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Abstract

Three-dimensond rough surfaces were generated usng a modified two-variable Weierdrass-
Manddbrot function with fractd parameters determined from red surface images. The number and sze
of truncated asperities were assumed to follow power-law relations. A finite dement modd of arigid
spherein normad contact with a semi-infinite eastic-plastic homogeneous medium was used to obtain a
conditutive rdaion between the mean contact pressure, red contact area, and corresponding
representative strain. The contact model was extended to layered media by modifying the conditutive
equation of the homogeneous medium to include the effects of the mechanica properties of the layer and
substrate materids and the layer thickness. Finite dement smulations of an dadic-plagtic layered
medium indented by a rigid sphere validated the correctness of the modified contact model. Numerica
results for the contact load and redl contact area are presented for real surface topographies resembling
those of magnetic recording heads and smooth rigid disks. The modd yidds ingght into the evolution of
eladtic, dadtic-plagtic, and fully plagtic deformation at the contact interface in terms of the maximum local
surface interference. The dependence of the contact load and real contact area on the fractal parameters

and the carbon overcoat thickness is interpreted in light of smulation results obtained for a tri-pad



picodider in contact with a smooth thin-film hard disk.

1. Introduction

Understanding of contact between rough surfaces is important in many engineering fidds and
has direct implications on the product performance of various leading-edge technologies, such as
computer hard disk drives and microgectromechanical systems. In order o obtain andytica solutions
for the subsurface stress and strain fields, the contact pressure and real contact area must be determined
firgt. Although various andytica methods for obtaining such information have been reported [1-4], these
methods are fairly complex and programming is often inhibited by convergence problems.

In view of advances in sophigticated numerica methods, such as the finite dement method, and
remarkable enhancements in computationa capabilities, such shortcomings were overcome in- more
recent contact mechanics studies. Johnson [5] andyzed the indentation response of eadtic-plagtic solids
and reported the successive occurrence of dadtic, dadic-plagtic, and fully plagtic deformation with
increasing indertation depth. Mesarovic and Fleck [6] obtained deformation maps for strain-hardening
homogeneous media indented by a rigid sphere and showed that the fully plagtic region comprises two
regimes. a amilarity regime for smal contact Szes and a finite-deformation pladticity regime for large
contact Sizes. Finite dement smulations of indented layered media by Kennedy and Ling [7], Van der
Zwaag and Fidd [8], Komvopoulos [9,10], and Tian and Saka [11] have shown a pronounced effect
of the layer thickness and mechanica properties on the deformation behavior. Results from athree-
dimensond finite dement andyss of arigid sphere indenting or diding over an eagtic-plagtic layered
medium performed by Kra and Komvopoulos [12] have illustrated the effects of the layer materid

properties, coefficent of friction, and norma load on the diding and resdud dress fidds and the



forward plastic flow at the contact region.

Although sgnificant ingght into the mechanics of contacting solids has been obtained from the
aforementioned andyticd and numericd gudies, the information obtained can only be rated to the
macroscopic deformation behavior because of the assumed idedly smooth surfaces. However, rea
surface topographies comprise geometrica features spanning awide range of length scdes, i.e., agamilar
topography is obtained after arbitrary magnification Knowledge of the locd deformation behavior at
surface summits (asperity microcontacts) where actual contact occurs is of great importance to the
durability of many engineering devices. One of the primitive contact models that accounts for roughness
effects is attributed to Greenwood and Williamson [13] who developed an asperity deformation
criterion based on a probabilistic mathematical modd of the surface height didtribution. It was assumed
that the asperity heights follow a normd digribution function, while the radii of curvature and lateral
digribution of the asperities are invariant. Larsson et al. [14] examined theoreticdly the initid flattening
of rough surfaces and reported alinear contact area-load relation for a perfectly plastic materid and an
exponentid asperity height digtribution, and a nonlinear contact pressure-area relation for a norma
agperity height digtribution and strain hardening materid behavior.

However, most engineering surfaces exhibit random and multi-scae topographies that can be
characterized by fractal geometry [15,16]. The advantages of usng fractd geometry for surface
description include scale invariance (i.e., independence of the measurements on the instrument resolution
and the sample length) and sdf-affinity (i.e, as the magnification increases finer detalls of surface
features amilar to the origind profile emerge). These important properties of fractd geometry make it
appropriate for characterizing engineering surfaces over a wide range of length scales. The paper that,

presumably, brought fractasto the attention of the engineering community isthat of Mgumdar and Tien



[17] who examined the roughness of sted surfaces and a textured magnetic thin-film disk and observed
gatigicdly smilar surface images a various magnifications. It was reported that the surface roughness
could be characterized by a Welerstrass-Mandelbrot (W-M) fracta function [16,18]. One of the first
contact analyssto use afractal description for the surface topography isthat of Mgumdar and Bhushan
[19]. They obtained a relation for the red contact area and edimated the criticdl asperity Sze
demarcating the trangtion from dadtic to fully plagtic asperity deformation It was shown that smdl
asperities deform plastically while large asperities deform eadticdly, aradicdly different result from what
is predicted from the modd of Greenwood and Williamson [13]. Blackmore and Zhou [20,21]
introduced a fractd-based functiond model for anisotropic rough surfaces and argued that a very
extengve class of engineering surfaces possesses surface height digtributions that depend in sgnificant
ways on fundamentd fracta parameters.

Ciavardlaet d. [22] consdered normd contact between an dastic half-space and arigid fracta
surface, whose profile was defined by a Welerdrass series, and doserved that, at large wavelength
numbers, the contact area exhibited limiting power-law fracta behavior. Wang and Komvopoulos [23-
25] developed afracta contact theory for the temperature rise on eastic-plastic rough surfaces diding in
the dow and fast speed regimes and showed that a continuous trangtion from eadtic to fully plastic
deformation (i.e., eastic-plastic deformation) occurs a asperity microcontacts. It was also indicated that
the adtic-plagtic regime could be significantly broad, depending on the materid properties and fracta
dimensons of the diding surfaces[24]. More recently, Y an and Komvopoulos [26] introduced a three-
dimensond fractd mechanics theory for eagtic-plastic surfaces in norma contact and obtained
numerica results for the average contact pressure and red contact area in terms of the mean surface

Separation distance.



Despite important information about contact deformation at smooth and rough surfaces obtained
from the previous studies, a comprehensive contact analyss of dadtic-plagtic layered media exhibiting
rough surface topographies (characterized by fracta geometry) has not been performed yet. Thus, te
main objective of the present study was to bridge the gap between contact mechanics gpplicable to a
sngle asperity microcontact and interactions occurring at multi-scale contact interfaces of layered media
possessing redidic surface topographies. To accomplish thisgod, afinite dement mode was devel oped
in order to obtain relations between the mean contact pressure and red contact area for a single
sphericd asperity indenting an dastic-plastic homogeneous medium in terms of a representative drain,
which is afunction of the surface interference distance and the mechanica properties of the medium.
The condtitutive mode was extended to layered media to account for the mechanica properties of the
layer and subgtrate materias and the effect of the layer thickness. For multi-scale surface description,
three-dimensiond fracta geometry was used to characterize the surface topography. The effects of the
fractal parameters and layer thickness on the contact load and red contact area are interpreted in light

of results obtained for atri-pad picodider in contact with a smooth thin-film disk.

2. Surface Modeling

The topographies of engineering surfaces have been traditiondly quantified in terms of the height
variance, dope, and curvature of surface summits. The values of these parameters depend on the
ingrument resolution and the sample length. However, a redistic multi-scae roughness description can
only be accomplished by usng scale-independent parameters, such as the scde-invariant parameters
used in fracta geometry [15,16]. A three-dimensiond fractal surface topography can be generated using

amodified (truncated) two-variable W-M function[15,16] that can be written as[26]
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where L isthe sample length, G is the fractd roughness, D is the fractd dimension (2 < D < 3), g(g>
1) isa scding parameter, M is the number of superposed ridges used to congtruct the surfaces, n is a
frequency index, with n_, =int [Iog( L/L,)/log g] representing the upper limit of n, where Ls is the
cut-off length, andf | | isarandom phase. The scaing parameter goontrols the dengty of frequenciesin

the surface profile. Based on surface flatness and frequency didtribution dengty consderations, g= 1.5
[26]. For atruncated series (i.e, starting a n = O rather than n = -¥ (Eq. (1)), the scaling property is
agoproximate, i.e., scaing is satisfied only to within a amdl additive term [27]. Thus, the surface function
given by Eq. (1) possesses ascde-invariant (fractd) behavior [18] only within a finite range of length
scales, outside of which, the surface topography can be represented by a determinigtic function [24]. In
practice, the smallest length corresponds to the instrument resolution and the upper length to the length
of the profile. Because frequencies outsde the range determined by the lower and upper waveengths
do not contribute to the observed profile, sdf-amilarity issatisfied at al scaes only gpproximately [28].
The fractal roughness G is a height scading parameter independent of frequency (within the scde range
that fracta power-law behavior is observable). The magnitude of the fractd dimenson D determines the
contribution of high and low frequency components in the surface function z(x,y). Thus, high vdues of D
indicate that high-frequency components are more dominant than low-frequency components in the
surface topography profile. The surface height function given by Eg. (1) is continuous, non-
differentigble, scde-invariant (in the range determined by the upper and lower wavelengths used in the
truncated series), and sdf-affine (asymptoticaly sdlf-affine according to the andyds of Blackmore and

Zhou [20,21]). The latter implies that as the surface is repeatedly magnified, more and more surface



features gppear and the magnified image shows a close resemblance to that of the origind surface
obtained a a different scde. These properties make the function given by Eq. (1) suiteble for
congtructing surfaces possessing topographies dosdy resembling the actud surfaces from which the

fractal parameters D and G were determined experimentaly.

3. Elastic-Plastic Constitutive M odel

A system of two contacting rough surfaces can be replaced by an equivdent sysem of a flat
deformeble surface with an effective dastic modulus E = [[1- nZ)/E, +(1- nZ)/E, |, where n,
n,,and E,, E, arethe Poisson'sratios and dastic moduli of the two interacting surfaces, respectively,

and arigid rough surface with a power spectrum equd to the sum of the power spectra of the two
origind surfaces. It is assumed that surface contact comprises numerous spherical asperity
microcontacts, which are sufficiently gpart from each other in order for asperity interactions to be
neglected as secondary. This is a reasonable assumption for the relatively smal interference distances
(or light contact loads) consdered in this study. Based on these assumptions and knowledge of the
mean contact pressure and real contact area at asperity microcontacts, the total contact load and rea
contact area can be obtained usng an integration procedure. It is necessary, herefore, to derive a
condtitutive modd for a single asperity microcontact.

In aprevious study [26], the stress-strain behavior of asperities was assumed to be either purely
dadtic or fully pladic, i.e, the intermediate range of dadtic-plagtic deformation was not consdered.
Hertz theory can be used to andlyze contact of eadicaly deformed asperities. For fully plagtic
microcontacts where the plastic zone is not contained by dastic materid, the mean contact pressure is

equa to the materid hardness. However, as the interference distance at an asperity microcontact



increases, a gradud trangtion from eadtic to fully plastic deformation occurs. In this regime, the plastic
zone issmdl and fully contained by surrounding dastic materid and the overdl deformation behavior is
dadic-plagtic [5,6]. Therefore, to accurately determine the contact force between two gpproaching
surfaces, the stress-gtrain condtitutive relation and the real contact area corresponding to the eagtic-
plastic deformation regime should be incorporated into the previous dastic-fully plastic contact model
[26].

A conditutive relation was obtained from afinite dement modd of arigid sphere in normd
contact with an dadtic-perfectly plastic homogeneous hdf-space modeled by axisymmetric eight-node
quadratic dements. The finite dement mesh conssted of 5395 elements comprisng 16622 nodes. The
gmulaiors were performed in 12 steps of 80 increments each. The typical computationd time on an
IBM RS6000 (580 model) workstation was about 18000 CPU seconds. The multi-purpose code
ABAQUS was used to perform the finite d ement amulations. The mean contact pressure, py, ad red
contact area, a, were obtained in terms of the interference distance between the rigid sphere and the
surface of the deformable medium, d. Figures 1 (& and 1(b) show the normdized mean contact

pressure, p,, /s , and the truncated-to-real contact arearatio, afa, versus the representative strain,
E*d/s,r¢ where sy is the yidd drength of the deformable medium and r' is the radius of the

truncated contact area ad. The representative drain is different from that used by Johnson [5] to
describe the evolution of deformation in an eadtic-perfectly plastic materid indented by a sphere,
definedas E*r /s R, wherer istheradius of thereal contact areaand R is the radius of curvature of
the rigid sphere. However, because the radius of the real contact area is not known from the geometric

truncation, the interference and truncated radius were used to determine the representative strain.



Eladtic, dadtic-plagtic, and fully plagtic deformation regimes are diginguished in Fg. 1. Increasng the
surface interference (or representative strain) yields a continuous increase of the mean contact pressure
accompanied by a decrease of the contact area ratio. Figure 2 shows a comparison between results
obtained with the present finite dement modd and the classicd Hertz theory for an dadtic hdf-space
indented by arigid sphere. The favorable comparison of the results of the two methods illudtrates the
suitability of the finite dement modd (for the present andyss involving only globa variables, such as the
contact pressure and contact area) and the correctness of the assumed boundary conditions.

The smulation results shown in Fg. 1 were used to derive rdations for the mean contact
pressure and contact area in terms of the loca interference and eagtic-plastic materia properties. Thus,
from curvefitting, the following condtitutive relations were obtained.
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Results for the mean contact pressure and contact radius obtained from Egs. (2)-(5) were found
to be in good agreement with finite eements results reported by Mesarovic and Fleck [6] for eagtic-
plastic homogeneous solids indented by arigid sohere. In particular, the deformation regime defined by
Eq. (5) is consgtent with the plagtic amilarity regime reported in Ref. [6].

The condtitutive rdations given by Egs. (2)-(5) are for ahomogeneous e astic-plastic haf-space.
However, it is possible to extend the present contact modd to layered media by appropriatey
modifying the above rdations to include the effects of the mechanicad properties of the layer and
substrate materias and the layer thickness. This was accomplished by introducing the equivaent materia
propertiesin the condtitutive relaions given by Egs. (2)-(5). Assuming thet the yidd strength is equd to

one-third of the materia hardness[29], the equivaent yield strength of a layered medium, s, can be

expressed as [30]
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wheret is the overcoat thickness, E is the dagtic modulus, and subscripts | and s denote the layer and
substrate materia properties, respectively. The equivaent effective dagtic modulus of alayered medium,

E, ,isgiven by [31]
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where a isageometrica factor that depends on the indenter shape and can be determined numericaly,
N is the Poisson’s ratio, and subscript i denotes the indenter materia. It is noted that only the dadtic

properties of the indenting surface are included in Eq. (7), i.e., plastic deformation is confined only in the

10



layered medium (Eq. (6)). Based on Egs. (6) and (7), the nondimensiona representetive dtrain for a

layered medium, E_d's, . r', can be obtained as a function of the known mechanica properties of the

indenter, layer, and substrate materids, layer thickness, and surface interference distance.

To vdidate the modified contact modd, finite dement smulation results for an eadic-plagtic
layered medium indented by a rigid sphere were contrasted with results obtained from the contact
mode (Egs. (2)-(5)), using Egs. (6) and (7) to account for the effects of the layer (overcoat) thickness
and materid properties. The finite dement mesh, shown in Fig. 3, conssts of 12063 axisymmetric eght-
node isoparametric eements comprising 34337 nodes. The nodes of the left verticd boundary were
fixed againg digolacement in the horizonta direction, whereas the nodes of the bottom boundary were
fixed againg digplacement in the verticd direction Simulations were performed for an overcoat
thicknesst = 2, 5, and 10 nm. The eagtic modulus and yield strength of the overcoat materid were set
equa to 114 and 5.67 GPa and those of the subgtrate materia equa to 130 and 2.67 GPa,
repectively. To account for geometric nonlinearities resulting from large displacements, an updated
Lagrangian formulaion was adopted in the finite dement andyss. The typicd computationd time for a
smulation on a Pentium 111 550 computer was approximeately 40000 CPU seconds.

Figure 4 shows the normalized mean pressure as a function of the modified representetive srain.
The symbols represent finite eement data corresponding to different overcoat thickness vaues. The
solid curve is the solution obtained from the modified contact modd (Egs. (2)-(7)). The figure shows
that the results are in excellent agreement. In addition to the mean contact pressure, it is dso necessary
to verify whether the prediction of the real contact area was accurate. Figure 5 shows a comparison

between results for the normalized contact radius obtained from the modified contact modd, rew/R (with
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equivalent materia properties given by Egs. 6) and (7)) and the contact radius determined from the
finite dement andyss of the indented dadtic-pladtic layered medium, r /R, where R is the radius of the
rigid sphere. The best-fit line to the data yidds a correlation factor of 0.9992. The error between
andyticd and numericd resultsis lessthan 5%. In view of Figs 4 and 5, it may be concluded that the
contact congtitutive modd originaly developed for homogenous media can be extended to layered
media by introducing the equivalent materid properties of the layered medium. The conditutive relations
for the mean contact pressure and red contact areg, reflecting a continuous trangtion from eastic to fully
plastic deformation, were used in the three-dimensiona contact analyss of rough surfaces characterized

by fractal geometry described in the following section.

4. Surface Contact M odel

As mentioned previoudy, the equivaent contact model of two rough surfaces comprises an
eladtic-plastic medium in contact with arigid rough surface. The mechanica properties of the medium
and the topography (described by fracta geometry) of the rough surface are equivaent to those of the
contacting surfaces. As the rough surface approaches the deformable medium, asperity microcontacts
are established over the smulated apparent contact area. Depending on the local surface interference
and aspeity radius, dadtic, dadic-plagtic, or fully plagtic deformation may occur at asperity
microcontacts. Following an andytica procedure Smilar to that detailed elsewhere [26], the tota
contact load and red contact area a a given maximum surface interference disance, dnx, Was

caculated from the total truncated contact area of the rough surface, S, given by,

S= Qa'La'n(a')da' , ©)



where a'is the truncated area of a microcontact, a', and a's are the largest and smallest truncated
microcontact aress, respectively, and n(a') is the truncated asperity Sze digtribution function. At a

given surface interference, the number of microcontacts with truncated areas between a' and a'+da’ is

givenby n(a')da’. For a continuum description, the Size of the smallest microcontact should be grester
then the aomic dimengons; thus, the diameter of the smallest truncated area, a', is assumed to be
equa to Sx timesthe lattice dmension of the overcoat materid.
The number of truncated asperities, N, with areas greater than a particular truncated area, a', is
assumed to follow the power-law relation [15],
& 57"
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Consequently, the truncated asperity size distribution function can be expressed as[26]
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Subgtituting Eg. (10) into Eq. (8), the total truncated area of the fractal surface can be written as
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At a given surface interference, the tota truncated contact area, S', can be obtained by
numerica integration Usng a grid mesh of sze equd to the diameter of the smalest truncated

microcontact, a¢, the number of surface points above the truncation plane was determined and the total

truncated area was obtained as the gpparent area multiplied by the ratio of the number of truncated

surface points to the total number of grid points. From the obtained tota truncated area, S, the
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truncated area of the largest microcontact, a',, was calculated from Eq. (11). Hence, a series of

truncated asperities can be generated usng Eqg. (9). Figure 6 shows a comparison between anaytica

results (obtained from Eq. (11) for a';= 0) and numerica results for smdl surface interference

distances, typical of those used in the surface contact Smulaions. The fair agreement between the
results of the two methods suggests that the assumption of a power-law asperity digtribution is
reasonable.

The locd interference, d, at the i agperity is given by [26]
d =2G®?(ng)"?(2r ). (12)

As discussed in the previous section, the representative strain at an asperity microcontact,
E'd /s,r ,inthe case of alayered medium can be obtained in terms of the equivaent yidd strength
and equivaent (effective) eastic modulus given by Egs. (6) and (7), respectively. However, because the
equivalent dagtic modulus is a function of the real contact radius, which is not known a priori, an
iteration procedure was used to determine the equivaent eastic modulus and real contact radius from
Egs. (2)-(5) and (7). The iniid vaue of the red contact radius was assumed to be equd to the
truncated radius. Usng this iteration scheme for the caculation of the equivaent dagtic modulus, the
representative strain was found and a new vaue was obtained for the real contact radius. This iteration
procedure was repeated until the change in the red contact radius approached a specified smdl
tolerance vaue (eg., 1%). Typicdly, Sx or seven iterations were required to obtain the equivaent

elagtic modulus and rea contact radius. Subsequently, the mean contact pressure, p,,; , and real contact

area, a,, a the i asperity microcontact were determined from the appropriate condtitutive relations
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(Egs. (2)-(5)), depending on the deformation regime. The contact force at the i asperity, dL,, isgiven
by

d, = p,,a;- (13)

Thetotal contact force, L, and total real contact area, A, were obtained by numerical integration,

N(a's) N(a's)
L = a dLl = a pm,iai’ (14)
i=1 i=1
and
Nga's)
A=aa, (15

i=1
where N(a', ) is the totd number of truncated asperities. The advantage of this anaytical method is

that it requires Sgnificantly less computationa time than other numerical techniques requiring a large and

very fine mesh, such as the finite dement method.

5. Results and Discussion

Figure 7 shows a1 nmx 1 nm fractal surface generated from Eq. (1) for D =2.44, G=9.46"
102 m,M =10, g= 1.5, L = 1 mm, and Ls equa to six times the lattice dimension of carbon. Since the
sample length, L, was chosen to be smdler than the upper limit of the sample length for fractd
characterization [24,32], the entire apparent contact area (Fig. 7) can be described by fracta geometry.
The fractd parameters D and G were determined from a log-log plot of the structure function versus
wavdength of a surface profile equivaent to those of a magnetic head and a smooth (rms ~0.2 nm) thin-

film disk imaged with an atomic force microscope [32]. The power spectrum of the equivalent surface,
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shown in Fg. 8, is equd to the sum of the power spectra of the head and the disk surfaces. Isotropic
random surfaces are characterized by axiadly symmetric power spectra. With the exception of two
orthogond bands aong the frequency axes, the power spectrum in Fg. 8 shows axid symmetry. As
explained in a previous study [26], these artificid bands occur due to the unmatchness of the opposing
boundaries of the amulated surface and can be removed usng the smple technique proposed by
Anguiano et d. [33].

Contact amulations were performed for a hard disk coated with a carbon overcoat possessing
an eadgtic modulus of 114 GPa and yield strength of 5.67 GPa in contact with a tri-pad picodider
coated with a carbon overcoat (Fig. 9). In view of the smdl surface interference distances examined, the
elastic modulus of the picodider surface was set equa to tha of the carbon overcoat for smplicity.
Contact was assumed to occur only a the trailing edge of the center-pad of the picodider, which has an
apparent contact area of 250 mm”~ 40 mm. The contact loads and corresponding real contact areas
determined from smulations performed on1 nm x 1 mm surface aress (such as that shown in Fg. 7)
were multiplied by a factor of 10% in order to convert them to picodider data. These are obvioudy
upper bound results snce the picodider may contact the disk surface a some angle, i.e., the actua
apparent contact areamay be a portion of the trailing edge of the picodider’ s center-pad.

For the range of surface interferences consdered in this study, the multi-layered disk medium
can be amplified to a two-layered medium. This is because the stress and dtrain fields are confined
within the carbon overcoat and the magnetic layer [32]. To reved the effects of the surface topography
and overcoat thickness on the magnitude of the contact load and deformation behavior, results for the
contact load and red contact area are presented for a homogeneous medium with carbon overcoat

properties and different fractd parameters, followed by results for a layered medium with a carbon
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overcoat of varying thickness and surface topography identica to that of the homogeneous medium.

Figures 10(a) and 10(b) show the variaion of the total contact |oad on the picodider, L, and the
real to apparent contact area ratio, A/A,, with the maximum surface interference distance, dhac. The
elagtic and plastic (nduding both dagtic-plagtic and fully plastic microcontacts) components of each
parameter are dso plotted in order to eucidate the dominant deformation mode as a function of the
maximum interference distance. Both the elastic and the plastic components of the contact load and the
red contact area increase rapidly with increesing surface interference a the head-disk interface.
However, the contribution of the plastic component is secondary, except at very smdl surface
interferences. This is expected because a smdl surface interferences (or low contact loads) actua
contact occurs at the smdler (sharper) asperities residing on top of larger asperities. Because it is easer
for the yidd condition to be satisfied a the smdler microcontacts [26], the resulting deformation
behavior a smdl surface interferences is predominantly indadtic (i.e., eastic-plastic and fully plastic).
Figure 10(b) shows that the real contact areais avery smal fraction of the apparent contact area. Since
the typical load on apicodider (in the absence of high adhesion forces) is below 1 g, the corresponding
red contact areais sgnificantly less than 1% of the gpparent contact area.

The sgnificance of the fractd dimenson D and fractal roughness G on the contact load and real
contact area can be interpreted in light of the results shown in Figs. 11 and 12, respectively. For fixed
fracta roughness and maximum surface interference, increasing the fractd dimengon increases the
contact load and the red contact area Sgnificantly (Fig. 11). This is expected because larger D vdues
are associated with smoother (denser) surface profiles, which, obvioudy, exhibit a greater load bearing
capacity due to the resulting larger real contact areas. A amilar trend occurs when the fractal roughness

G decreases and thefractd dimension D isfixed (Fig. 12). Since G is a height scding parameter, higher
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G vaues correspond to rougher (less dense) surface topographies characterized by a lower load
bearing capacity due to the smadler real contact areas produced. Roughening (texturing) for reducing
intimete surface contact is a well-established technique used in various tribologica systems to suppress
the occurrence of high adheson forces (dtiction), such as in disk drives and microdectromechanica
systems. A comparison of Figs. 11(c) and 12(c) shows that the effect of the fractad roughness G on the
portion of the real contact area undergoing inglastic deformation, A, p, is relatively less pronounced than
that of thefractd dimensonD. It appears that the evolution of pladticity at the contact region reaches a
maximum for afracta roughness vaue of the order of ~10** m (Fig. 12(c)).

Toillugrate the effect of the substrate materid (magnetic layer) on the magnitudes of the contact
load and red contact area, results for a homogeneous haf-space with carbon overcoat materia
properties and a layered medium with a carbon overcoat of thickness t = 2, 5, and 10 nm are
contrasted in Figs. 13 and 14. The surface topography was generated from EQ. (1) using the parameters
of the surface shown in Fg. 7. As expected, the effect of the underlying magnetic medium is indggnificant
a smdl surface interference distances (or light contact loads). In dl cases, increasing the surface
interference produces a pronounced increase in the contact load (Fig. 13(a)) and the inelastic portion of
the red contact area (Fig. 13(b)). However, as the overcoat thickness increases from 2 to 10 nm the
results for the layered medium gradudly approach those of the homogeneous medium. Thisis because a
stronger substrate effect is encountered with thinner overcoats and the eastic modulus of the magnetic
medium (i.e,, the subgtrate of the layered medium) is greater than that of the carbon overcoat. Since the
deformation a the contact region is predominantly dadtic, illustrated by the extremdy smdl fraction of
inelagticaly deformed asperity microcontacts (Fig. 13(b)) and by comparing the éastic and plagtic

contact load components, Le and L, shown in Figs. 14(a) and 14(b), respectively, higher contact loads
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are obtained with the stiffer layered medium. Thus, a dightly higher contact load is produced with the 2-
nm-thick overcoat due to the most pronounced effect of the stiffer substrate. Figure 14 indicates that the
main difference in the contact load results for layered and homogeneous media is due to the dominance
of eastic deformation, whereas differences between the results for overcoats of different thickness are
atributed to the effect of the substrate materid (magnetic medium), which depends on the overcoat

thickness.

6. Conclusions

A three-dimensiona contact modd was developed for dadtic-plastic layered media with rough
surfaces characterized by fractd geometry. Numerical results were presented for the head-disk contact
interface using redligtic surface topographies, constructed from atruncated W-M function with fractal
parameters obtained from a surface equivalent to those of a magnetic recording head and a smooth
carbon-coated thinfilm disk. Based on the obtained results and discussons, the following main
conclusions can be drawn.

(1)Condtitutive relations for the mean contact pressure and real contact area versus a representative
drain parameter were derived from afinite dement mode of arigid sphere indenting an eadtic-
plastic medium. The condiitutive mode accounts for eadtic, dadic-plagtic, and fully pladic
deformation at agperity microcontacts.

(2)The representative dirain in the congtitutive mode is alocal deformation parameter that depends
on the mechanical properties of the contacting surfaces, the loca surface interference distance,
and the contact radius of the truncated asperities.

(3)For a given surface topography of the head-disk interface, both the contact load and the real
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contact area a the trailling edge of the center-pad of a picodider increase monotonicdly with
increasing maximum surface interference distance.

(4)The contact load decreases with decreasing fractd dimenson D and/or increesng fractd
roughness G. This is due to the effect of fractd parameters on the load bearing surface area.
The effect of the mechanica properties of the magnetic medium on the contact load and
deformation behavior at the real contact area becomes more pronounced with decreasing
overcoat thickness.

(5)For the surface interference range examined, the effect of the overcoat thickness on the contact
load and red contect area is relaively smadl and the dominant deformation mode at asperity

microcontactsis eadtic.
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