
them vary more freely in the following stages. So this mechanism actually 
lets ASA avoid the “freezing” phenomenon while maintaining its fast 
cooling rate. Therefore ASA is more efficient and more robust than BA or 
FA. 

 
The comparison between the initial and optimized designs produced by 

BA, FA and ASA are shown in the following three figures, in which the 
green lines (light-colored) show the rail shape of the initial design and the 
blue lines (deep-colored) show the rail shape of the optimized design. 
Similar results are obtained by all these algorithms. 
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Fig.19 Optimization results by using BA 

 

 
Fig.20 Optimization results by using FA 

 

 
Fig.21 Optimization results by using ASA  
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We also show the variation of the objective function terms for the three 
optimized designs by using BA, FA and ASA in the following figures. 

 

 
 

Fig.22 Variation of the objective function terms by using BA 
 

 
 

Fig.23 Variation of the objective function terms by using FA 
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Fig.24 Variation of the objective function terms by using ASA  
 

All three algorithms provide impressive minimization in the Flying 
Height term, i.e. the 2nd objective function term, which was weighted more 
heavily. There was also improvement for the roll term as well as some 
improvement on the Vertical Sensitivity term and the Pitch Sensitivity term. 
But the Roll Sensitivity was not improved. Some objective terms such as the 
Pitch cutoff term and Negative Force term remained zero for all of the 
optimized designs. The combinatorial effects are the minimization of the 
total value of the objective function. By minimizing the multi-objective cost 
function we obtained the final optimized designs. 

 
The comparison of the performance parameters of most concern, i.e. the 

flying heights and the rolls, are given in the following two figures. 
 
It is clear that all of the optimized ABS designs have quite constant flying 

heights around the target flying height, which is 5nm. Also they all maintain 
a reasonably flat roll profile. The optimized design obtained by using ASA 
has the most uniform flying height profile and the best overall performance. 
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Flying height comparison among the initial design and the 
optimized designs obtained by using BA, FA and ASA
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Fig.25 Flying height distribution from OD to ID for different designs 

 
 

Roll comparison among the initial design and the optimized 
designs obtained by using BA, FA and ASA
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Fig.26 Roll distribution from OD to ID for different designs 
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6.  CONCLUSION 
 

 
Slider ABS designs that satisfy very strict multi-objective goals are of 

great importance for the performance of magnetic hard disk drives. This is a 
strongly non-linear problem. 

 
Use the simulated annealing optimization technique, which is a global 

stochastic optimization method, provide the optimized designs automatically 
for a given initial design and constraints. 

 
By putting different weights on different objective function terms, the 

objective function steers the designs to its goals.  
 
Three main members of the simulated annealing family, namely the 

Standard Boltzmann Annealing (BA), the Fast Cauchy Annealing (FA) and 
the Adaptive Simulated Annealing (ASA), were shown to produce similar 
optimized ABS designs with greatly improved performance, i.e. uniform 
flying heights around the target flying height, flat rolls and improved 
stiffness. This illuminates that the simulated annealing algorithm is quite 
suitable for the optimization of the ABS designs. 

 
The ASA was found to be the most efficient and robust scheme due to its 

fastest cooling schedule and its unique adaptive re-annealing mechanism. 
These features gave it the fastest convergence rate and let it effectively avoid 
the “freezing” phenomenon, which is generally a side-effect of the fast 
cooling rate. FA also had a faster convergence rate than BA. 

 
Among the optimized designs obtained by using BA, FA and ASA, the 

one obtained by ASA had the most uniform flying height profiles and the 
smallest objective function value, which means its design had the best 
overall performance. 
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Appendix A 
 
Sampling from a prescribed distribution [16]  

 
During the process of optimization, the generation of new design 

requires the generation of representative values of variables that are 
distributed in a prescribed manner. This is done through random numbers 
and is a key step in the implementation of simulated annealing 
algorithms.  

 
Here we assume u is a random number which is uniformly distributed 

between 0 and 1, i.e. u∈U[0,1]. 
 
The distribution of the variable x can be described by a normalized 

probability density function g(x) such that the probability of a value of x 
lying between x and x+dx is given by g(x)dx. 

 
If x∈[a, b], then the total probability is 
  

1)( =∫
b

a
dxxg

  . 
 

Now let’s define the cumulative distribution function G(x) as 
 

∫=
x

a
dxxgxG )()(

  . 
 

Then we may invert the cumulative distribution function G(x) and get  
 

)(Gxx =
  . 

 
Next we can generate a random number u and set it equal to G. Then 

the representative value of x is given by 
 

)(uxx =
  . 
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This method is therefore referred as the inverse-cumulative method. 
The operation of this method is shown graphically in Fig. A1. 

 

a b 
x 

1.0 

u 

0.0 

g(x)dx 

dx 

g(x)  

G(x)  

Fig. A1  Relationship between the typical normalized probability density 
function g(x) and the cumulative distribution function G(x) 

 
First let’s consider a trivial example in which the x is uniformly 

distributed between a and b. For this case g(x) is a constant and we have 
 

g(x) = 1/(b-a)  . 
 

So, from the above we get 
 

ab
ax

dxxgxG
x

a −
−== ∫ )()(

  . 
 

Inverting G(x), we have 
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)( abGax −×+=
  . 

 
Then let G be equal to a random number u∈U[0,1] to get 
 

)( abuax −×+=
  . 

 
For the case of the Adaptive Simulated Annealing algorithm (ASA), 

the probability density function is defined as 
 

∏ ∏
= = ++

==
D

i

D

i

i
i

i

ii
TT

T
Tx

xgxg
1 1 )

1
1ln()(2

1
)()(

   , 

 
where  T stands for the annealing temperature and D the dimension of 
parameter space. We can easily verify that 
 

1)(
1

1

211

1

1

1
1

=∫ ∫ ∫ ∏− − −
=

Di
D

i

i
T dxdxdxxg LL

  . 
 

Its cumulative probability function is  
 

∏∫ ∫ ∫ ∏
=

− − −
=

≡=
D

i

ii
T

x Dix x D

i

i
TT xGdxdxdxxgxG

D
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where 
 

)
1

1ln(

)1ln(

2
)sgn(

2
1

)(

i

i

i

i
ii

T

T

T

x

x
xG

+

+
+=

   . 
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Then as before, we can generate a set of random numbers ui from the 
uniform distribution ui∈U[0,1] . After inverting the cumulative 
distribution function and letting  

 
iii

T uxG =)( , 
 

we get 
 

]1)
1

1[()sgn(
12

2
1 −+−=

−iu

i
i

ii

T
Tux

  . 
 

So far we have discussed the inverse-cumulative method and its 
applications. However, this method can be used only when it is possible 
to invert the cumulative distribution function G(x) to obtain an explicit 
function for x. But sometimes it’s impossible to obtain the inverse 
cumulative distribution function, if for example, the probability density 
function is 

 

2

2

2

1
)(

x

exg
−

=
π   , 

 
then 
 

∫ ∞−








+==

x x
erfdxxgxG

22
1

2
1

)()(    . 

 
This expression can’t be inverted to give x in terms of G and thus the 

inverse-cumulative method fails. 
 
The general alternative is to apply the acceptance-rejection method. 

In order to make direct use of the random number u, the probability 
function is normalized by dividing it by its maximum value gmax to give 
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max

)(
)(ˆ

g
xg

xg =   . 

 
A value of x is then chosen at random on the basis of x being 

uniformly distributed between its limits, i.e. 
 

)( abuax −×+=   . 
 

The function )(ˆ xg  is then calculated for this value of x and a second 
random number is generated. The value of x is then either accepted or 
rejected according to whether )(ˆ xg  is greater or less than this second 
random number. This procedure is repeated until a value of x is accepted. 
Since the random number u is uniformly distributed between 0 and 1, the 
probability of a particular value of x being accepted is clearly 
proportional to )(ˆ xg  and the accepted values conform to this distribution. 

 
For the Boltzmann Annealing (BA) and Fast Annealing (FA) of the 

simulated annealing algorithm family, when the inverse-cumulative 
method fails because we can’t invert their cumulative distribution 
functions, we can use the acceptance-rejection method.  

 
For the Boltzmann Annealing, the probability density function is 
 

T
xD

T eTxg 22

2

)2()(
−−

= π   . 
 

So 
 

T

x

T

T
T e

g
xg

xg 2

max

2

)(
)(ˆ

−

==   . 

 
Then the first random number u1∈U[0,1] can be generated. If we 

denote η0 as the previous point and η as the new point, and define the 
range of this point as [a, b], then 
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)(1 abua −+=η   . 
 

From this value of η we can obtain x since x is defined as 
 

[ ]1,10 −∈
−
−

≡
ab

x
ηη

  . 

 
Then the value of )(ˆ xgT  follows from x. Next the second random 

number u2∈U[0,1] is generated and compared with the value of )(ˆ xgT . If 
)(ˆ xgT  is greater than u2 , the x value gets accepted. Otherwise the x value 

is rejected and the above procedure is repeated until a value of x is 
accepted. 

 
For  Fast Annealing, the probability density function is 
 

( ) 2
1

22

)( +

+
= DT

Tx

T
xg

  . 

 
By following the above procedure we again get the value of x 

according to this prescribed probability density distribution. 


